
DIFFERENTIAL EQUATIONS 



DIFFERENTIAL 
EQUATIONS NON-LINEAR LINEAR 

(in y) 
LINEAR W/ CST 
COEFFs (in y) 

ORDINARY 
DIFF EQs 

FIRST-
ORDER 4(𝑦′)2+𝑥 cos𝑦 = 𝑥2 4𝑥2𝑦′ + 𝑦 cos𝑥 = 𝑥2 4𝑦′ + 3𝑦 = cos𝑥 

SECOND-
ORDER 4𝑦′′𝑦′ + 𝑥𝑦1 2⁄ = 𝑥2 4𝑥2𝑦′′ + 𝑦𝑥1 2⁄ = 𝑥2 4𝑦′′ + 2𝑦′ + 3𝑦 = 𝑥2 

HIGHER-
ORDER 𝑦(5)𝑦′... cos 𝑦′′′... 𝑦1/2 𝑦(5)... 𝑦′′′ ... 𝑦 

PARTIAL DIFF EQs 
𝜕𝑦
𝜕𝑥1

 … 
𝜕𝑦
𝜕𝑥𝑛

 4
𝜕𝑦
𝜕𝑥1

+ 3
𝜕𝑦
𝜕𝑥2

= 𝑥1𝑥2 
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general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

p4 (1.1) 
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Book: Kreyszig, 10th ed. 

linear: 
if  𝑦𝑦 + 𝑝 𝑥 𝑦 = 𝑞 𝑥  

 

p27 (1.5) 



general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

separable: 
if 𝑃 𝑥 𝑑𝑑 + 𝑄 𝑦 𝑑𝑑 = 0 

then integrate separately and resolve for 𝑦 

p12 (1.3) 

Rene Doursat 

p4 (1.1) 



general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

separable: 
if 𝑃 𝑥 𝑑𝑑 + 𝑄 𝑦 𝑑𝑑 = 0 

then integrate separately and resolve for 𝑦 

p12 (1.3) 
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p4 (1.1) 

“linear” substitution: 
if  𝑑𝑑

𝑑𝑑
= 𝑓(𝑎𝑎 + 𝑏𝑏 + 𝑐) 

then use 𝒖 = 𝒂𝒂 + 𝒃𝒃 + 𝒄 
and solve separable eq.  𝑑𝑑

𝑎+𝑏𝑏(𝑢)
= 𝑑𝑑 



      simple “balanced” case: 
if  𝑦′ = 𝑓 𝑦 𝑥⁄ , 

that is 𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)⁄ = −𝑓(𝑦 𝑥⁄ ) 
then use 𝒚 = 𝒙𝒗 

general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

separable: 
if 𝑃 𝑥 𝑑𝑑 + 𝑄 𝑦 𝑑𝑑 = 0 

then integrate separately and resolve for 𝑦 

CUA, ENGR 520, Summer '14 (v4) Rene Doursat 

p4 (1.1) 

p12 (1.3) 

“linear” substitution: 
if  𝑑𝑑

𝑑𝑑
= 𝑓(𝑎𝑎 + 𝑏𝑏 + 𝑐) 

then use 𝒖 = 𝒂𝒂 + 𝒃𝒃 + 𝒄 
and solve separable eq.  𝑑𝑑

𝑎+𝑏𝑏(𝑢)
= 𝑑𝑑 

p17 (mid) 



      simple “balanced” case: 
if  𝑦′ = 𝑓 𝑦 𝑥⁄ , 

that is 𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)⁄ = −𝑓(𝑦 𝑥⁄ ) 
then use 𝒚 = 𝒙𝒗 

general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

separable: 
if 𝑃 𝑥 𝑑𝑑 + 𝑄 𝑦 𝑑𝑑 = 0 

then integrate separately and resolve for 𝑦 
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p4 (1.1) 

p12 (1.3) 

