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¢  MORPHOGENETIC “NEURON-FLOCKING”
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PARIS TLE/« FRANCE

Compositionality from Temporal Correlations

» The “binding problem”: using temporal code
v how to represent relationships?

stimulus
or concept
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IN¢ Compositionality from Temporal Correlations
> ldea: relational information can be encoded temporally
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after von der Malsburg (1981, 1987)




PRRIS ILE| < FRANCE

INe Compositionality from Temporal Correlations

» The importance of temporal coding
v more than mean rates — temporal correlations among spikes

x1(t) T ‘ | | | || || | _ {z1(t)) = @ high activity rate
ro(t) T | ‘ | || HI_[ {z2(t)) = @ high activity rate
o
va() [ | L (a0 = @ highactviy at
:"-..“‘ u
w1 AN L e men=o
w) L L qmm)=0
wo DAL A L ey =0

temporal coding

e (1)) s / . (+\\ | » zero-delays: synchron
Mol e (x1(t) 22(t) ) > (x1(t) 23(%) ) (1 and2morey|n Syn¥; than 1 an%i/ 3)
alsburg (1981)
andAbe/eS (1982) : ----------------------------------------------------------
(g (8) 5 (t — Tas) w6(t — Tag)) : » nonzero delays: rhythms

(4, 5 and 6 correlated through delays)




IN¢ Compositionality from Temporal Correlations

» Historical motivation for rate coding

— Adrian (1926): the firing rate of mechanoreceptor neurons in frog leg
IS proportional to the stretch applied

— Hubel & Wiesel (1959): selective response of visual cells; e.g., the
firing rate is a function of edge orientation

— rate coding is confirmed in sensory system and primary cortical areas,
however increasingly considered insufficient for integrating the information

> Temporal coding pioneers of the 1980-90’s

von der Malsburg (1981): theoretical proposal to consider correlations

— Abeles (1982, 1991): precise, reproducible spatiotemporal spike
rhythms, named “synfire chains”

— Gray & Singer (1989): stimulus-dependent synchronization of
oscillations in monkey visual cortex

— O’Keefe & Recce (1993): phase coding in rat hippocampus supporting
spatial location information

— Bialek & Rieke (1996, 1997): in H1 neuron of fly, spike timing conveys
information about time-dependent input




e Compositionality from Temporal Correlations

> From feature co-activation to temporal binding

(a) John gives a book to Mary. )
(b) Mary gives a book to John. W superposition

catastrophe”
(c)* Book John Mary give. P



e Compositionality from Temporal Correlations

> From feature co-activation to temporal binding

obj

recip

giver

John

Mary

Book

Ball

(a) John gives a book to Mary.



:IEQ Compositionality from Temporal Correlations

» ... further: from simple binding to full shape-based
composition

v"language as a construction game of “building blocks’



E&E Compositionality from Temporal Correlations

» ... further: from simple binding to full shape-based
composition

v"language as a construction game of “building blocks’
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LiYe Compositionality from Temporal Correlations

» ... further: from simple binding to full shape-based
composition

v"language as a construction game of “building blocks’
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;l&'.g Compositionality from Temporal Correlations

» Temp. binding is the “glue” of all shape-based composition

—————————————————————————————————————
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obj |_| |_| |_|_ \/ .

o LT T language, perception,
over L TL_ ] cognition are a game of
~ John _|_| |_| |—| " "

vy LT L building blocks

N\ Book |_| |_| rL

Ball _ ¥" mental representations

- 1NN are internally structured

recip |_| |_| |_I
o ﬂﬂ : - 1 v" elementary components
John .

vary [T assemble dynamically

oo S via temporal binding

after Bienenstock (1995) after Shastri & Ajjanagadde (1993)




Example 1: cognitive linguistics, iconic grammar

— Proposal: semantics is a topological/geometric affair (as opposed to a parse tree)

