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Abstract 
We propose an original 2D agent-based model of biological 
“autopoiesis”, the process by which a cell creates and continu-
ously regenerates itself, considered one of the defining charac-
teristics of life. In the space of our simulations, the positions of 
free molecules are continuous, and polymerized membrane 
components are regularly arranged (plus noise). While autopoi-
esis commonly refers to the self-driven maintenance of a sys-
tem, we also follow Varela’s historical study of emergence, and 
show that the same model can account for both self-
perpetuation and self-formation—a step toward uniting the 
three main perspectives on life: origins, autopoiesis, and repli-
cation. Exploring different initial and environmental conditions, 
we observe that destructive reactions are important for the sur-
vival of our autopoietic system, and evaluate their impact on its 
lifespan. The tendency of cells to form spurious outgrowths is 
counteracted by moderate decay of the membrane. 

Introduction 
The study of life and consciousness construed as high-level, 
abstract systemic properties, beyond their biochemical com-
position, has led to the concept of “autopoiesis”, a term coined 
by Maturana and Varela (1973) to refer to the self-creation 
and self-repair abilities of organisms. The initial idea of defin-
ing living systems as fundamentally autopoietic is well ac-
cepted today, and has also been broadened to include cogni-
tive systems (Bourgine and Stewart, 2004). Yet, autopoiesis is 
still at the center of a long-lasting debate (Fleischaker, 1992), 
where critics object to the overly theoretical nature of the 
concept and deem self-referentiality without external refer-
ences meaningless (Swenson, 1992). By contrast, other fields 
such as sociology (Luhman, 1986) have embraced autopoietic 
thinking and imported it into their research. The original 1973 
definition stated that: 

An autopoietic system is a machine organized (defined as a 
unity) as a network of processes of production (transfor-
mation and destruction) of components that produces the 
components which: (i) through their interactions and trans-
formations continuously regenerate and realize the network 
of processes (relations) that produce them; and (ii) constitute 
it (the machine) as a concrete unity in the space in which 
they exist by specifying the topological domain of its reali-
zation as such a network. 

Many variants have been proposed since. We base our model 
on Bourgine and Stewart’s more recent approach (2004): 

An autopoietic system is a network of processes that pro-
duces the components that reproduce the network, and that 
also regulates (from inside) the membrane conditions neces-
sary for its ongoing existence as a network. 

We will also include the less explicited notion that, since the 
components are what reproduces the network, the processes 
cannot be based on global variables or global properties of the 
system, but must rely on purely local interactions. 

These different viewpoints on autopoiesis have produced 
various computer models. Agent-based simulations, where a 
large number of discrete units are updated sequentially or 
synchronously, have been the tool of choice to illustrate the 
concept of autopoiesis since its inception. The first attempt 
(Varela et al., 1974) used cellular automata (CA), and was 
pursued and extended by Zeleny (1977) who formalized the 
computational model and explored other scenarios, in particu-
lar ones involving more catalysts in the environment. A later 
analysis of this original model by McMullin and Varela 
(1997) pointed out that, although it was missing a critical 
“additional interaction”, the algorithm did achieve autopoiesis 
when membrane creation was inhibited in its interior neigh-
borhood. Further developments have also allowed movement 
of the simulated membrane (Breyer et al., 1998; McMullin 
and Groß, 2001). 

The majority of other simulated autopoietic systems have 
been confined to a CA grid, such as Beer’s analysis of a glider 
in the Game of Life (Beer, 2004), or the 3D lattice artificial 
chemistry of Ono and Ikegami (1999, 2000, 2001) based on 
hexagonal units, as was Sirmai’s 2D “morphautomaton” 
(2011, 2013). Beer proved that there can be other types of 
autopoietic systems than molecular ones imitating the bio-
chemistry of life. He also emphasized that proper definitions 
of the system and its boundary are essential when determining 
whether a system is autopoietic or not. Ono and Ikegami 
showed that particle interaction models can exhibit autopoietic 
behavior, and hypothesized about the structure of early life 
forms on Earth. Sirmai illustrated how the self-maintenance 
mechanisms of an autopoietic system could also give rise to 
self-replication when adding a few interactions. 