“linear” substitution: 
if  𝑑𝑑

𝑑𝑑
= 𝑓(𝑎𝑎 + 𝑏𝑏 + 𝑐) 

then use 𝒖 = 𝒂𝒂 + 𝒃𝒃 + 𝒄 
and solve separable eq.  𝑑𝑑

𝑎+𝑏𝑏(𝑢)
= 𝑑𝑑 

generally “balanced” (“homogeneous” degree): 
if 𝑃 𝑡𝑥, 𝑡𝑦 = 𝑡𝛼𝑃 and 𝑄 𝑡𝑡, 𝑡𝑡 = 𝑡𝛽𝑄 

and 𝛼 = 𝛽 (same degree of homogeneity) 
then use 𝒚 = 𝒙𝒙 

and solve 1
𝑥𝛼

𝑃 + 𝑣𝑄 𝑑𝑑 + 𝑥𝑥𝑥𝑥 = 0 
i.e. 𝑃(1,𝑣) + 𝑣𝑣(1,𝑣) 𝑑𝑑 + 𝑥𝑥(1,𝑣)𝑑𝑣 = 0  

i.e. the separable eq. 𝑑𝑑
𝑥

= 𝑃 1,𝑣
𝑄 1,𝑣

+ 𝑣
−1
𝑑𝑑 

p17 (mid) 



general explicit:  
 𝑦′ = 𝑓 𝑥, 𝑦 ⇔  𝑑𝑑

𝑑𝑑
= − 𝑃 𝑥,𝑦

𝑄 𝑥,𝑦
 ⇔ 

𝑃 𝑥, 𝑦 𝑑𝑑 + 𝑄 𝑥,𝑦 𝑑𝑑 = 0 

FIRST-ORDER ODEs 

separable: 
if 𝑃 𝑥 𝑑𝑑 + 𝑄 𝑦 𝑑𝑑 = 0 

then integrate separately and resolve for 𝑦 

exact: 
if  𝜕𝜕(𝑥,𝑦)

𝜕𝑦
= 𝜕𝑄(𝑥,𝑦)

𝜕𝑥
  

then find 𝐹 𝑥,𝑦  such that 𝝏𝑭
𝝏𝝏

= 𝑷 and 𝝏𝑭
𝝏𝒚

= 𝑸, 
integrate separately, and solution is 𝐹(𝑥,𝑦) = 𝐶 

“linear” substitution: 
if  𝑑𝑑

𝑑𝑑
= 𝑓(𝑎𝑎 + 𝑏𝑏 + 𝑐) 

then use 𝒖 = 𝒂𝒂 + 𝒃𝒃 + 𝒄 
and solve separable eq.  𝑑𝑑

𝑎+𝑏𝑏(𝑢)
= 𝑑𝑑 

p20 (1.4) 
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p4 (1.1) 

p12 (1.3)       simple “balanced” case: 
if  𝑦′ = 𝑓 𝑦 𝑥⁄ , 

that is 𝑃(𝑥, 𝑦) 𝑄(𝑥, 𝑦)⁄ = −𝑓(𝑦 𝑥⁄ ) 
then use 𝒚 = 𝒙𝒗 

generally “balanced” (“homogeneous” degree): 
if 𝑃 𝑡𝑥, 𝑡𝑦 = 𝑡𝛼𝑃 and 𝑄 𝑡𝑡, 𝑡𝑡 = 𝑡𝛽𝑄 

and 𝛼 = 𝛽 (same degree of homogeneity) 
then use 𝒚 = 𝒙𝒙 

and solve 1
𝑥𝛼

𝑃 + 𝑣𝑄 𝑑𝑑 + 𝑥𝑥𝑥𝑥 = 0 
i.e. 𝑃(1,𝑣) + 𝑣𝑣(1,𝑣) 𝑑𝑑 + 𝑥𝑥(1,𝑣)𝑑𝑣 = 0  

i.e. the separable eq. 𝑑𝑑
𝑥

= 𝑃 1,𝑣
𝑄 1,𝑣

+ 𝑣
−1
𝑑𝑑 

p17 (mid) 



FIRST-ORDER ODEs 

exact with “integrating factor”: 
if  𝜕𝜕

𝜕𝑦
≠ 𝜕𝑄

𝜕𝑥
  

then find 𝝁(𝒙) such that 𝜕𝜇𝑃
𝜕𝜕

= 𝜕𝜇𝑄
𝜕𝜕

 : possible if  1
𝑄

𝜕𝜕
𝜕𝜕
− 𝜕𝜕

𝜕𝜕
= 𝑔(𝑥) only, 

then 𝐹 𝑥,𝑦  such that 𝜕𝐹
𝜕𝜕

= 𝜇𝑃 and 𝜕𝐹
𝜕𝑦

= 𝜇𝜇  ⇒  𝐹(𝑥, 𝑦) = 𝐶 
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p23 (bott) 

exact: 
if  𝜕𝜕(𝑥,𝑦)