V' (1) (a) the cat in the house \\ — ., prototype

- =<

(b) the bird in the garden — LM

_ TR TR metonymy:
(c) the flowers in the vase — . w flowers = stems
(d) the bird in the tree — (@ M

______

(e) the chair in the corner

(f) the water in the vase

b= LM metonymy:
LM  yase = surface
of vase

(g) the crack in the vase

(h) the foot in the stirrup

—— e o o e e e e e e e e e —

—— o e e e e e e e e e o
=~
N
\
@\
\ Vi 7
| N 7/ e
=

‘ (i) ?the finger inthe ring = adapted from
Yo e Herskovits (1986)
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Example 2: graph representations In vision

— Proposal: graphs representing the same object class are structurally
similar and can be matched with each other

i

E




Ok, so how could all this be done in spiking NNs?
(temporal coding is a good start but doesn'’t give us models)

MORPHOGENETIC “NEURON-FLOCKING” (... WTH?)



MORPHOGENETIC “NEURON-FLOCKING”

phase space view:
complex spatiotemporal pattern =
mental shape

emergence?
(dynamic) | structure? (long-term) persistence? learning? storage? compositionality?
properties?

physical space view:
mega-MEA raster plot =
activity of 106-108 neurons




Morphogenetic Engineering — Devo-Inspired Alife

MECAGEN - Mechano-Genetic Model of
Morphogenesis

Delile,
Doursat & Peyrieras

MAPDEVO - Modular Architecture by Programmable
Development

Doursat, Sanchez, Fernandez, Kowaliw & Vico

SYNBIOTIC - Synthetic Biology: From Design to
Compilation

Kowaliw & Doursat

PROGLIM - Self-Constructed Network by Program-
Limited Aggregation
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1. The Tower of Complex Systems

1 genotype to phenotype, via development



LiYe 1. The Tower of Complex Systems

PARIS ILEI < FRANCE

» From pigment cells to coat patterns, via reaction-diffusion




LiYe

1. The Tower of Complex Systems

» From social insects to swarm intelligence, via stigmergy

P

{Individual 5)




LiYe 1. The Tower of Complex Systems
» From birds to flocks, via flocking




G 1. The Tower of Complex Systems

» Emergence on multiple levels of self-organization

complex systems:

a large number of elementary agents
interacting locally

simple individual behaviors creating a
complex emergent collective behavior

decentralized dynamics: no master
blueprint or grand architect




PARIS ILE/ « FRANCE

LiYe 1. The Tower of Complex Systems

» All agent types: molecules, cells, animals, humans & tech

organisms .
g ant trails

termite
mounds 44

- biological
patterns

AT
% animals

m

humans
Tt & tech
nternet, )
Web markets, social networks

economy




LiYe 1. The Tower of Complex Systems
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LiYe 1. The Tower of Complex Systems

Animation of a functional MR/
study (J. Ellermann, J.
Strupp, K. Ugurbil, U
Minnesota)

Dynamics of orientation tuning:
polar movie

Sharon and Grinvald, Science
2002

Raster plot of of a simulated
~ synfire braid,
Doursat et al. 2012
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N resting potential

S distance




19C The Tower of Complex Systems

PRARAIS TLE/*

» Mind function: from neurons to mind, via self-organizing objects

made of correlated activity e

/ “John gives “Mary is the owner
a book to Mary”/ . ' = ofthe book”

*\ dynamics (stability, chaos,
; reg|mes,-blfurcatlbns)

,/' ’ after Bienenstock y
, , (1995, 1996)
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{ EXC } -: INH morphodynamics  Polychronous groups  ex: Freeman (1994)
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: " integrate & fire N f N LTPILTD
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1SC The Tower of Complex Systems

synfire chains / wave-based
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Abeles,\ﬁiéﬁénstock,
Diesmann (1982, 1995, 1999)

morphodynamics




LiYe Wave-Based Shape-Matching

» Wave-based pattern retrieval and matching

v' Lattices of coupled oscillators (zero delays)

