DIFFERENTIAL EQUATIONS
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Some applications of differential equations




DIFFERENTIAL LINEAR LINEAR W/ CST

NON-LINEAR . :
EQUATIONS O (iny) COEFFs (in y)
FIRST_ / 2 - 2 2 ! —_— 2 ! _—
ORDER 4(y")°+xcosy =x 4x“y" +ycosx =x 4y" + 3y = cosx

SECOND-
OSELNEQZY ORDER | XV +xy'Z=x? | 4x?y"+yxt/Z=x? | 4y" +2y' +3y =x*

HIGHER-

(5)47 1 1/2 (5) I
ORDER y y [N ) COSy ...y y ..ly l!!y
dy ady ay dy
PARTIAL DIFF EQs o o 4 o, +3 o X1X,
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FIRST-ORDER ODEs
general explicit:

r_ dy __ Pxy)
y - f(x, y) = dx - Q(X,_Y)

P(x,y)dx + Q(x,y)dy =0

linear:
if y'+p(0)y =qx)
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FIRST-ORDER ODEs

general explicit:

r_ dy __ Pxy)
y - f(xr y) = dx - Q(x,y)

P(x,y)dx + Q(x,y)dy =0

—

separable:
if P(x)dx + Q(y)dy =0

then integrate separately and resolve for y
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FIRST-ORDER ODEs

general explicit:

r_ dy __ Pxy)
y - ,f(xr y) = dx - Q(x,y)

P(x,y)dx + Q(x,y)dy =0

—

v separable:
if P(x)dx + Q(y)dy =0
then integrate separately and resolve for y

/ “linear” substitution:
if 2 = f(ax+ by +0)
thenuse u = ax + by + ¢

du = dx
a+bf(u) -

and solve separable eq.

CUA, ENGR 520, Summer '14 (v4) Rene Doursat



FIRST-ORDER ODEs

general explicit:

r— dy _ _ P(xy)
y _f(xry)® dx_ Q(x,y)

P(x,y)dx + Q(x,y)dy =0

/\

/ separable: / simple “balanced” case:
if P(x)dx + Q(y)dy =0 o iy’ = f(y/x_),_
then integrate separately and resolve for y thatis P(x, y)/Q(x,y) = —f(y/x)

then use y = xv
/ “linear” substitution:
if 2 = f(ax+ by +0)

thenuse u = ax + by + ¢
du

a+bf(u) =ax

and solve separable eq.
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FIRST-ORDER ODEs

general explicit:

r_ dy __ Pxy)
y - f(x, y) = dx - Q(x,y)

P(x,y)dx + Q(x,y)dy =0

/\

/ separable: / simple “balanced” case:

. _ if y' = f(y/x),
if P(x)dx + Q(y)dy = 0 thatis P(x,)/Q(x,Y) = ~f (/%)
then integrate separately and resolve for y

thenuse y = xv
/ “linear” substitution:

generally “balanced” (“homogeneous” degree):

o dy _
if = f(ax + by + ¢) if P(tx,ty) = t*P and Q(tx, ty) = tBQ
then use u = ax + bi’u"‘ ¢ and a = f (same degree of homogeneity)
and solve separable eq. prr Tt dx then use y = xv

and solve xia ((P + vQ)dx + xde) =0
ie. (P(1,v) +vQ(1,v))dx + xQ(1,v)dv =0

-1
1.e. the separable eq. % = (223 + v) dv
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FIRST-ORDER ODEs

general explicit:

r_ dy __ Pxy)
y - f(x, y) = dx - Q(x,y)

P(x,y)dx + Q(x,y)dy =0

/ separable: / simple “balanced” case:

. _ if y' = f(y/x),
if P(x)dx + Q(y)dy = 0 thatis P(x,)/Q(x,Y) = ~f (/%)
then integrate separately and resolve for y

thenuse y = xv
/ “linear” substitution:

generally “balanced” (“homogeneous” degree):

o dy _
if = f(ax + by + ¢) if P(tx,ty) = t*P and Q(tx, ty) = tBQ
then use u = ax + bi’u"‘ ¢ and a = f (same degree of homogeneity)
and solve separable eq. prr Tt dx then use y = xv

and solve xia ((P + vQ)dx + xde) =0
ie. (P(1,v) +vQ(1,v))dx + xQ(1,v)dv =0

-1
1.e. the separable eq. % = (223 + v) dv

\ 4
/ exact:
if aP(ny) — aQ(x;Y)
ady 0x
aF aF
then find F (x, y) such that Pl P and 7y Q,

integrate separately, and solutionis F(x,y) = C
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FIRST-ORDER ODEs
/ exact:

0 OP(xy) _ 0Q(x,y)
if =
ady 0x
aF aF
then find F (x, y) such that Pl P and 3y = Q,

integrate separately, and solution is F(x,y) = C

A 4

exact with “integrating factor”: m
aQ
f i o
then find p(x) such that — aﬂp poss1b1e if = (6—5 — a—Q) g(x) only,
then F(x, y) such that a = ,uP and 2 5 =uQ = F(x,y) =
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FIRST-ORDER ODEs
exact:

0 OP(xy) _ 0Q(x,y)
if =
ady 0x
aF aF
then find F (x, y) such that Pl P and 3y = Q,

integrate separately, and solution is F(x,y) = C

A 4
exact with “integrating factor”: m
aQ
f i o
then find p(x) such that — aﬂp poss1b1e if = (6—5 — a—Q) g(x) only,
then F(x, y) such that a = ,uP and 2 5 =uQ = F(x,y) =

aP  3Q
or conversely, u(y) exists if — > (5 o ) h(y) only
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FIRST-ORDER ODEs
exact:

0 OP(xy) _ 0Q(x,y)
if =
ady 0x
aF aF
then find F (x, y) such that Pl P and 3y = Q,

integrate separately, and solution is F(x,y) = C

A 4
exact with “integrating factor”: m
aQ
f i o
then find p(x) such that — aﬂp poss1b1e if = (6—5 — a—Q) g(x) only,
then F(x, y) such that a = ,uP and 2 5 =uQ = F(x,y) =

aP  3Q
or conversely, u(y) exists if — > (5 r ) h(y) only

or try u(x,y) = x™y™ and solve L; P = a;th

for m and n (no general condition)

CUA, ENGR 520, Summer '14 (v4) Rene Doursat



FIRST-ORDER LINEAR ODEs

linear:
if y'+px)y=q)

homogeneous linear:
i _
if —+p()y=0

(“complementary equation”)

then:lny, = — [p(x)dx + C = y, = g , = “natural regime”
where & = exp( [ p(x)dx) is the “integrating factor”
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FIRST-ORDER LINEAR ODEs

linear:
if y'+px)y=q)

where & = exp( [ p(x)dx) is the “integrating factor”

homogeneous linear:
i _
if —+p()y=0

(“complementary equation”)

C

then:Iny, = — [ p(x)dx + C = y, ==, = “natural regime”

a b

CUA, ENGR 520, Summer 14 (v4)

the integrating factor a(x) can also be found by setting:

day) _ da _
2 = aq(x) = 5= a()p(x)

dy _
aZ+ ap(x)y =

with a, integrate d(do;y) =aq = y=y,+,

where y,, = %( [ a(x)q(x)dx) is a “particular solution”

p28 (bott)

= “forced regime”
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linear:
if y'+p(0)y =qkx)

homogeneous linear:
if % +p(x)y =0

(“complementary equation”)

where a = exp( [p(x) dx) is the “integrating factor”

then: Iny, = — [p(x)dx +C = y, = g, = “natyral regime”