𝜕𝑦
= 𝜕𝑄(𝑥,𝑦)

𝜕𝑥
  

then find 𝐹 𝑥,𝑦  such that 𝝏𝑭
𝝏𝝏

= 𝑷 and 𝝏𝑭
𝝏𝒚

= 𝑸, 
integrate separately, and solution is 𝐹(𝑥,𝑦) = 𝐶 

p20 (1.4) 



exact: 
if  𝜕𝜕(𝑥,𝑦)

𝜕𝑦
= 𝜕𝑄(𝑥,𝑦)

𝜕𝑥
  

then find 𝐹 𝑥,𝑦  such that 𝝏𝑭
𝝏𝝏

= 𝑷 and 𝝏𝑭
𝝏𝒚

= 𝑸, 
integrate separately, and solution is 𝐹(𝑥,𝑦) = 𝐶 

FIRST-ORDER ODEs 

exact with “integrating factor”: 
if  𝜕𝜕

𝜕𝑦
≠ 𝜕𝑄

𝜕𝑥
  

then find 𝝁(𝒙) such that 𝜕𝜇𝑃
𝜕𝜕

= 𝜕𝜇𝑄
𝜕𝜕

 : possible if  1
𝑄

𝜕𝜕
𝜕𝜕
− 𝜕𝜕

𝜕𝜕
= 𝑔(𝑥) only, 

then 𝐹 𝑥,𝑦  such that 𝜕𝐹
𝜕𝜕

= 𝜇𝑃 and 𝜕𝐹
𝜕𝑦

= 𝜇𝜇  ⇒  𝐹(𝑥, 𝑦) = 𝐶 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

p23 (bott) 

p20 (1.4) 

or conversely, 𝝁(𝒚) exists if  − 1
𝑃

𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
= ℎ(𝑦) only 



exact: 
if  𝜕𝜕(𝑥,𝑦)

𝜕𝑦
= 𝜕𝑄(𝑥,𝑦)

𝜕𝑥
  

then find 𝐹 𝑥,𝑦  such that 𝝏𝑭
𝝏𝝏

= 𝑷 and 𝝏𝑭
𝝏𝒚

= 𝑸, 
integrate separately, and solution is 𝐹(𝑥,𝑦) = 𝐶 

FIRST-ORDER ODEs 

or conversely, 𝝁(𝒚) exists if  − 1
𝑃

𝜕𝑃
𝜕𝑦
− 𝜕𝑄

𝜕𝑥
= ℎ(𝑦) only 

exact with “integrating factor”: 
if  𝜕𝜕

𝜕𝑦
≠ 𝜕𝑄

𝜕𝑥
  

then find 𝝁(𝒙) such that 𝜕𝜇𝑃
𝜕𝜕

= 𝜕𝜇𝑄
𝜕𝜕

 : possible if  1
𝑄

𝜕𝜕
𝜕𝜕
− 𝜕𝜕

𝜕𝜕
= 𝑔(𝑥) only, 

then 𝐹 𝑥,𝑦  such that 𝜕𝐹
𝜕𝜕

= 𝜇𝑃 and 𝜕𝐹
𝜕𝑦

= 𝜇𝜇  ⇒  𝐹(𝑥, 𝑦) = 𝐶 
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p23 (bott) 

p20 (1.4) 

or try 𝝁 𝒙,𝒚 = 𝒙𝒎𝒚𝒏 and solve 𝜕𝜇𝑃
𝜕𝜕

= 𝜕𝜇𝑄
𝜕𝜕

 
for m and n (no general condition) 