= group synchronization

= traveling waves

= 2D wave shapes

= shape metric deformation

=0



Ye 3. Wave-Based Shape-Matching - Lattice

» Lattice of coupled oscillators — group sync, phase-tagging

v" the base of many perceptual segmentation models in the 1990's

= auditory: von der Malsburg & Schneider (1986), “cocktail party” processor

= visual, after Gray & Singer (1989): Kurrer & Schulten (1990), Konig & Schillen
(1991), DL Wang & Terman (1995), Campbell & DL Wang (1996), etc.

o oscillatory or excitable units as an abstraction of excit<>inhib columnar activity
o 2D lattice coupling as an abstrachon of topographically organized visual cortex
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Time
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(w/ relaxation oscillators similar to FitzHugh-Nagumo/Morris-Lecar + global inhibition)

Wang D.L. and Terman D. (1997): Image segmentation based on oscillatory correlation. Neural Computation, vol. 9, 805-836
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LiYe 3. Wave-Based Shape-Matching
» Stochastic excitable units | «, 2
s c(u; — T + v+ 2) 47

v" ex: Bonhoeffer-van der Pol (BvP):
oscillator’'s two main regimes: | 4

z>z, a) sparse, stochastic — excitable

! Y 1
L (@ —u; —bv;) +1n

C

2. =—0.3465 : o
z<z. b) quasi-periodic — oscillatory - | b= g,g
“a = T8 3= sa ok - - i i . Cc =
(b)

1 2=-036




LiYe Wave-Based Shape-Matching — Lattice

> Lattice of coupled oscillators 4. 8
. . . il c(u; — 5 +vi+2)+n+ K+ I
v' i« j coupling features Y a1 4 T

. . — = “(a—u;—by)+n /!

= |sotropic (dt c T ot

= proportional to the u signal difference coupling /’” i term
o only in spiking domain « <0 term

u if] ' ' .. N
positive connection weight ;; K= Sk (_uj o) (f))

= possible transmission delay z;
o  here zero delays 7; =0

N
! J




Ie 3. Wave-Based Shape-Matching - Lattice

> Lattlce of coupled oscillators — group sync, phase-taggmg

z= ~0.336 )‘ ‘ Cf/

o k=0.10
(illustration by Doursat & Sanchez 2012) I=-2.34

Wang D.L. and Terman D. (1997): Image segmentation based
on oscillatory correlation. Neural Computation, vol. 9, 805-836
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LiYe Wave-Based Shape-Matching - Lattice

» Lattice of coupled oscillators — traveling waves

.. phase gradients

R
oLl N/

Wang D.L. and Terman D. (1997): Image segmentation based on Doursat,, R. & Petitot, J. (2005) Dynamical systems and cognitive linguistics:
oscillatory correlation. Neural Computation, vol. 9, 805-836 Toward an active morphodynamical semantics. Neural Networks 18: 628-638.




e  Wave-Based Shape-Matching - Lattice

PRARIS TLE/« FRANCE

» Lattice of coupled oscillators — traveling waves

v Random propagation
s z=-0.346,k=0.04,/=0

v" Circular wave generation
»  z=-0.29,k=0.10, I =-0.44 (point stimulus o)

> © &

O

v" Planar & mixed wave generation
= z=-0.29,k=0.10, I =-0.44 (bar stimulus =)



i« 3. Wave-Based Shape-Matching — Lattice

PRARIS TLE/« FRANCE

» The “morphodynamic pond”: a neural medium at criticality

v" upon coupling onset and/or stimulation — emergence of a wave
= quick transition to ordered regime (STP): reproducible succession of spike events (7!,#,...)

v the structure of the STP is a trade-off between
<: = endogenous factors: connectivity (structural bias), attractors (preferred activation modes)
= exogenous factors: stimulus (perturbation), binding (composition with other STPs)
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LiYe Wave-Based Shape-Matching — Lattice

