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An integrated modelling framework 
from cells to organism based on a 
cohort of digital embryos
Paul Villoutreix1,2,*,†, Julien Delile1,2,*,‡, Barbara Rizzi1,2,*,§, Louise Duloquin1,2,*, 
Thierry Savy1,2, Paul Bourgine1,2, René Doursat1,2,# & Nadine Peyriéras1,2

We conducted a quantitative comparison of developing sea urchin embryos based on the analysis 
of five digital specimens obtained by automatic processing of in toto 3D+ time image data. These 
measurements served the reconstruction of a prototypical cell lineage tree able to predict the 
spatiotemporal cellular organisation of a normal sea urchin blastula. The reconstruction was achieved 
by designing and tuning a multi-level probabilistic model that reproduced embryo-level dynamics 
from a small number of statistical parameters characterising cell proliferation, cell surface area and cell 
volume evolution along the cell lineage. Our resulting artificial prototype was embedded in 3D space 
by biomechanical agent-based modelling and simulation, which allowed a systematic exploration 
and optimisation of free parameters to fit the experimental data and test biological hypotheses. The 
spherical monolayered blastula and the spatial arrangement of its different cell types appeared tightly 
constrained by cell stiffness, cell-adhesion parameters and blastocoel turgor pressure.

Robust and reproducible animal embryonic development requires the coordination of a large number of cells. Yet, 
single-cell processes are inherently noisy and can lead to significant variations and heterogeneity within a priori 
homogeneous cell populations1–3. Recent advances in the quantitative live imaging of whole embryos4, including 
cell lineage “reconstruction”5–7 and gene expression “atlasing”8, mainly in the zebrafish, fruit fly, and nematode, 
provide an important path toward reconciling the two aspects of robustness and variability. The in toto maps at 
cellular resolution produced by these works allow deciphering the relationships between the single-cell features 
and the embryo-level dynamics underlying morphogenesis.

Sea urchin species are model organisms of choice in developmental biology. The structure and dynamics of 
the gene regulatory network (GRN) of Strongylocentrotus purpuratus have been extensively studied, leading to 
complete models of interactions between genes9–11. Paracentrotus lividus, on the other hand, is better suited for 
in toto imaging at the individual-cell resolution over long periods of time due to its transparency and robustness 
under experimental conditions6,12. We deliver here the first complete methodological framework for the predic-
tive understanding of animal embryogenesis combining in toto 3D+  time imaging, statistical and mechanical 
modelling. We performed a fully automated reconstruction of digital specimens from live P. lividus embryos 
throughout the blastula stages to assess intra-individual variations and inter-individual differences at the level 
of groups of cells. Analysing the large amount of data generated by such tools requires novel methodological 
approaches13–16. We combined data organisation, multi-level probabilistic modelling and data fusion techniques, 
applied to measurable parameters, with spatially explicit biomechanical modelling17,18 to infer the remaining free 
parameters. This hybrid strategy led to a realistic prototypical simulation of the sea urchin lineage tree and devel-
oping embryo in 3D, directly comparable to empirical data. Ultimately, the systematic exploration of the model’s 
parameter space highlighted the developmental constraints of embryonic morphogenesis and its characteristic 
features such as the embryo shape and organisation of cell types.
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Results
A cohort of digital embryos. Images of five live embryos developing from the 32-cell stage at 4–6 hours 
post-fertilisation (hpf) until the hatching blastula were acquired with two-photon microscopy and processed by 
our automated reconstruction workflow5,6 (Fig. 1a and Supplementary Table 1). Nuclear and membrane staining 
were obtained by RNA injection at the one-cell stage (Fig. 2a). This produced spatiotemporal sets of cell cen-
tres, segmented membrane shapes, and the complete cell lineage tree (Fig. 2b,c,e) via automated identification 
of cell filiation across consecutive time steps. Image acquisition lasted 3–8 consecutive hours with a constant 
time resolution of 2–5 min (Fig. 2d). Our visualisation interface Mov-IT5,6 helped validate and correct cell track-
ing, and manually label cells at the 32-cell stage according to their classification into four cell types with known 
distinct fates: mesomeres (Mes), macromeres (Mac), large micromeres (LMic) and small micromeres (SMic) 
(Supplementary Fig. 1b)11,19. Labels were propagated along the cell lineage (Supplementary Video 1). This data 
was suitable to investigate the parameters characterising cell behaviour, including cell displacements, cell divi-
sions, cell volume, cell shape and cell contact changes.