FIRST-ORDER LINEAR ODEs 

linear: 
if  𝑦𝑦 + 𝑝 𝑥 𝑦 = 𝑞 𝑥  

 

homogeneous linear:  
if  𝑑𝑑

𝑑𝑑
+ 𝑝 𝑥 𝑦 = 0 

(“complementary equation”) 

then: ln𝑦𝑐 = −∫𝑝 𝑥 𝑑𝑑 + 𝐶  ⇒  𝑦𝑐 = 𝐶
𝛼

 , 
where 𝜶 = 𝐞𝐞𝐞 ∫𝒑 𝒙 𝒅𝒅  is the “integrating factor” 

p27 (1.5) 

p28 (top) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

= “natural regime” 



FIRST-ORDER LINEAR ODEs 

linear: 
if  𝑦𝑦 + 𝑝 𝑥 𝑦 = 𝑞 𝑥  

 

homogeneous linear:  
if  𝑑𝑑

𝑑𝑑
+ 𝑝 𝑥 𝑦 = 0 

(“complementary equation”) 

then: ln𝑦𝑐 = −∫𝑝 𝑥 𝑑𝑑 + 𝐶  ⇒  𝑦𝑐 = 𝐶
𝛼

 , 
where 𝜶 = 𝐞𝐞𝐞 ∫𝒑 𝒙 𝒅𝒅  is the “integrating factor” 

the integrating factor 𝜶 𝒙  can also be found by setting: 
𝛼 𝑑𝑑
𝑑𝑑

+ 𝛼𝑝 𝑥 𝑦 = 𝑑 𝛼𝑦
𝑑𝑑

= 𝛼𝑞 𝑥   ⇒  𝑑𝛼
𝑑𝑑

= 𝛼 𝑥 𝑝 𝑥  

with 𝛼, integrate  𝑑 𝛼𝛼
𝑑𝑑

= 𝛼𝛼  ⇒   𝑦 = 𝑦𝑝 + 𝑦𝑐 , 

where 𝑦𝑝 = 1
𝛼 ∫𝛼(𝑥)𝑞 𝑥 𝑑𝑑  is a “particular solution” 

 

p27 (1.5) 

p28 (top) 

p28 (bott) 

Rene Doursat 

= “natural regime” 

= “forced regime” 
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FIRST-ORDER LINEAR ODEs 

linear: 
if  𝑦𝑦 + 𝑝 𝑥 𝑦 = 𝑞 𝑥  

 

homogeneous linear:  
if  𝑑𝑑

𝑑𝑑
+ 𝑝 𝑥 𝑦 = 0 

(“complementary equation”) 

then: ln𝑦𝑐 = −∫𝑝 𝑥 𝑑𝑑 + 𝐶  ⇒  𝑦𝑐 = 𝐶
𝛼

 , 
where 𝜶 = 𝐞𝐞𝐞 ∫𝒑 𝒙 𝒅𝒅  is the “integrating factor” 

the integrating factor 𝜶 𝒙  can also be found by setting: 
𝛼 𝑑𝑑
𝑑𝑑

+ 𝛼𝑝 𝑥 𝑦 = 𝑑 𝛼𝑦
𝑑𝑑

= 𝛼𝑞 𝑥   ⇒  𝑑𝛼
𝑑𝑑

= 𝛼 𝑥 𝑝 𝑥  

with 𝛼, integrate  𝑑 𝛼𝛼
𝑑𝑑

= 𝛼𝛼  ⇒   𝑦 = 𝑦𝑝 + 𝑦𝑐 , 

where 𝑦𝑝 = 1
𝛼 ∫𝛼(𝑥)𝑞 𝑥 𝑑𝑑  is a “particular solution” 

 

equivalent method: “variation of the constant” 
(find a particular solution by varying the coeff. of the homog. solution) 

use  𝑦𝑝 = 𝐶(𝑥)
𝛼

  and solve  𝑑𝑑
𝑑𝑑

= 𝛼𝛼 

p27 (1.5) 

p28 (top) 

p28 (bott) 

Rene Doursat 

= “natural regime” 

= “forced regime” 
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FIRST-ORDER LINEAR ODEs 

linear: 
if  𝑦𝑦 + 𝑝 𝑥 𝑦 = 𝑞 𝑥  

 

homogeneous linear:  
if  𝑑𝑑

𝑑𝑑
+ 𝑝 𝑥 𝑦 = 0 

(“complementary equation”) 

then: ln𝑦𝑐 = −∫𝑝 𝑥 𝑑𝑑 + 𝐶  ⇒  𝑦𝑐 = 𝐶
𝛼

 , 
where 𝜶 = 𝐞𝐞𝐞 ∫𝒑 𝒙 𝒅𝒅  is the “integrating factor” 