» Lattice of coupled oscillators — 2D wave shapes

v"coding coordinates with phases
Yo @
.I ) \5 virtl;ila%f;ase
. = 3 e
He I:I \;-U g
MEfiiEEiEEEE 05
1) v
Y
= similar to buoys Loty + 74
floating on water G!
- 0 e e o o o @
N X %o Xa e K K
x coordinates
STP,
' -y




LiYe Wave-Based Shape-Matching — Lattice

» Lattice of coupled oscillators — 2D wave shapes
v"coding coordinates with phases

time: (43.00)

N,
= similar to buoys S | 5 IO
floating on water B g By

0 50 100 150 200 0 50 100 150
—
—— —
I _l__

0 50 100 150 200 0 50 100 150



LiYe Wave-Based Shape-Matching — Lattice

> Lattice of coupled oscillators

v" the final shape in virtual phase space depends on
= the physical position of the feature units on the lattice

= the form and direction of the two waves, itself depending on:

o endogenous factors: connectivity and weight distribution
o  exogenous factors: stimulus domains

v"ex: no deformation
= planar & orthogonal waves

o uniform weights on Py-and Py

Px Py

o orthogonal full-bar stimuli
— Shape = physical positions Virtual Space

uniform weight
distribution:

k=0.09

0 20 40 60
STPx




PRARIS TLE/« FRANCE

e 3. Wave-Based Shape-Matching - Lattice

» Lattice of coupled oscillators

v" wave detection and velocity measure based on control units

= the probability of wave generation increases with z\, and k£
= the velocity of the generated wave increases with z ™\ and k

~ 1/T

Waw e velocity

Actividad de neuronas de control

........

Coupling strength (k)




e  Wave-Based Shape-Matching - Lattice

PRARIS TLE/« FRANCE

> Lattice of coupled oscillators

v’ ex: “shear stress” deformation
= vertical wave + horizontal wave

o  Y-gradient of weights on Py

Px Py

T
-

'.:’éﬁ‘ffc‘?'f:‘i-‘}?-f}?:-, “

o orthogonal full-bar stimuli Virtual Space
a0}
025 éjg
0.2 @ 20 =
gradient weight i <!
landscape: . o

o 10 20 30 40 50
STPx

k e [0.09, 0.20]

v ex: “laminar flow” deformation
= |aminar wave + vertical wave s, = VeSPace

o  Y-gradient of weights on P, i_
o orthogonal full-bar stimuli @ )
10 - i,

o 10 20 30 40 50
STPx



LiYe Wave-Based Shape-Matching — Lattice

> Lattice of coupled oscillators

v'ex: irregular deformation ) .
= heterogeneous waves B ?%

o  random weight distribution
(bumps & dips) on Py and Py .,

o orthogonal full-bar stimuli } w } w)‘“

v" various weight combinations

B e e sucuens s g e s neg 1 [RIRIESORr ) T :
. ' : [ 5 + I : :
: 5 s b
40 Lev iy e
HE » = R I

40

ool : :

& QD
OO :

20 SoooomEn

e s)

ey

Py




LiYe Wave-Based Shape-Matching

» Wave-based pattern retrieval and matching

v" Synfire chains (uniform delays)
= wave propagation
= chain growth
= pattern storage and retrieval




i« 3. Wave-Based Shape-Matching — Chains

PRARIS TLE/« FRANCE

» Synfire chains - definition

v"asynfire chain (Abeles 1982) is a sequence of synchronous neuron
groups P,— P, — P, ... linked by feedfoward connections that can

v"synfire chains have been hypothesized to explain neurophysiological
recordings containing statistically significant delayed correlations

v"the redundant divergent/convergent connectivity of synfire chains can
preserve accurately synchronized action potentials, even under noise



PRARIS TLE/« FRANCE

X«  Wave-Based Shape-Matching - Chains

» Synfire chains — typical example studies

v"1-chain propagation viability

mental shape = Diesmann, Gewaltig & Aertsen (1999) Stable propagation
stability of synchronous spiking in cortical neural networks