The relative lack of autopoietic simulations in continuous 
space can be partially explained by the computational cost 
compared to discrete models. Whereas, more generally, the 
field of artificial chemistry has produced continuous imple-
mentations (Hutton, 2007; Ono and Ikegami, 2001: Chap. 3) 
these have not addressed autopoiesis per se. Moreover, the 
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continuous case is only described qualitatively, while quanti-
tative results are generally produced by a discrete approxima-
tion on a lattice. A review of computational models of auto-
poiesis was written by McMullin on the 30th anniversary of 
the concept’s discovery (McMullin, 2004). 

In this paper, the molecular dynamics is an artificial 
chemistry that happens for the most part in continuous 2D 
space. A discrete lattice component is still present to constrain 
the locations and behavior of membrane particles, once they 
have bound to each other. We take inspiration from Bourgine 
and Stewart (2004) to define the reactions, and simplify the 
system so that it involves fewer classes of components. Two 
possible outcomes are analyzed, one corresponding to the 
usual sense of autopoiesis as self-maintenance, and the other 
representing the ability of the system to create itself from a 
single element, or emergence, which is closer to the etymolo-
gy of the term. The latter is necessary to the former and to 
self-reproduction. 

A Model of Cell Autopoiesis 

Particles, Membrane, and Environment 
We consider a continuous 2D environment, the world. It is 
filled with particles animated by Brownian motion (i.e. which 
follow straight trajectories between two collisions), called 
substrate particles and denoted by S (pink disks in Figs. 1-4). 
Their density, i.e. average number per lattice square, is set to 
0.4. In the world, we observe the creation and/or survival of 
an autopoietic system, a cell, made of two other types of parti-
cles, monomers M (yellow or green disks) and component 
particles C (blue disks). The cell is characterized by a semi-
permeable membrane arising from monomers binding togeth-
er. Monomers have a diameter of 1 and are locked into lattice 
positions regularly spaced by the same unit, with a small 
Gaussian vibration of width ε. The membrane serves as a 
boundary for the system and can self-repair as a whole. Mon-
omers randomly decay into waste particles W (orange disks), 
at a low rate δ, thus gradually damaging the membrane over 
time. Counteracting this, the membrane is also repaired by 
component particles that are present in the enclosed space and 
transform into monomers. Details are explained below. 

The monomers of the membrane are permeable to the 
small substrate particles; they do not impede their movement. 
On the other hand, the substrate, component and waste parti-
cles all collide and interact with one another in a way similar 
to gas molecules. Monomers have an orientation vector 
(Fig. 2a) to mark the inside and the outside of the membrane, 
i.e. the two half-spaces created by a dividing line orthogonal 
to that orientation and running through the center of the mole-
cule. We also say that the inside is “behind” the monomer, 
and the outside is in the “front”. The local curvature of the 
membrane is a fixed property of the monomers, arising from 
their internal molecular structure. It is modeled here by a 
constant angle α between two neighboring orientation vectors. 

Upon colliding, these various particles react in different 
ways depending on their type. We consider in this model three 
key interactions resulting in the creation or destruction of 
particles (Fig. 2): the synthesis of components, the repair of 
membrane monomers, and the decay of monomers. 
 

Synthesis: 𝑺 + 𝑺
𝑴
→ 𝑪 Two substrate particles can produce 

one component particle under specific conditions: the reaction 
must be catalyzed by a nearby monomer M and only if it 
happens “behind” it (Fig. 2a). Moreover, it should not be 
inhibited by too many other C’s in the local environment: the 
density of C particles in a given radius r should stay below a 
saturation level c. If these conditions are met, then the two S 
particles disappear and a C is put in their place, with averaged 
speed and direction. These two conditions are local versions 
of Bourgine and Stewart’s model (2004). 
 
Repair: C + M1 → M + M2 This reaction transforms a freely 
moving component into a monomer that integrates the chain 
of monomers forming the membrane. This can involve either 
filling a hole that has appeared in an existing membrane 
(“maintenance autopoiesis”), or building a new membrane 
(“emergence autopoiesis”). Thus, by “repair”, we also mean 
the series of reactions that make a single M-seed grow into a 
complete autopoietic system. Like “synthesis”, it also requires 
certain local conditions to be fulfilled: C particles transform 
into M only when they are close to a membrane hole or ex-
tremity, i.e. a “simply bonded” M, a monomer with only one 
neighbor, denoted by M1 (in green). In addition, C must also 
be located within a specific arc of space (a 2D cone) in rela-
tion to the neighboring M, which we call receptor arc 
(Fig. 2b). It is defined as the domain “behind” M where the 
angle between the space-dividing line and the MC segment is 
smaller than the curvature angle α. 