CUA, ENGR 520, Summer '14 (v4)

the integrating factor a(x) can also be found by setting:

dy _ d(ay) _ da _
aZ+ap()y =52 = aq(x) = L= a(@p®)

with «, integrate =aq = Y=Yy + Y,

where y, = %( | a(x)q(x)dx) is a “particular solution”

d(ay)
dx

equivalent method: “variation of the constant”

(find a particular solution by varying the coeff. of the homog. solution)
use =9 and solve L = ¢
=, ax

= “forced regime”
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linear:
if y'+p(0)y =qkx)

Bt N
homogeneous linear: Bernoulli
e AY dy
—_ = 3 — N
if 7+ Py =0 if =2+ p(x)y = q(x)y
(“complementary equation”) . then use u(x) — yl—N and solve linear eq.
then: Iny, = — [p(x)dx +C = y, = =, = “natyral regime” du
where a = exp( [ p(x)dx) is the “integrating factor” dx TA=Nplu=1-N3qx)

the integrating factor a(x) can also be found by setting:

dy _d(ay) _ da _
e+ ap()y =22 = aq(x) = T = a()p()

d(ay)
dx

with «, integrate =aq = Y=Yy + Y,

where y, = % ( | a(x)q(x)dx) is a “particular solution” | = “forced regime”

equivalent method: “variation of the constant”

(find a particular solution by varying the coeff. of the homog. solution)
C(x) ac
use y, = —— and solve — = aq
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DIFFERENTIAL LINEAR LINEAR W/ CST
NON-LINEAR . :
EQUATIONS O (iny) COEFFs (in y)
FIRST-
ORDER

ORDINARY | SECOND-
DIFFEQs | ORDER

Homogeneous Linear:

NonHomogeneous Linear:

29" 4 yx1/2 = 0
Zyrr +yx1/2

Homogeneous Linear CC:
4y" +2y"+3y =0
NonHomogeneous Linear CC:

4y" 4+ 2y" + 3y = x?

HIGHER-
ORDER

PARTIAL DIFF EQs




SECOND-ORDER LINEAR ODEs
general (nonhomog.) linear m
(x)

if y"+P(x)y'+Qx)y =R

CUA, ENGR 520, Summer '14 (v4) Rene Doursat



SECOND-ORDER LINEAR ODEs

general (nonhomog.) linear
if y"'+P(x)y" +Q(x)y = R(x)

homogeneous linear:
if y"+Px)y'+Q(x)y=0

(“complementary equation”)
superposition principle: if y; and y, are solutions,
then y. = C1y1 + C,y5 is a solution, too

 they form a basis for all solutions if they are linearly independent
 coefficients can be determined by initial conditions on y and y’
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SECOND-ORDER LINEAR ODEs

general (nonhomog.) linear
if y"'+P(x)y" +Q(x)y = R(x)

homogeneous linear:
if y"+Px)y'+Q(x)y=0

(“complementary equation”)
superposition principle: if y; and y, are solutions,
then y. = C1y1 + C,y5 is a solution, too

 they form a basis for all solutions if they are linearly independent
 coefficients can be determined by initial conditions on y and y’

“reduction of order”:

if one known solution is y = y,
(found by “educated guess”, or “ansatz”)

then let the other be y, = v(x)y; and solve

144 !
4

=22 —P, ieInv' = -2Iny, — [P
1

v
(also applies when P and Q are constant coefficients)
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SECOND-ORDER LINEAR CONSTANT ODEs

general linear, constant coefficients:
if ay” + by’ +cy = R(x)
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SECOND-ORDER LINEAR CONSTANT ODEs

general linear, constant coefficients:
if ay” + by’ +cy = R(x)

/

homogeneous linear, cst coefficients: m
if ay’" +by'+cy =0
then use y = e" and find roots 1y, 1, of
the “characteristic polynomial” ar? + br + ¢ = 0:
o ifry # 1y, theny, = Cie"* + C,e™2*
o ifry =1, =r,theny, = C;e"™ + Cyxe™
(if roots have imaginary part, rearrange expression into cos and sin)
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SECOND-ORDER LINEAR CONSTANT ODEs

general linear, constant coefficients:
if ay” + by’ +cy = R(x)