=R

= N b L P =
e

Group

oW oo
beroey

1

v"1-chain self-organized growth

mental shape ®  Doursat & Bienenstock (1991, 2006) Neocortical self-
learning structuration as a basis for learning

v" 2-chain binding

mental shape ®  Abeles, Hayon & Lehmann (2004) Modeling Compo-
composition sitionality by Dynamic Binding of Synfire Chains

v" N-chain storage capacity e
mental shape ®  Bienenstock (1995) A model of neocortex W T

memory = Trengove (2007) Storage capacity of a superposition of |
4 synfire chains using conductance-based I&F neurons u

WAVE AMPLITUDES
n & =

% @

synfire chains potential fill all the requirements for a mesoscopic world of mental shapeﬁsf



PRARIS TLE/« FRANCE

e  Wave-Based Shape-Matching — Chains

» Synfire chains — self-organized growth

h @@9 @
@ i .
L ®. ‘
Q

, b o @
i E
1. Hebbian rule _, @‘ @ network
o,
AW ~ x; x; ,, ® b
(s9)

sl structuration
Ao ©

2 AW;~0 Zr by accretive
2. sum rule 5 synfire growth

t=200 t=4000

AN spatially
'0 @ rearranged
¢3\( eﬂ@‘\\! B @ . view
W M"»‘%\'A’l@\‘l‘l o .
ii\v"‘"'@ ‘w @ Irf\!i, ® ® ©® 6
}'f‘!ié ’., "@\ ‘\‘,"f\o ® ®
A!!lvé,ﬁ“'@ Q"!‘\e ______ ______ ______ ®
i }3]/"’(@“‘}“" @ ©
“‘@‘ QD @ ®
\ ®

Doursat, R. (1991), Doursat & Bienenstock, E. (2006) Neocortical self-structuration as a basis for learning. 5th International Conference
on Development and Learning (ICDL 2006), May 31-June 3, 2006, Indiana University, Bloomington, IN. IU, ISBN 0-9786456-0-X.
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PRARIS TLE/« FRANCE

3. Wave-Based Shape-Matching — Chains

» Synfire chains - self-organized growth

v"aspecial group of n, synchronous cells, P,, is repeatedly (not necessarily

periodically) activated and recruits neurons “downstream’

group P,

Fy I
. o ! if j fires a 21 time
if j fires once after o o o ! ofter P i has
. . '.... O 0,]
P s weights ©n 0 o | now 50% chance
increase and give Ol :
. i@ ;O : of doing so a 31
ita 12% chance ouFEF /T g b Ig i~
ofdoingsoagan | @ . © © o | ime; else it stays
at 12% while
(vs. 1.8% for the o o) : :
others) © ; another cell, ;'
t—t+1 ' reaches 12%
Fo I P P I F P Py
o (@) | o (@) | ° (o)
| 1 .
the number of o © | © 6. O , ® o o O it reaches a
I (0] I o critical mass, P,
post-P, cells (cells © o ° Q o : o o o
with larger weights o I oG- I o ‘e also §tlarts
from P,) increases o o | o 3 0,.5;?‘ ; o ® recrqltlng and
and forms the next o 1  © oo o © e  forminganew
o) ; o) o O ; o o © group P, etc.
| |
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Wave-Based Shape-Matching — Chains

» Synfire chains - pattern mix and selective retrieval

layout A w/ weights A

Iayout_B w/ weights B

v high specificity of synfire stimulus

unlike the “sensitive” isotropic lattice,
not any input pattern will trigger a wave

a synfire chain needs a “critical seed” of
N stimulated neurons at the right place

endo:connectivity, attractors > Here
exo: stimulus, binding

“n
layout A N§1 \ “gl SR
NA == 13 b - ' - ‘- 3 “. - & . -
y 070« m|.xed , e .
weights .
ayoutB 3 AT 1
= H“‘;.' - 0*: - e T . g
NB 13 10‘ ee - — 10‘3-\"‘%,__ -’#________.-
»HH‘H_F — 10 p = O 5 HH"-\.}“.*'-’#-’ 10 .
Y 0o X 7= _O 28 y 00 X
. |
k=0.016
Ba\]yoitg Nglh ~ .\rf Ngl
A N, - N >
— no wave RN ot S0
¥ ﬂhfl:l ¥ y GH-F[:' ¢