Figure 1: Example of autopoietic cell. Pink: substrate particles S; blue: 
components C; yellow: doubly bonded monomers, M2; green: simply 
bonded, M1, or unbonded monomers, M0; orange: waste particles, W. In 
the top-left quadrant of the membrane, two pairs of neighboring M1’s 
exhibit holes of size √2 – (2 × 0.5) = 0.41 ± 2ε. Near the upper hole, one 
M2 has just decayed into a W. In the top-right quadrant, there is a larger 
hole of size √5 – 1 = 1.24 ± 2ε. At the bottom-left, the system has formed 
two layers, starting a spiral shape. Thus it is not autopoietic because its 
membrane is not closed. Time tick: ti = 350. Parameters: membrane 
curvature angle α = 8o, M-decay rate δ = 0.05%, C-saturation level c = 2 
and radius r = 10, M-vibration width ε = 0.05. 
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 (a) Synthesis: 𝑆 + 𝑆
𝑀
→ 𝐶  

(b) Repair: C + M1 → M + M2 

(c) Decay: M → W 

Figure 2: The three fundamental reactions of the model. (a) ”Synthesis”: 
two S particles (pink) located in the same square can create a C (blue) if 
an M (green) is present in a neighboring square and if they are “behind” it 
(verified on the right, not on the left). (b) ”Repair”: only a C located in a 
square adjacent to an M and inside the receptor arc (gray area) may 
transform into a new M, added to the membrane. (c) ”Decay”: with low 
probability at each iteration, any M can become a waste particle W, which 
receives an initial speed in the direction of M’s vector (and norm 10 here). 

Decay: M → W  This is the simplest reaction, as it involves 
a single monomer randomly becoming waste (Fig. 2c). The 
probability of decay per time unit, δ, is constant and uniform 
over all M’s; it is independent from the age of the M particle. 

Physics simulation 
Our simulated environment does not use a physics engine, 
unlike other artificial chemistry works, but was more simply 
implemented in the NetLogo platform (Wilensky, 1999). 
Although the disk-shaped particles have floating number 
coordinates, their collisions are not modeled by solid bodies. 
Instead, we repurposed a “dynamic billiard” gas model that 
partitions the world into square domains where particles inter-
act. To ensure the detection of collisions, the duration of one 
time step was dynamically adjusted so that no particle could 

travel farther than one square at every iteration. Adding these 
variable time steps yields time ticks, denoted by ti, where i is 
the iteration index. The i-th time step is ∆ti = ti+1– ti, and the 
total duration of a run is tN, where N is the last iteration (typi-
cally, tN = 3000 in this study, which corresponds to an average 
N ≈ 10000). A similar model is available online (Pelaez, 
2009), although it does not demonstrate an actual autopoietic 
system since it constrains the membrane to a preassigned 
location and allows its formation only there. 

In this environment, we also limit the degrees of freedom 
of the membrane. Bonded M particles cannot move away from 
the integer coordinates they are pegged to, only vibrate around 
them. At every time step, a small random vector is added to 
the center location (see Rule 9 below). The membrane as a 
whole cannot deform or drift. Note that an M is only labeled 
“unbonded” (M0), “simply” (M1), or “doubly bonded” (M2) by 
proximity to other M’s, but physically it behaves the same. 

Algorithm 
In sum, each iteration i with a time step ∆ti essentially consists 
of the following rules and actions: 

1. “Displacement” rule: recalculate the velocity vector 𝑣 of 
the C and W particles that bounce off an M. Update the 
positions of all moving particles by adding 𝑣∆ti. Particles 
that exit the world disappear permanently. 