Bernoulli 
if  𝑑𝑑

𝑑𝑑
+ 𝑝 𝑥 𝑦 = 𝑞 𝑥 𝒚𝑵 

then use 𝒖 𝒙 = 𝒚𝟏−𝑵 and solve linear eq. 
𝑑𝑑
𝑑𝑑 + (1 −𝑁)𝑝 𝑥 𝑢 = (1 −𝑁)𝑞(𝑥) 

the integrating factor 𝜶 𝒙  can also be found by setting: 
𝛼 𝑑𝑑
𝑑𝑑

+ 𝛼𝑝 𝑥 𝑦 = 𝑑 𝛼𝑦
𝑑𝑑

= 𝛼𝑞 𝑥   ⇒  𝑑𝛼
𝑑𝑑

= 𝛼 𝑥 𝑝 𝑥  

with 𝛼, integrate  𝑑 𝛼𝛼
𝑑𝑑

= 𝛼𝛼  ⇒   𝑦 = 𝑦𝑝 + 𝑦𝑐 , 

where 𝑦𝑝 = 1
𝛼 ∫𝛼(𝑥)𝑞 𝑥 𝑑𝑑  is a “particular solution” 

 

equivalent method: “variation of the constant” 
(find a particular solution by varying the coeff. of the homog. solution) 

use  𝑦𝑝 = 𝐶(𝑥)
𝛼

  and solve  𝑑𝑑
𝑑𝑑

= 𝛼𝛼 

p27 (1.5) 

p31 (bott) p28 (top) 

p28 (bott) 
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= “natural regime” 

= “forced regime” 
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DIFFERENTIAL 
EQUATIONS NON-LINEAR LINEAR 

(in y) 
LINEAR W/ CST 
COEFFs (in y) 

ORDINARY 
DIFF EQs 

FIRST-
ORDER 

SECOND-
ORDER 

Homogeneous Linear:

4𝑥2𝑦′′ + 𝑦𝑥1 2⁄ = 0
NonHomogeneous Linear:

4𝑥2𝑦′′ + 𝑦𝑥1 2⁄ = 𝑥2
 �

Homogeneous Linear CC:
4𝑦′′ + 2𝑦′ + 3𝑦 = 0

NonHomogeneous Linear CC:

4𝑦′′ + 2𝑦′ + 3𝑦 = 𝑥2
 

HIGHER-
ORDER 

PARTIAL DIFF EQs 



SECOND-ORDER LINEAR ODEs 

general (nonhomog.) linear   : 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 𝑅(𝑥) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

p79 (2.7) Book: Kreyszig, 10th ed. 



SECOND-ORDER LINEAR ODEs 

homogeneous linear: 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 0 

(“complementary equation”) 
superposition principle: if 𝒚𝟏 and 𝒚𝟐 are solutions, 

then  𝒚𝒄 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 is a solution, too 
• they form a basis for all solutions if they are linearly independent 
• coefficients can be determined by initial conditions on y and y’ 

general (nonhomog.) linear   : 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 𝑅(𝑥) 

p46 (2.1) 

p79 (2.7) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 



SECOND-ORDER LINEAR ODEs 

homogeneous linear: 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 0 

(“complementary equation”) 
superposition principle: if 𝒚𝟏 and 𝒚𝟐 are solutions, 

then  𝒚𝒄 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 is a solution, too 
• they form a basis for all solutions if they are linearly independent 
• coefficients can be determined by initial conditions on y and y’ 

general (nonhomog.) linear   : 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 𝑅(𝑥) 

“reduction of order”: 
if one known solution is 𝑦 = 𝑦1 

(found by “educated guess”, or “ansatz”) 
then let the other be 𝒚𝟐 = 𝒗(𝒙)𝒚𝟏 and solve 
𝑣′′