LiYe Wave-Based Shape-Matching — Chains

» Synfire chains - pattern mix and selective retrieval
v' statistics of selective retrieval depending on input size (in first pool)

G A Gnd B

M |- - oo oo oomeoee ‘- Y it

#uve

GidB
P TS S B
3 ________________________
R e
4 A
D FSNRS S AN S
. o—
5 10 15 5 10 15
Size Input Size
id C
1“ __________________ i _____________
] S S i _____________
é [ P S E _____________
# 4 __________________ : _____________
P RS SO b
o f
5 10 15




LiYe Wave-Based Shape-Matching

» Wave-based pattern retrieval and matching

v" Synfire braids (transitive delays)

= shape storage and retrieval
= 2D wave-matching




*

¢  Wave-Based Compositionality — Braids

» EXx: synfire patterns can bind, i.e. support compositionality

v"cognitive compositions could be analogous to
conformational interactions among proteins...

v"in which the basic “peptidic”

—
——
—
—
-~ .
—
—

f%%. elements could be synfire
DN chain or braid structures
a5 R . .
{,’# .zgﬂt!':m;i, supporting traveling waves
[ AR &
(;??ij; };}‘ v’ two synfires can
Q" ST T :
4/‘1-33', o/ %\ bindbysynchro-
o ;Eﬁgﬁﬂéﬁ%.éf' nization through

coupling links

— molecular
metaphor

51



PRRIS ILE < FRANCE

LiYe Wave-Based Compositionality — Braids

» Sync & coalescence in a “self-woven tapestry” of chains

v"multiple chains can “crystallize” from intrinsic “inhomogeneities” in
the form of “seed” groups of synchronized neurons

——————————————————————————

',o oo ’\Ooo o\\ '/o oo oo o\\
: o 0 %04 2 o | o o o O ol
o o o 1 ' o 1
1o o o © X o o 1 cortical ' ° ° ,  compo-
o o o O 0 o | ! o 1 g
o0 o, o ©° o stuctu- ! ©o o, o . Sition
o (o] . lo) le) "
e 00 ° ogo  ° ; ‘l"atlonby S oo - L ° | by synfire |
1o o°° ¢ o ° 1 Terystal- ° ° ° I wave
1 o o . . " . .
I 6 0o o © ! lization ! binding
|
I I

,____
(o]
(o]
(o] (o]
(o]
o o
0o (o]
o (o]
(o]
(o]
‘
~

—————————————

see Bienenstock (1995), Abeles, Hayon & Lehmann (2004), Trengrove (2005)

v"concurrent chain development defines a mesoscopic scale of
neural organization, at a finer granularity than macroscopic Al
symbols but higher complexity than microscopic neural potentials

—————————————

v"on this substrate, the dynamical binding & coalescence of multiple
synfire waves provides the basis for compositionality and learning

52



LiYe Wave-Based Shape-Matching — Braids

» Synfire braids -

definition

v’ synfire braids (Bienenstock 1991, 1995) are generalized STPs with longer
delays among nonconsecutive neurons, without distinct synchronous groups
v’ they were rediscovered later as “polychronous groups” (Izhikevich 2006)

Doursat & Bienenstock 1991

|zhikevich 2006

v"in a synfire braid, delay transitivity 7,5 + 3¢ = 74p + 7 SUppOrtS
incoming spike coincidences, hence stable propagation of activity

v" synfire braids can also grow in a network with nonuniform integer-valued

delays z; and inhibitory neurons

inhibitory

excitatory
activity (chain)

N\

¥

activity

||||||||||||||||||||

||||||||||||||||||||||||||||||||||||||||||

Doursat & Bienenstock 1991

TT T T T T T T T

(background)