Figure 3: Example of “emergence autopoiesis” followed by temporary 
“maintenance autopoiesis”. Top: At first, a few components C are created 
by S particles colliding in the vicinity of the seed monomer M. Then, the 
C’s start building a circular membrane by transforming into new M’s 
(ticks t = 0, 0.27, 1). Emerging radius is 8 (from an angle α = 8o). Middle: 
The chain grows and closes itself (ticks t = 64, 126, 151). Bottom: For a 
while, the cell is autopoietic, as holes appearing from the decay of M’s 
are filled with new ones (ticks t = 210.5, 240). Eventually, however, the 
membrane starts spiraling and the cell dies (tick t = 364.4). Parameters 
identical to Fig. 1. (A video can be seen at http://tinyurl.com/locy7qy.) 

http://tinyurl.com/locy7qy
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2. “Replenish” rule: create new S particles at the edge of the 
world to simulate a solution of constant S-concentration. 

3. “Repair” reaction rule: test pairs of neighboring C’s and 
replace them with new M’s where appropriate (see above). 

4. “Synthesis” reaction rule: change the properties of collid-
ing S particles: either create one C if proper conditions are 
met (see above), or modify their 𝑣 if they only rebound. 

5. “Decay” reaction rule: for each M, if a uniformly random 
number in [0,1] is less than δ ∆ti, replace it with a W. 

6. Increment the iteration counter: i → i + 1. 

7. “Time update” rule: determine the length of the next time 
step ∆ti+1 by polling the velocities 𝑣 of all the moving 
particles and making sure || 𝑣∆ti+1 || does not exceed 1. 

8. “Vibration” rule: every full unit of time, add a small ran-
dom vector, with uniform angle in [0, 2π] and Gaussian 
norm of width ε, to each M around its lattice position. 

This algorithm is used for both types of initial condition (ex-
isting membrane and single monomer) and runs until tick 
tN = 3000 for all the results presented in this article. 

System definition, exploration, and measure 
Through this model, we want to study the autopoietic proper-
ties of a class of systems defined by a closed, roughly circular 
membrane made of bonded particles of one type (here, mon-
omers M) and enclosing freely moving particles of another 
type (here, components C). The topology of a system can be 
assessed by the distribution of holes in the chain of monomers 
composing the membrane, including their number, locations 
and sizes. The size h of a hole is defined as the shortest dis-
tance between two neighboring M1’s (simply bonded mono-
mers; green disks in figures), i.e. the diagonal distance be-
tween their centers minus 1 (twice their radius). Given a max-
imum hole size λ (in general 1.5, just above ||(2, 1)|| – 1), we 
calculated the number of holes nλ bigger than λ and said that 

• the membrane was “closed” if nλ = 0, 
• the membrane was “viable” if nλ = 1, 
• the membrane was “broken” if nλ ≥ 2. 

In the last case, the presence of two holes or more created at 
least two disconnected pieces in the 2D world. (Naturally, 
these definitions would need to be modified in 3D, replacing 
punctual holes with lines or closed paths on the surface of the 
membrane.) Note that, since we only considered holes larger 
than 1.5, a closed or viable membrane could still contain 
several smaller holes (typically of size 0.4 or 1, rarely 1.24), 
which were called “pores”. This is a fundamental characteris-
tic of real-world cells and other autopoietic systems: while 
presenting a well-formed and stable membrane structure, they 
also kept a partial “openness” to the environment, letting 
material flow inward and outward through small channels. 

In addition, we verified that the membrane remained 
roughly circular, i.e. did not form a spiral as in Figs. 3-4 or an 
open thread. These unwanted structures did not necessarily 
contain regular holes—or they could be said to contain M1’s 
on the edge of “infinite” holes. For this, we checked that the 
virtual spokes connecting each M to the center of the world 
were not passing through any other M particle. 

Figure 4: Example of temporary “maintenance autopoiesis”. The system is 
initialized with a circular membrane of radius 10 (composed of 80 M’s). 
Small holes are repaired in the begining (top: ticks t = 0, 1, 6), more holes 
appear later (bottom: tick t = 46) and the membrane eventually breaks 
down and spirals (ticks t = 201, 369). Parameters same as Fig. 1, except for 
a higher decay rate δ = 0.15%. (Video at http://tinyurl.com/qcofya4.) 