Temporal and spatial rescaling of embryo-level dynamics. The quantitative inter-individual com-
parison of morphogenetic features was first measured at the global embryo level at each time step via the total 
number of cells N(t), total cellular volume W(t) and total cellular surface area Z(t). Because embryos appeared 
to grow at different speeds, a spatiotemporal rescaling of the corresponding curves was necessary to establish a 
baseline for inter-individual comparison and the assessment of variability (Fig. 3a–c), i.e. to provide comparable 
charts while preserving the overall shape of the functions. This rescaling consisted of an affine transformation in 
time and a linear transformation in space, tuned by parameters specific to each embryo (Supplementary Fig. 2c,f). 
After this preliminary step, the temporal evolution of the above three global measures was found to be highly 
reproducible between specimens of the cohort (Fig. 3a–c and Supplementary Fig. 2). Egg size and temperature 
fluctuations are potential factors explaining growth rate variation at the level of the embryo. Using this rescaling, 
we provided a correspondence between hpf and developmental stages (Supplementary Table 2).

Coarse-grained statistical analysis of cell features along the cell lineage. We further investigated 
the possibility to relate the global similarity of embryos (macroscopic level of description) to individual cell 

Figure 1. Methodological workflow. The technical content of each box is described in detail in the 
supplementary material. Bottom to top: increasing levels of abstraction, from raw data to theory and modelling. 
The concept of “augmented phenomenology” (second tier) represents the superposition of raw data and its 
reconstruction. Features extracted from the augmented phenomenology are combined into an organised dataset 
conveying maximum biological meaning and leading to the formulation of theoretical hypotheses. (a to d) 
Upward arrowheads indicate derivation from data, including reconstruction of digital specimens and statistical 
analysis leading to probabilistic models. (e and f, h and j) Downward arrowheads indicate prediction testing, 
whether analytically (e) or by simulation (f), (h) and (j). Horizontal arrow: (g) Aggregation step leading to 
the design of a “normal” prototype from measurable individual cell features across the five specimens. (i) The 
prototype is used as an input into the biomechanical model. (k) Bidirectional arrow indicating the quantitative 
comparison between model simulations and digital reconstruction. (l) Feedback loop tuning the parameter 
values of the biomechanical model as a function of realism.
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features (microscopic level of description). To this aim, we examined how six features of individual cells were 
distributed along the cell lineage: cell cycle lengths xi(t), mitosis times mi(t) (Supplementary Fig. 1a), average cell 
volumes vi(t) and cell surface areas si(t), average daughter/mother volume ratios ai(t) =  v v/i j and daughter/mother 
surface area ratios bi(t) =  s s/i j. Because symmetries in the embryos, namely rotations around the animal-vegetal 
axis, and variations in single cell positions from one embryo to the other prevented the identification of individual 
cells across specimens, a “coarse-graining” transition to a mesoscopic and more generic level of description was 
required (Fig. 1c). To this aim, cells were clustered into groups g according to their type ki =  1, … , 4 (Mes, Mac, 
LMic, SMic) and their generation rank ni =  6, … , 10. Assuming that cells were indistinguishable within the same 
group, individual cell features were “exchangeable” sequences of random variables, hence obeyed a theorem stat-
ing that such sequences are mixtures of independent and identically distributed (i.i.d.) variables20. The above six 
cell features thus produced six distributions of individual cell features at the level of each group: Xg, Mg, V g , Sg , Ag 
and Bg, which we set out to measure.