𝑣′
= −2 𝑦1′

𝑦1
− 𝑃,  i.e. ln 𝑣𝑣 = −2 ln 𝑦1 − ∫𝑃 

(also applies when 𝑃 and 𝑄 are constant coefficients) 

p46 (2.1) 

p79 (2.7) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

p51 (2.1) 



SECOND-ORDER LINEAR CONSTANT ODEs 

general linear, constant coefficients: 
if  𝑎𝑎′′ + 𝑏𝑦′ + 𝑐𝑐 = 𝑅(𝑥) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 



SECOND-ORDER LINEAR CONSTANT ODEs 

general linear, constant coefficients: 
if  𝑎𝑎′′ + 𝑏𝑦′ + 𝑐𝑐 = 𝑅(𝑥) 

homogeneous linear, cst coefficients:      
if  𝑎𝑎′′ + 𝑏𝑦′ + 𝑐𝑐 = 0 

then use 𝒚 = 𝒆𝒓𝒓 and find roots 𝑟1, 𝑟2 of  
the “characteristic polynomial” 𝑎𝑟2 + 𝑏𝑏 + 𝑐 = 0: 

• if 𝑟1 ≠ 𝑟2, then 𝑦𝑐 = 𝐶1𝑒𝑟1𝑥 + 𝐶2𝑒𝑟2𝑥 
• if 𝑟1 = 𝑟2 = 𝑟, then 𝑦𝑐 = 𝐶1𝑒𝑟𝑥 + 𝐶2𝒙𝑒𝑟𝑟 

(if roots have imaginary part, rearrange expression into cos and sin) 

p53 (2.2) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 



SECOND-ORDER LINEAR CONSTANT ODEs 

general linear, constant coefficients: 
if  𝑎𝑎′′ + 𝑏𝑦′ + 𝑐𝑐 = 𝑅(𝑥) 

homogeneous linear, cst coefficients:      
if  𝑎𝑎′′ + 𝑏𝑦′ + 𝑐𝑐 = 0 

then use 𝒚 = 𝒆𝒓𝒓 and find roots 𝑟1, 𝑟2 of  
the “characteristic polynomial” 𝑎𝑟2 + 𝑏𝑏 + 𝑐 = 0: 

• if 𝑟1 ≠ 𝑟2, then 𝑦𝑐 = 𝐶1𝑒𝑟1𝑥 + 𝐶2𝑒𝑟2𝑥 
• if 𝑟1 = 𝑟2 = 𝑟, then 𝑦𝑐 = 𝐶1𝑒𝑟𝑟 + 𝐶2𝒙𝑒𝑟𝑟 

(if roots have imaginary part, rearrange expression into cos and sin) 

p53 (2.2) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

with one “particular solution” 𝑦 = 𝑦𝑝 
(found by methods below) 

then all solutions are given by:  𝒚 = 𝒚𝒑 + 𝒚𝒄 

finding a particular solution 𝑦𝑝 



SECOND-ORDER LINEAR CONSTANT ODEs 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

“undetermined coefficients”:       
(a)  Basic Rule 
• if 𝑅 𝑥  ~ sin𝑎𝑎 or cos𝑎𝑎, 

try 𝑦𝑝 = 𝐴 sin 𝑎𝑎 + 𝐵 cos𝑎𝑎 
• if 𝑅 𝑥  ~ 𝑥𝑚, 

try 𝑦𝑝 = 𝐴𝑚𝑥𝑚 + ⋯+ 𝐴1𝑥 + 𝐴0 
• if 𝑅 𝑥  ~  exp(𝑎𝑎), 

try 𝑦𝑝 = 𝐶 exp(𝑎𝑎) 

(c)  Sum Rule 
• if 𝑅 𝑥  is a sum or product of templates, 

try a sum or product of 𝑦𝑝 templates 

finding a particular solution 𝑦𝑝 

(b)  Modification Rule 
• if 𝑦𝑝 and 𝑦𝑐 are linearly dependent, 

try a product 𝑥𝑚𝑦𝑝 

p81 (2.7) 



SECOND-ORDER LINEAR ODEs 

homogeneous linear: 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 0 

(“complementary equation”) 
superposition principle: if 𝒚𝟏 and 𝒚𝟐 are solutions, 

then  𝒚𝒄 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 is a solution, too 
• they form a basis for all solutions if they are linearly independent 
• coefficients can be determined by initial conditions on y and y’ 

general (nonhomog.) linear   : 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 𝑅(𝑥) 