Among the various parameters of the model, we chose to 
explore two in particular: the M-decay rate δ (at which M’s 
transform into W’s) and the C-saturation level c (beyond 
which the synthesis of C’s is inhibited). The other main pa-
rameters were fixed, with following values: curvature angle 
α = 8o, C-saturation radius r = 10, M-vibration width ε = 0.05. 
The outcome of simulation was evaluated differently in the 
two scenarios studied here: for maintenance autopoiesis, we 
measured the “lifespan” τ of viable cells and for emergence 
autopoiesis, we counted the closed cells together with the 
number and size of holes in their membrane. A summary of 
the setup follows. Detailed results are presented in the next 
section. 
 
Maintenance autopoiesis, taken separately from emergence 
autopoiesis, refers to the survival of an existing system start-
ing from a fully closed membrane, with no hole of any size 
(Fig. 4). Our initialization used a discretized circle or radius 
10 (composed of 80 M’s) located in the center of a world that 
was filled with S particles only. The results varied from very 
short to very long lifespans. We measured these durations 
using the topological criterion based on a continally updated 
list of holes. Given the maximum hole size λ, the lifespan τ 
was set to the first tick when either the membrane was broken 
(the number of larger holes reached 2) or the cell started form-
ing a spiral (the hub-and-spokes test was positive). 
 
Emergence autopoiesis, on the other hand, is what we expect 
to happen when starting from a single M particle. Under the 
right conditions, an M catalyzes the reaction of S particles on 
its “back”, producing C’s that later transform into new M’s 
and so on. This creates a growing chain that should eventually 
close and form an autopoietic system. As in the maintenance 
case, the decision as to whether the simulation produced a 
stable system depended on an assessment of the membrane 
topology. In the emergence case, we used the same threshold 
value λ = 1.5 but computed the number of closed cells only. 
We also screened out spiraling membranes. 

http://tinyurl.com/qcofya4
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Results 

Maintenance autopoiesis 
A statistical analysis of the model was performed on 1000 
runs for each set of parameters. Each successful run lasted 
until tick tN = 3000. The M-decay rate δ was varied from 0% 
to 1% by increments of 0.05%, and four different values of 
C-saturation level were tried: c = 0.5, 1, 2, and 4 (Fig. 5). 
First, they confirmed that our model supported the “mainte-
nance” form of autopoiesis, as a significant number of runs 
ended with closed or viable cells—which are referred to as 
“survivors” in this case. Although no upper limit was put on 
the size of the only allowed hole larger than λ (for the cell to 
be at least viable), empirically we never observed holes larger 
than h = 4.5, and such extremes occurred rarely. Thus there 
was no massive “unknitting” of the membrane. 

The most striking observation is that the number of sur-
vivors started falling sharply for δ values as small as 0.1% and 
almost vanished at 0.7% (Fig. 5a). The half mark of 500 cells, 
roughly corresponding to the inflexion point of the curve, was 
reached by an average δ comprised between 0.22% (for 
c = 0.5) and 0.32% (for c = 4). This is intuitively reasonable, 
as the system cannot be autopoietic with too much decay or 
too little new material, and an increase in the former should be 
compensated by an increase in the latter to maintain the cell 
membrane. 

A better insight into the behavior of the model could be 
gained by analyzing the average lifespan τ of non-survivor 
cells (Figs. 5b-6). Compared to survivors, which by definition 
reached at least τ = 3000, non-survivors died early in the 
simulation, generally before τ = 200. It means that autopoietic 
cells that have lasted beyond a certain time limit can expect to 
maintain themselves virtually forever. More interestingly, we 
found that, among the non-survivors, τ did not monotonously 

decrease with δ, as it could be expected on first thought (i.e. 
the more decay, the earlier the membrane shoud collapse). 
Instead, τ first increased to a maximum comprised between 75 
and 95 units of time (depending on c) for the lower range of δ 
values, then decreased again but more slowly. The maximum 
point was reached for an optimal δ between 0.25% and 0.55%, 
a range similar to the inflexion point of the survivors’ curve. 

Figure 6: Distribution of lifespans τ. This histogram was obtained from 
1000 runs under a C-saturation level c = 4 and an M-decay rate δ = 0.5. It 
would correspond to a boxplot placed in the middle point of the bottom-
right curve of Fig. 5b (average τ of 75; bins are labeled here by their upper 
bound). As this batch produced 126 survivor cells, only 874 of 1000 were 
used to compute this histogram. Other parameters same as Fig. 1. 