Figure 2. Reconstruction of digital sea urchins from 3D+ time in vivo and in toto imaging. (a to c) Raw  
and reconstructed data from one specimen (embryo 3) at different stages of development. Scale bar 20 μ m.  
(a) Volume rendering of raw images (Amira software) from two-photon laser scanning microscopy. Total  
cell number indicated bottom left. (b,c) Reconstructed digital embryo, displayed with Mov-IT software.  
(b) Detected nuclear centres with colour code for cell types propagated along the lineage: mesomeres (Mes) 
in blue, macromeres (Mac) in red, large micromeres (LMic) in pink, and small micromeres (SMic) in purple. 
(c) Surface rendering of segmented cell membranes, colour code as in (b). (d) Temporal observation window 
for each specimen of the cohort, time scale in hours post-fertilisation (hpf) after temporal rescaling (details 
in Supplementary Fig. 2). Arrowheads for embryo 3 indicate the temporal window displayed in (e). (e) Flat 
representation of the reconstructed cell lineage of embryo 3 with the same cell type colour code as in (b), time 
scale in hpf.
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Figure 3. Multi-level statistics and probabilistic model for the cohort and its prototype. (a to c) Temporally 
rescaled macroscopic quantities (whole-embryo level) in each specimen, top groups of curves in each chart 
and each cell population (lower four groups of curves, top to bottom: Mes, Mac, LMic, SMic). Same embryo 
colour code as in Fig. 2d (details in Supplementary Fig. 2). (d to f) Statistics of individual cell features in each 
cell group clustered by common type and generation. Mean and standard deviation bars represent normal and 
log-normal approximations of the cell feature distributions. In black: statistics aggregated into a prototype 
(see Supplementary Figs 3 and 4). (g to i) Embryo-level features in one measured specimen (embryo 3) and 
in simulation based on the probabilistic model (see Supplementary Fig. 11 for details). In black: mean of 300 
simulated cell lineages; in grey: their standard deviation; in colour: measured values (top curve: whole embryo, 
lower four curves: separate populations using the same cell type colours as Fig. 2b). Shaded areas: incomplete 
cycles, for which an accurate estimation was not possible. (j to l) Same as (a to c) with the prototype curves 
added in black and grey.
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Due to limits on the observation windows, however (Fig. 2d), some cell cycles were incompletely or 
not recorded, hence some groups g were missing cells. In total, there were 252 exploitable distributions, cor-
responding to 4 cell types across 5 cell generations or less (depending on the dataset) and 4–6 cell fea-
tures (depending on the cell cycle and the availability of Ag and Bg) in each one of the 5 embryos (Fig. 3d–f 
and Supplementary Figs 3 and 4). Graphical assessment of these histograms, supported by a statistical test 
(Supplementary Figs 5 and 6), led to their classification into normal distributions for cell cycle lengths and mito-
sis times, and log-normal distributions for average volumes and surfaces. This allowed us to calculate the mean 
μ and standard deviation σ of each random variable in each cell group g and provide an idealised parametric 
representation of the whole cohort’s dataset in the form of 252 (μ, σ) pairs.

From these statistical measures, we concluded that random variables were largely independent from each 
other along one cell lineage: we detected no significant correlations among single features (temporal or spatial) of 
mother, daughter and sister cells (Supplementary Fig. 9 and Supplementary Table 3). Moreover, while the average 
cell cycle lengthened through generations with increasing fluctuations, the cell cycle length of a daughter did not 
depend on the cell cycle length of its mother. At the spatial level, we observed a variation in the range of ± 20% 
around 0.5 for the average daughter/mother volume ratio, which mitigated the common assumption of average 
cell volume conservation across mitosis through consecutive generations at cleavage stages. However, although 
variability in volume and surface area at the individual cell level was not counterbalanced across consecutive gen-
erations, global uniformity could still be observed at the macroscopic level, as shown in Fig. 3 for the evolution 
of the total cellular volume.