LiYe Wave-Based Shape-Matching — Braids

» Synfire braids — pattern mix and selective retrieval
v’ same layout, same shape, gifferent wiring (wrap-around)

AN X q ® 4 X <
\ T: ‘/1’5 _‘_' 7 1, N .7 N /,
1 1
1 | 1

________ o) e
: 3 A0

_____________________________________

A !
/ /
7 Ye_-

weights B mixed weights A + weights B
wrgii)g(;?\?s v high stimulus specificity
|H = togenerate a wave, a
-5, = '= . synfire braid needs a
" z=-0.28 0T el .
= 0.016 L minimum of N neurons
Ny=11 ™" ' S~ Np=11 stimulated in a sequence
in ‘A’ sequence . in ‘B’ sequence (“SUb-STP") compatible
| with the delays
: "'-\.1_‘_\\-h s

.

Ny
N=11 "
simultaneously — no wave

p



LiYe Wave-Based Shape-Matching — Braids

PRRIS ILE < FRANCE

» Synfire braids — pattern mix and selective retrieval
v statlstlcs of seIectlve retrleval dependlng on mput size (|n sequence)

#waven
#waven




e 3. Wave-Based Shape-Matching — Braids

» Synfire braids — shape mix and selective retrieval
v’ same layout, different shape
T RN TN, T:,’]TS‘-\\-V ‘,/‘\\ RN

>0 00
10,000

0 0.00
0000
oXe)

shape A w/ weights A- shape B w/ weights B- shape A + shape B

mixed : : e
," shapes h v" high stimulus specificity
" ’ o® = {0 generate a wave, a

’,p AN ~~ synfire braid needs a
&" ;:06?2 minimum of N neurons
N,=11 ‘ S Ny =11 stimulated in a sequence
in ‘A’ sequence in'B'sequence s h-STP”) compatible
’ with the delays

N=11
simultaneously — no wave

p
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3. Wave-Based Shape-Matching — Braids

» Synfire braids — wave-matching

v'graph-matching implemented
as dynamical link matching
between two pairs of STPs

graph 1

-

graph-1 nodes i’
'. _
o
T
L
1 1|

HLE

link matrix Wiy’

1 sopou Z-ydelb «

[ du;

dt
dv;

dt

STP 2y
sce e ® O @ O

3
s .
= clu; — - v+ 2) L
1 >+ Wi
= —(a—w—bv)+n,” "
C 1
I
Wi= 2 wirr (Ui — u;)
graph 2
o o
@
. * 5}
# o o
= ®
o *»
® o -
L]
o
. o
L W 0D

STP 2x



LYe 3. Wave-Based Shape-Matching — Braids

» Synfire braids — wave-matching
N
v' additional coupling term: WX (t) = > wi () (ui(t) — u* (1))

J=1
u;}(t)<0

v’ where w;; varies according to

1. Hebbian-type synaptic plasticity based on temporal correlations

Aw; (t) = (_1--( — w (t) +wo f (sf}r(O))) with
U(0) = (X () i) g, and f(s) = (14e )

2. competition: renormalize efferent links
Wit —> Wii'/Zj Wi’

3. label-matching constraint

-0 2 L - Loy L8 ()

STP 1x STP 2x



LiYe Wave-Based Shape-Matching — Braids

» Synfire braids — 2D wave-matching
v' Hebbian rule in 2D:  Awii(t) = o — wir(t) +wof (\/.sf;'ﬁ(O).s%;y(O) ))

S50 = (N () Wi () g,  Fs) = (1 e




LYe 3. Wave-Based Shape-Matching - Braids

» Synfire braids — 2D wave-matching

v" to drive the system to the best match (global minimum), internal
coupling & in graph-2 layer is regularly lowered and increased again
= if match is weak, this will perturb STP 2 and undo matching links