This seemed to indicate that some disruption of the mem-
brane was necessary for the cells to express their autopoietic 
abilities. One explanation could be that when the membrane is 
initially disrupted through the decay of a few M particles 

 (a)  (b) 

Figure 5: Statistical analysis of maintenance autopoiesis. (a) Number of surviving cells at tN = 3000 as a function of M-decay rate δ under four different 
C-saturation levels c. A cell is a “survivor” if its membrane contains at most one hole larger than 1.5. Starting from 1000 cells, the half-population survival 
level 500 was reached for δ between 0.22% and 0.32%. (b) Average lifespans τ of the non-survivor cells as a function of δ under the same four values of c. 
Top-left: boxplot showing the standard deviation and extremes of each distribution (see Fig. 6). Compared to survivors, for which τ ≥ 3000, non-survivors 
were wiped out relatively quickly, from immediately (τ = 0) to about τ = 200. More importantly, the lifespan reached a peak for optimal values of δ, between 
0.25% and 0.55% depending on c, implying that some decay helped the cells in their regeneration process. Other parameters were the same as Fig. 1. 

 

Fig. 6 
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becoming W’s, which drift away and create holes, the repair 
process often has a tendency to generate a pathological spiral 
configuration—but, precisely, this spiral is less likely to grow 
if it is itself disrupted by a moderate level of M-decay. In 
short, δ would need to be sufficiently high to destabilize spu-
rious (and ultimately lethal) repair structures, but not as high 
as to riddle the membrane with too many holes that cannot be 
repaired quickly enough. This is a form of “creative destruc-
tion” that is reminiscent of cancerous cells. 
 

Emergence autopoiesis 
Next, we investigated the self-creation of well-formed auto-
poietic systems from a single monomer M, based on the same 
dynamics and parameters as maintenance autopoiesis. As 
before, results were collected from 1000 runs over a total 
duration of 3000 time units, and by varying δ from 0% to 1%. 
The saturation level c was set to a constant 2 (Fig. 7). They 
showed that our model also supported the “emergence” form 
of autopoiesis. Here, we only counted the number of cells 
capable of building a closed membrane, i.e. with no hole 
larger than λ. We distinguished between cells that were still 
stably closed at tN = 3000 and cells that were once closed but 
unstable and did not survive until the end of the simulation 
(Fig. 7a). Overall, the number of stable newborn cells was 
relatively low, starting at less than 500 (half the initial popula-
tion) and dropping under 50 past δ = 0.5%. The total number 
of newborn cells, stable and unstable, was more significant, 
going from 800 to 250 within the same range. 

In this emergence scenario, however, there was no “crea-
tive destruction” tendency: starting from 0%, a moderate 
increase in δ did not produce more stable cells. This is possi-
bly due to the fact that, unlike self-perpetuation, self-creation 
does not involve the repeated outgrowth of small spiral 
“barbs” on top of a circular membrane (defects which then 
need to be erased by noise), but produces a more consistent 
development of a longer structure—ending up either in a 
circle or a spiral. Moreover, the range of δ values favorable to 
the self-creation of a closed membrane from scratch might not 

overlap with the range of δ values that help an existing mem-
brane regenerate itself. Therefore, when starting from a single 
M, and once δ has been set, it seems that the system can only 
bifurcate between a closed circle state and an open spiral state, 
but not transition from the latter to the former. A more com-
plete chart of the system’s “phase space” would be needed to 
confirm these hypotheses. 

We also assessed the topology of stable cells by analyz-
ing the distribution of holes in their membrane. Fig. 7b plots 
the number of holes whose size falls into three categories 
delimited by h = 0.5, 1, and 1.5, together with the total num-
ber of holes (of any size). While the number of category-1 and 
category-1.5 holes increased with the decay rate δ, the number 
of category-0.5 holes decreased. This could be an artifact of 
the simulation caused by the “receptor arc” of angle α limiting 
the conversion of C’s into M’s and making it more difficult 
for smaller holes to be repaired. Higher decay rates limit the 
occurrence of such cases but, naturally, add larger holes, too. 