A multi-level probabilistic model relating individual cell features to embryonic dynamics.  
Based on this data analysis, we were able to formally relate individual cell features to embryo-wide features via a 
multi-level probabilistic model of the cell lineage (Fig. 1d). At its core, it consisted of positing the following three 
recursive relationships: Mg =  Mg−1 +  Xg, V g  =  −V g 1 Ag and Sg  =  −Sg 1 Bg where g −  1 =  (n −  1, k) denotes the mother 
group of g (Supplementary Table 3–5). To evaluate this model, we calculated the differences between the empirical 
distributions (Mg, V g , Sg) measured directly on the embryos’ final groups and their counterparts predicted from 
applying the iterative sum or product of (Xg, Ag, Bg) on the first group. Among 48 eligible final groups, 75% of 
them showed a close proximity between measured and predicted parameter sets and 21% were in good agree-
ment, confirming the accuracy of the model. In sum, we propose here a generic methodology to identify the 
probabilistic laws of the prototypic cell behaviours underlying blastula formation.

Next, using this model, realistic virtual cell lineages were generated and their statistics compared to 
the real data. Starting from the 32-cell stage, each simulated cell divided into two and its cell cycle length xi 
was drawn from the idealised normal distributions (μXg, σXg). Given the relationships between cell features 
(Supplementary Table 5), similar to the relationships between random variables, the mitosis time of cell i was 
deduced by summing the cell cycle lengths of its ancestors j: mi =  ∑  xj. For each embryo, 300 realisations of the 
cell lineage were produced by varying the random generator’s seed. Comparison between these simulated spec-
imens and empirical values on the three macroscopic quantities N, W and Z showed that embryo-level dynam-
ics for each cell type was accurately reproduced using the empirical parameters measured in each cell group 
(Fig. 3g–i and Supplementary Fig. 11).

The number of cells over time N(t) displayed an alternation of plateaus, when no cells divided, and rapid 
increase during periods of high mitotic activity (Fig. 3a). During these periods, the slope of N(t) reflected the 
spread of mitoses over time, which our model showed to be caused by continuously desynchronising cell cycles 
along the lineage, and whose variance of division times within a cell group was equal to the sum of variances of 
cell cycle lengths in ancestor groups (Supplementary Note 2.3.1). In other words, we showed that the variability 
of division times came from accumulated variations in cell cycle lengths along the cell lineage. This result con-
trasts with previous statements about putative successive periods of synchrony, metachrony and asynchrony21. 
Moreover, there seemed to be no need for a “mitotic gradient” to explain the spatial distribution of mitoses21, as 
our study suggested that it could simply arise from the variability of cell cycle lengths.

The total cellular volume W(t) was globally conserved while undergoing alternating phases of contraction and 
expansion, which were also interpreted as emerging from the collective behaviour of individual cells character-
ised by desynchronising cycles but otherwise similar individual dynamics throughout these cycles (Fig. 3b and 
Supplementary Fig. 7). The total cellular surface area Z(t) followed a comparable evolution, but increased globally 
as cells became more cylindrical (Fig. 3c and Supplementary Fig. 8).

Designing a data-driven prototype. In sum, each specimen of the cohort could be represented by a 
reduced number of parameters, the (μ, σ) pairs, sufficient to reproduce the embryo-level dynamics. To obtain 
a unified view of development during cleavage stages, a prototypical representation of the cohort was defined as 
the “centroid” of the five specimens in parameter space (Fig. 1g)22. This methodology was also used to define 
prototypical statistics for each cell group (black bars in Fig. 3d–f and Supplementary Figs 3 and 4), where 
intra-individual variability was represented by standard deviations computed for each cell feature. Similar to 
individual specimens, cell lineages were also simulated based on these statistics and the resulting prototypical 
embryo-level dynamics provided a representation of the “normal” development of sea urchin blastula (Figs 1h 
and 3j–l).