“reduction of order”: 
if one known solution is 𝑦 = 𝑦1 

(found by “educated guess”, or “ansatz”) 
then let the other be 𝒚𝟐 = 𝒗(𝒙)𝒚𝟏 and solve 
𝑣′′

𝑣′
= −2 𝑦1′

𝑦1
− 𝑃,  i.e. ln 𝑣𝑣 = −2 ln 𝑦1 − ∫𝑃 

(also applies when 𝑃 and 𝑄 are constant coefficients) 

with one “particular solution” 𝑦 = 𝑦𝑝 
(found by methods below) 

then all solutions are given by:  𝒚 = 𝒚𝒑 + 𝒚𝒄 

finding a particular solution 𝑦𝑝 

p46 (2.1) 

p79 (2.7) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

p51 (2.1) 



SECOND-ORDER LINEAR ODEs 

finding a particular solution 𝑦𝑝 

“variation of the constant”:    
(find a particular solution by varying 

the coefficients of the homogeneous solution) 
try  𝒚𝒑 = 𝑪𝟏(𝒙)𝒚𝟏 + 𝑪𝟐(𝒙)𝒚𝟐 such that 

𝑦1𝐶1′ + 𝑦2𝐶2′ = 0  ⇒ 
𝑦1′𝐶1′ + 𝑦2′𝐶2′ = 𝑅(𝑥) 

then solve linear system for 𝐶1′ and 𝐶2′   
(by Cramer’s rule) and integrate  

the determinant is called the “Wronskian”: 

𝑊 𝑥 =
𝑦1 𝑦2
𝑦1′ 𝑦2′

 

• 𝑊 ≠ 0 ⇔ 𝑦1,𝑦2 linearly independent (most cases) 
• 𝑊′(𝑥) = −𝑃(𝑥)𝑊(𝑥) 

p99 (2.10) 

p74 (2.6) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 



SECOND-ORDER LINEAR ODEs 

homogeneous linear: 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 0 

(“complementary equation”) 
superposition principle: if 𝒚𝟏 and 𝒚𝟐 are solutions, 

then  𝒚𝒄 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 is a solution, too 
• they form a basis for all solutions if they are linearly independent 
• coefficients can be determined by initial conditions on y and y’ 

general (nonhomog.) linear   : 
if  𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄 𝑥 𝑦 = 𝑅(𝑥) 

linear, missing 𝑦: 
if  𝑦′′ + 𝑃(𝑥)𝑦′ = 𝑅(𝑥) 

then use 𝒖 = 𝒅𝒅
𝒅𝒅

  and solve first-order linear eq. 
𝑢′ + 𝑃 𝑥 𝑢 = 𝑅(𝑥) using 𝛼 

“reduction of order”: 
if one known solution is 𝑦 = 𝑦1 

(found by “educated guess”, or “ansatz”) 
then let the other be 𝒚𝟐 = 𝒗(𝒙)𝒚𝟏 and solve 
𝑣′′

𝑣′
= −2 𝑦1′

𝑦1
− 𝑃,  i.e. ln 𝑣𝑣 = −2 ln 𝑦1 − ∫𝑃 

(also applies when 𝑃 and 𝑄 are constant coefficients) 

with one “particular solution” 𝑦 = 𝑦𝑝 
(found by methods below) 

then all solutions are given by:  𝒚 = 𝒚𝒑 + 𝒚𝒄 

finding a particular solution 𝑦𝑝 

p46 (2.1) 

p79 (2.7) 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 

p51 (2.1) 



SECOND-ORDER ODEs 

general explicit: 
𝑦′′ = 𝐹(𝑦′,𝑦, 𝑥) 

general, missing 𝑥: 
if  𝑦′′ = 𝐹(𝑦′,𝑦) 

then use 𝒗 = 𝒅𝒅
𝒅𝒅

  and try to solve for 𝑣  

as a function of 𝑦, i.e.  𝑑𝑣
𝑑𝑦

= 1
𝑣
𝐹(𝑣,𝑦), then integrate 

Rene Doursat CUA, ENGR 520, Summer '14 (v4) 
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