/

homogeneous linear, cst coefficients: m
if ay’" +by'+cy =0
then use y = e" and find roots 1y, 1, of
the “characteristic polynomial” ar? + br + ¢ = 0:
o ifry # 1y, theny, = Cie"* + C,e™2*
o ifry =1, =r,theny, = C;e"™ + Cyxe™
(if roots have imaginary part, rearrange expression into cos and sin)

with one “particular solution” y =y,
(found by methods below)
then all solutions are given by: y =y, + y,

v

finding a particular solution y,,
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SECOND-ORDER LINEAR CONSTANT ODEs

finding a particular solution y,,

v

“undetermined coefficients”:
(a) Basic Rule
« if R(x) ~ sinax or cos ax,
try y, = Asinax + B cos ax
* ifR(x)~x™,
try yp = Apx™ + -+ Agx + A
+ RGO ~ exp(ax),
try yp = C exp(ax)

(b) Modification Rule
* ify, and y, are linearly dependent,

try a product x™y,

(¢) Sum Rule
» if R(x) is a sum or product of templates,
try a sum or product of y, templates
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SECOND-ORDER LINEAR ODEs

general (nonhomog.) linear
if y"'+P(x)y" +Q(x)y = R(x)

homogeneous linear: m
if y"+Px)y" +Qx)y =0

(“complementary equation”)
superposition principle: if y; and y, are solutions,
then y. = C1y1 + C,y5 is a solution, too

 they form a basis for all solutions if they are linearly independent
 coefficients can be determined by initial conditions on y and y’

“reduction of order’: m

if one known solution is y = y,
(found by “educated guess”, or “ansatz”)

then let the other be y, = v(x)y, and solve

144 !
4

=22 —P, ieInv' = -2Iny, — [P
1

v
(also applies when P and Q are constant coefficients)

\

with one “particular solution” y =y,
(found by methods below)
then all solutions are given by: y =y, + y,

v

finding a particular solution y,,
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SECOND-ORDER LINEAR ODEs

finding a particular solution y,,

\ 4
“variation of the constant™:

(find a particular solution by varying
the coefficients of the homogeneous solution)

try ¥p = C1(x)y1 + C2(x)y7 such that
y1C; +¥2C; = R(x)
then solve linear system for C; and C,
(by Cramer’s rule) and integrate

the determinant 1s called the “Wronskian”:
yi Y2

W = ! !

(x) Yi Y2
e W # 0 < y4,y, linearly independent (most cases)

« W'(x) = —P(x)W(x)
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SECOND-ORDER LINEAR ODEs

general (nonhomog.) linear
if y"'+P(x)y" +Q(x)y = R(x)

homogeneous linear: m y ..
e 11 , B 1near, missing y:
if y"+P(x)y"+Qx)y =0 o p fj;?
(“complementary equation”) iy + (x )y - (.X' )
superposition principle: if y4 gnd Y2 are solutions, then use u = Z—i’ and solve first-order linear eq.
then y. = C1y1 + C3y; is a solution, too W+ P(X)u = R(x) using a

 they form a basis for all solutions if they are linearly independent
 coefficients can be determined by initial conditions on y and y’

“reduction of order’: m

if one known solution is y = y,
(found by “educated guess”, or “ansatz”)

then let the other be y, = v(x)y, and solve

144 !
4

=22 —P, ieInv' = -2Iny, — [P
1

v
(also applies when P and Q are constant coefficients)

\

with one “particular solution” y =y,
(found by methods below)
then all solutions are given by: y =y, + y,

v

finding a particular solution y,,
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SECOND-ORDER ODEs

general explicit:
y'=FQyy x)

general, missing x:
if y"=F('y)

d
thenuse v = d—z and try to solve for v

: . dv 1 .
as a function of y, i.e. ﬁ = ;F (v,y), then integrate
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