Spatial embedding through biomechanical modelling. In a last step, to understand the relations 
between individual cell features and the actual shape of the embryo, the cell lineage prototype was embedded in 
space via a biomechanical model (Figs 1i and 4). Here each cell was represented by a cylindrical particle oriented 
along the apicobasal axis of the epithelium (Fig. 4a and Supplementary Fig. 12). As cells are extremely small 
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Figure 4. Spatial embedding in a biomechanical model of the prototypical multi-level probabilistic model. 
(a) Principle of cell axis computation. (b) Intensity of the attraction-repulsion force as a function of the 
interparticle distance r, with = πceq 2 3

 and =c 2max . (c) Phenotypic phase diagram: the similarity of the 
simulation with digital embryos is computed for various pairs of homotypic and heterotypic adhesion 
coefficients (ωadh,o, ωadh,e). The green parametric region corresponds to the domain of best fit (Supplementary 
Video 2 shows simulations of representative embryos for each region). (d) Upper panel: example of multilayered 
aspherical “deviant” embryo. Lower panel: most realistic embryo. For both, section along the sagittal plane.  
(e to g) Landscapes of the three objective functions: cell type population border similarity Ds, epithelial layer 
planarity Ps, and embryo shape sphericity Ss (details concerning the calculation of these three metrics are 
described in the supplementary material). The fitness colour map goes from blue (best values) to red (worst 
values). The white dotted lines delimit the domains where the differences between observed and simulated 
embryonic developments are minimal. These lines are reproduced in the general phase diagram of (c).
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and sticky, inertia was negligible with respect to viscosity and cell displacements could be represented by an 
overdamped equation of motion (Supplementary Note 3.1.1). The epithelialisation of the forming blastula led to 
a decomposition of the forces exerted between neighbouring cells into tangential components and normal com-
ponents, respectively: “attraction-repulsion” forces maintaining the integrity of the cell volume by stiffness and 
adhesion (Fig. 4b and Supplementary Fig. 13); and “planarity conservation” forces maintaining the monolayered 
structure of the epithelium and modelling the blastocoel turgor pressure (Supplementary Fig. 14). In the first case, 
the adhesion coefficient ωadh could take two values, homotypic (ωadh,o) or heterotypic (ωadh,e), depending on the 
match between the two cell types in contact. In addition, cell division was oriented inside the tangential domain 
at an angle drawn randomly from a uniform distribution.

Fitting the free parameters to the experimental data. A parameter space exploration in the (ωadh,o, 
ωadh,e) plane (Fig. 1j–l) revealed a “phase portrait” characterised by multiple phase transitions between differ-
ent phenotypic domains (Fig. 4c,d): from highly spherical and planar embryos to collapsed cell aggregates, via 
polylobular structures appearing in a region of high planarity without sphericity (Supplementary Table 6 and 
Supplementary Video 2). The validation or rejection of these virtual specimens relied on an “objective function”, 
or fitness, describing the layout of the embryos and comparing it to the ones reconstructed from the in vivo data 
(Fig. 4e–g). It was composed of three terms: a degree of sphericity of the global shape, a degree of planarity of the 
monolayered epithelium, and a degree of similarity of the borders between cell populations (Mic/Mac and Mac/
Mes) with the real specimens. The domain of best fit, i.e. the one that governed the most realistic spatial model of 
the sea urchin embryo development, was obtained for a low heterotypic adhesion coefficient ωadh,o, confirming 
that clear-cut borders could emerge without the need to bias the division orientation. Moreover, when the attrac-
tion/planarity force ratio was too high, the embryo collapsed and the monolayered epithelium folded into a 3D 
aggregate (Fig. 4d and Supplementary Video 2).

Discussion
We have shown that the characteristics of cell proliferation and cell interactions, as quantified and modelled here, 
provided a structurally constrained process that guaranteed the robust formation of the blastula. Altogether, 
modelling, simulation and parameter space exploration brought insights into the developmental constraints 
underlying morphogenetic processes, such as cell adhesion and blastocoel turgor pressure, otherwise difficult 
to quantify in vivo. Postulating differential homotypic and heterotypic adhesion forces without modulating the 
parameters as a function of cell types was suitable to reproduce the geometry and organisation of the blastula. 
This is consistent with dissociation and reaggregation experiments at the blastula stage that do not formally imply 
cell sorting of the different cell populations of the blastula23. Moreover, in the hypothesis of similar adhesion 
forces within the different cell populations, one would expect different E-cadherin densities to compensate for 
specific cell sizes and surface contacts24,25. This could effectively lead to a significant difference between homo-
typic and heterotypic adhesion parameters, as exhibited by our model.