= if match is strong, this will not perturb STP 2 because it will be
sustained by matching links — resonance between links and STPs

global “correlation” order parameter S: global “synchronicity” order parameter C:

1 / / t 1 2T
S(t) = > (ui(t) uy(t — 75 , C(t) = 08 | ——(ti(t) — t;(t) — Ti;
5(1) N(N = 1) Z (w; (1) uy(t sz)>t—Ts (7) N(N = 1) ;CO“’ ( T (t:(t) — 1;(¢) TJ))

mm

weak (mis)match — undone by uncoupling strong match — resistant to uncoupling
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Toward Emergent Neurodynamics

» The naive engineering paradigm: “signal processing”

v

v

V. .
L9

Dot 8 {9
— >

\ S’
L

i /f /\) neurons
f:-JxEL

feed-forward structure — activity literally “moves” from one corner to
another, from the input (problem) to the output (solution)

activation paradigm — neural layers are initially silent and are literally
“activated” by potentials transmitted from external stimuli

coarse-grain scale — a few units in a few layers are already capable of

performing complex “functions”

P e e e e e e e e B B R i

~

sensory

_
’ N L
1 l \ 1
I
1 vy
Z
"\ b |
O \
]
7 7 /
\\_// \\ ,

’ \
relays thalamus, -~~~
\ primary areas cortex 7

/
N

— —— — — — — — — — | —
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LiYe Toward Emergent Neurodynamics

It is not because the brain is an intricate network of
microscopic causal transmissions (neurons
activating or inhibiting other neurons) that the
appropriate description at the mesoscopic functional
level should be “signal / information processing’.

This denotes a confusion of levels: mesoscopic
dynamics is emergent, i.e., it creates mesoscopic
objects that obey mesoscopic laws of interaction

and assembly, qualitatively different from
microscopic signal transmission
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LiYe Toward Emergent Neurodynamics

» The emergent dynamical paradigm: excitable media

v" recurrent structure — activity can “flow” everywhere on a fast time scale,
continuously forming new patterns; output is in the patterns

v' perturbation paradigm — dynamical assemblies are already active and
only “influenced” by external stimuli and by each other

v" fine-grain scale — myriads of neurons form quasi-continuous media
supporting structured pattern formation at multiple scales

sensory
neurons




LiYe 5. Toward Emergent Neurodynamics

> Tenet 1: mesoscopic neural pattern formation is of a fine
spatiotemporal nature

> Tenet 2: mesoscopic STPs are individuated entities that
are

a) endogenously produced by the neuronal substrate,

b) exogenously evoked & perturbed under the influence of
stimuli,

c) interactively binding to each other in competitive or
cooperative ways.
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LiYe 5. Toward Emergent Neurodynamics

a) Mesoscopic patterns are endogenously produced

v'given a certain connectivity pattern, cell assemblies exhibit various
possible dynamical regimes, modes, patterns of ongoing activity

v"the underlying connectivity IS itself the product of epigenetic

-
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— the identity, specificity or stimulus-selectiveness of a mesoccop/c
entity is largely determined by its internal pattern of connections
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5. Toward Emergent Neurodynamics

b) Mesoscopic patterns are exogenously influenced
v"external stimuli (via other patterns) may evoke & influence the

pre-existing dynamical patterns of a mesoscopic assembly

v' itis an indirect, perturbation mechanism; not a direct, activation

mechanism

——————————————————————————————————————————————————————————————

* fine mesoscopic

neurodynamics

— - ==

v" mesoscopic entities may have stimulus-specific recognition or

“representation” abilities, without being “templates” or
“attractors” (no resemblance to stimulus)
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LiYe 5. Toward Emergent Neurodynamics

c) Mesoscopic patterns interact with each other

v' populations of mesoscopic entities can compete & differentiate
from each other to create specialized recognition units

v"and/or they can bind to each other to create composed objects,
via some form of temporal coherency (sync, fast plasticity, etc.)

——————————————————————————————————————————————————————————————
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evolutionary population molecular compositionality

paradigm paradigm
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