Discussion 
We have proposed a minimal model of cell autopoiesis in 
continuous 2D space inspired by artificial chemistry. It con-
tains three molecular types, a substrate, “components”, and 
waste particles, which freely move in the environment, collide 
and react under specific conditions. Molecules of a fourth 
type, the monomers, bind to each other and occupy crystal-
like lattice positions, around which they vibrate, forming the 
cell’s membrane. Results show that, under certain sets of 
parameters, our model is able to reproduce not only the tradi-
tional “maintenance” form of autopoiesis, but also build a new 
cell from scratch, displaying “emergence” autopoiesis. 

Whereas other autopoietic models have been based on 
discrete cellular automata of various types (Varela et al., 
1974; Zeleny, 1977; Breyer et al., 1998; McMullin and Groß, 
2001; Sirmai, 2013) or autocatalytic sets of binary strings 
(Banzhaf, 1994), we have implemented a somewhat more 
realistic “dynamic billiard” agent-based simulation, similar to 
the molecular models used in microcanonical statistical me-

Figure 7: Statistical analysis of emergence autopoiesis. (a) Total number of “closed” newborn cells (as a fraction of the initial population of 1000). Blue 
area: cells that are still closed at the end of the simulation (tN = 3000); red area: cells that reached a closed state but were unstable and did not survive. 
(b) Distribution of holes in the membrane of stable cells, plotted according to their size h. Three categories were defined: 0.5 ≤ h < 1 (“category-0.5” holes), 
1 ≤ h < 1.5 (“category-1” holes), and 1.5 ≤ h (“category-1.5” holes). Green curve: total number of holes (sum of the other three curves). 

(a) (b) 
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chanics or in artificial chemistry (Ono and Ikegami, 2001: 
Chap. 3), and from which we could collect meaningful quanti-
tative results. Most of the simplifications we adopted were 
intended to reduce the computational cost, in particular rely-
ing on a grid approximation to detect collisions faster. One 
especially contrived part of the model, however, is the ab-
sence of movement of the bound monomers (beside vibra-
tion), and the consequent rigidity of the membrane, which 
may not deform or drift once pegged to the underlying lattice 
partition of space. As for the curvature angle and receptor arc 
presiding over membrane polymerization (Fig. 2b), they can 
be interpreted as an abstract reflection of the internal geomet-
ric or “conformational” properties of monomer molecules. 

The fact that a cell in our model can both maintain and 
create its own organization from a chaotic environment is a 
contribution toward uniting the three main perspectives and 
modeling approaches to life: origins (Rasmussen et al., 2004), 
autopoiesis, and self-replication (Langton, 1984; Sayama, 
2000). The data obtained from our model further suggests that 
there is an optimal decay rate for autopoietic systems. Too 
much destruction of the membrane breaks the system down, 
while too little allows inevitable imperfections triggered by 
the environment’s molecular randomness to thrive and take 
over the cell. This observation could be relevant to the study 
of oncological perturbations, or the early chemical environ-
ments favorable to the emergence of biotic forms. 

In conclusion, the experiments presented here could pro-
vide another foundation on which to build more elaborate and 
realistic autopoietic models in continuous space. While we 
have already started working on an extension to a 3D world, 
other improvements should also focus on refinining the mo-
lecular mechanisms (collisions, geometry-based interactions 
and reactions; Fernández et al. 2012), and inserting some 
genetic information, implicitly or explicitly, to let the system 
evolve toward self-replication. The “emergent autopoiesis” 
side of our model also provides another illustration of the 
morphogenetic engineering viewpoint on self-organized com-
plex systems (Doursat et al., 2012, 2013), for which the onset 
of order can be much more than random, “texture”-like pat-
terns (stripes, spots, waves) and exhibit strong architectural 
features, too (nonhomogeneity, reproducibility, programma-
bility). These morphogenetic capabilities have spontaneously 
evolved in nature over millions of years and could now be 
artificially accelerated and put to practical applications by 
human inventiveness. Swarm chemistry (Sayama, 2009), the 
growth of nontrivial shapes from mixed particle species, and 
synthetic biology, the design and control of “bioware” sys-
tems, are such examples at the molecular and cellular scale. 
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