The invariance of the measured and modelled cell behavioural rules during the observation window sug-
gests that the embryo of P. lividus is under a single dynamical regime where cell cycle asynchrony continuously 
increases and volumes converge to uniform values. The highlighted interplay of homogenisation and diversifica-
tion at cell population and individual cell levels does not, however, presume that a precise regulation of tissue pat-
terning is already operating at blastula stages at the subcellular level. The current view of a finely tuned regulation 
of gene network dynamics during sea urchin early embryogenesis may hide similar individual cell variability and 
population-level averaging effects26. The extent of variability of gene expression, its importance in the dynamics 
of the molecular and genetic interaction networks, and its consequences at the level of cellular dynamics remain 
open and challenging questions2,27.

The generic methodology presented here contributes to setting the foundations for developmental biology 
as a quantitative science, integrating multi-level data and allowing the formulation of theoretical hypotheses to 
be tested experimentally. Using this framework, we can address biological questions by considering perturbative 
experiments. Parameters of the model, such as cell stiffness, cell adhesion and blastocoel turgor pressure, can be 
modified experimentally and results compared to the simulations to test the validity of the predictions. The statis-
tical approach elaborated in this paper to characterise the cell lineage of various individual organisms is general 
enough to be applied to other species. The cell branching process that gives rise to the cell lineage is observed in 
many different organisms. Our mathematical formulation is directly applicable to organisms undergoing periods 
of cleavage during their development, where cells’ main activity is to divide. Our MATLAB library is readily 
available to analyse digital cell lineage trees and produce the corresponding prototypical stochastic cell lineages 
annotated with cell volume and cell surface measurements.

Methods
Embryo staining, mounting and imaging. Oocytes from Paracentrotus lividus were prepared and 
injected28 with 150 μ g/ml H2B-mCherry and 150 μ g/ml eGFP-HRAS synthetic mRNA. Embryos were maintained 
between slide and coverslip covered with protamine. Imaging was achieved with a Leica upright microscope 
(DM5000) SP5 MLSM equipped with a 20x/0.95NA W or 63x/0.9NA dipping lens objective. Details of image 
acquisition are provided in Supplementary Table 1. Simultaneous 2-photon excitation29 at two different wave-
lengths (1030 nm and 980 nm) was performed by pulsed laser beams (T-pulse 20 by Amplitude Systèmes, and 
Ti-Sapphire femtosecond oscillator MaiTai HP by Newport Spectra physics, respectively).

Digital embryo reconstruction. Reconstructed embryos were obtained by running the raw image datasets 
through the automated image processing workflow of the BioEmergences platform. A detailed description of the 
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reconstruction methods, including the mathematical algorithms used, was published previously6 (Supplementary 
Note 1). The three main components described in the next sections are: nucleus centre detection, cell trajectory 
tracking, and cell membrane segmentation.

Nucleus centre detection and tracking. Cell positions were placed at the local intensity maxima of cell 
centre images filtered by a difference of Gaussians (Supplementary Note 1.1). Tracking of the cell nuclei was 
obtained by first constructing tree branches connecting nearest cells on consecutive images when that proximity 
criterion was reciprocal. Then, mitoses were detected by linking the cells left over without a predecessor to their 
closest neighbour at the previous time step. Finally, the resulting lineage tree was refined via the minimisation 
of a functional defined by an energy term based on the assumption that the embryo essentially behaves like an 
elastic mass (i.e. that neighbour cells at time t remain close at time t +  1). This functional was minimised using 
a simulated annealing heuristic, searching for the lowest-energy configuration by randomly changing a link, 
removing/adding a link or removing/adding a cell. To validate the tracking, all cell positions and trajectories were 
checked by at least two experts through visual inspection, comparing the digital reconstruction with the raw data 
using our Mov-IT visualisation software6. All detectable errors (false positive and false negative nuclei, false links, 
missing links, false positive and false negative mitosis events) were corrected to build error-free lineages. All five 
lineage trees were fully validated (Supplementary Note 1.2 and 1.3).

Cell shape segmentation. To remove the noise and smooth the images while faithfully preserving edge 
information, the data was first filtered by geodesic mean curvature flow (GMCF)30. Cell shapes were then 
obtained by applying a generalised version of the subjective surface (SubSurf) method31,32 for its ability to recon-
struct missing boundaries, making it particularly suitable for this type of data (Supplementary Note 1.4).

Temporal and spatial rescaling. The measured number of cells, total cellular volume and total cellular sur-
face area presented similar patterns of evolution without overlapping. To filter out this variability and proceed to 
further inter-individual comparison, we applied temporal and spatial rescaling functions. The time dependency 
of each embryo was rescaled using an affine transformation, whose parameters were obtained by minimising the 
difference between the cell-number curve and the averaged number of cells over the cohort. Spatial rescaling is 
a linear transform performed along each spatial dimension. For each embryo, a custom tuning parameter was 
obtained by minimising the difference between the temporally rescaled cellular volume of an embryo and the 
mean value over the cohort (Supplementary Note 2.1.3).

Individual cell features. Individual cell features were extracted from the reconstructed and rescaled cell 
lineages and segmentations. For a cell i, we defined: its cell cycle length xi, its division time mi, its volume vi(t) and 
surface area si(t) at each time step, with their averaged values vi and si between two consecutive mitoses, the ratio 
=a v v/i i j between its average volume and that of its mother j, the ratio =b s s/i i j between its average surface area 

and its mother’s, the number di(t) of neighbours (or “degree”) in its network of cell contacts, the number ni of cell 
cycles (or “generation index”) that it has undergone since fertilisation including the current one, and its cell type 
= …k 1, , 4i  corresponding to Mes, Mac, LMic, SMic, respectively (Supplementary Note 2.1.1).

Cell feature distributions in cell groups. Symmetries in the embryo, such as the rotational symmetry 
around the animal-vegetal (AV) axis, prevent the identification and matching of individual cells from one speci-
men to another. Unique identification of cells based on their morphological characteristics cannot be done with-
out ambiguity either. To overcome these obstacles, cell features were binned into mesoscopic groups defined by 
common generation n and type k, denoted by g =  (n, k). For example, we considered the distribution Xg of cell 
cycle lengths for 32 Mes cells at the 7th generation, i.e. for g =  (7, 1). From these empirical distributions of individ-
ual cell features in each cell group, we derived idealised normal or log-normal representations parameterised by 
a mean-variance pair (μ, σ), for example:  µ σ~X ( , )g X Xg g

. The accuracy of modelling distributions of cell 
features with normal distributions (for cell cycle lengths {xi} and division times {mi}) or log-normal distributions 
(for cell volumes v{ }i , surface areas s{ }i  and their associated daughter/mother ratios {ai} and {bi}) was assessed 
using a chi-square goodness-of-fit test. Among 252 available distributions, 124 were eligible for statistical analysis 
due to the relatively small sample size. Only 20 of them had a p-value under 0.05, among which 12 were under 
0.01. The complete ranges of p-values obtained were the following: [3.7e-8, 0.42] for cell cycle lengths {xi}, [3.6e-6, 
0.46] for mitosis times {mi}, [8.5e-3, 0.89] for average cell volumes v{ }i , [5e-3, 0.96] for average cell surface areas 
s{ }i , [0.06, 0.84] for average volume ratios {ai}, and [1.3e-3, 0.76] for average surface area ratios {bi}. More details 

are provided in Supplementary Note 2.2.1.

Independence within the lineage. To investigate the degree of correlation between cells belonging to the 
same descent, we tested linear dependencies between cell distributions of daughters and mothers, and among sis-
ters for temporal features (division times and cell cycle lengths) and spatial features (volumes and surface areas). 
We computed Pearson’s correlation coefficient R2 between distributions. Given the weak values of R2 obtained in 
the different cell groups (R2 was greater than 0.6 in only 20 cases out of 198 investigated pairs of distributions), we 
adopted the viewpoint that the various random variables describing cell features’ distributions were independent 
between and within cell groups (Supplementary Note 2.2.3).
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Multi-level probabilistic model. To design a probabilistic model, we used the parameterised description of 
individual feature distributions obtained in each cell group together with the assumption of independence among 
the different groups. The equations describing the temporal relations between cell features in the lineage tree are:

∑

µ σ µ σ

= + = +

| =

−
= +

−~ ~

M M X M X

M X P X M P Xwith ( , ), ( , ) and ( ) ( ),

g g g g
h g

g

h

g M M g X X g g g

1
1

1g g g g

0
0

 

where Mg and Xg are the random variables describing the probability distributions of division times and cell cycle 
lengths, respectively; (μ, σ) are the mean and standard deviation of a normal distribution; and g ±  1 is a shortcut 
notation for (n ±  1, k). The last equation indicates the independence of the cell cycle from the division time of its 
mother. Similarly, the equations describing the spatial relations between cell features in the lineage tree are:

 
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where V g  and Ag are the random variables describing the probability distributions of average cell volumes and 
daughter/mother volume ratios, respectively; and (μ, σ) are the mean and standard deviation of a log-normal 
distribution. The last equation indicates the independence of the cell daughter/mother volume ratio from the 
volume of its mother. We obtained similar equations for the surface area. The detailed derivation of the multi-level 
probabilistic model is provided in Supplementary Note 2.3.

Model evaluation. To evaluate the accuracy of this multi-level probabilistic model, we computed the pre-
dicted parameters values (μ, σ) for the probability distributions of division times Xg, average volumes V g  and 
surface areas Sg  in the last cell cycle of each embryo using recursive equations derived from the ones above 
(Supplementary Note 2.3.1 and 2.3.2). These estimated parameters were compared to the actual ones using the 
Kullback-Leibler divergence DKL. The value of the comparison was symmetrised and normalised by averaging the 
differences between the embryos of the cohort (using the same measure of dissimilarity), and denoted by ∆̂KL. 
Among the 48 eligible groups, 75% showed a close proximity (∆ < .ˆ 0 5KL  in 36 cases), 21% were in good agree-
ment ( . ≤ ∆ < .ˆ0 5 1 5KL  in 10 cases), and 4% fell far away (∆ >ˆ 3KL  in two cases: for V  and S in the Mes cells of 
embryo #5). Therefore, except for these two outliers, our probabilistic model accurately predicted the dynamics 
of sea urchin development (Supplementary Note 2.3.4).

Prototype. The multi-level probabilistic model provided an invariant framework relating individual cell fea-
tures to embryo-level dynamics with specific parameter values for each embryo. To obtain a unified representa-
tion, or “prototype”, of the sea urchin blastula’s normal development, individual measurements were aggregated 
and averaged over the cohort into a “centroid” (a virtual average embryo) at the level of cell groups. This centroid 
was computed using the normalised symmetrised Kullback-Leibler divergence ∆̂KL for each individual cell fea-
ture distribution (Supplementary Note 2.4).

Simulation of artificial cell lineages. Using the multi-level probabilistic model, realistic virtual cell line-
ages were generated and their statistics compared to the real data. Starting from the 32-cell stage (comprising 16 
Mes, 8 Mac, 4 LMic, and 4 SMic cells), a cell lineage was computed by letting each cell divide into two and imple-
menting the relationships between microscopic features derived from the relations between random variables 
(Supplementary Table 5), then using the estimated values of the parameters for each cell group, in every embryo 
and in the prototype (Supplementary Notes 2.3.5 and 2.4).

Spatial modelling. Relying on the above digital reconstruction and probabilistic model, the last stage of our 
study consisted of a spatially explicit computational model and simulation of the sea urchin embryo based on the 
MecaGen platform18. In a nutshell, it was designed as a particle-based model, where the interactions between cells 
were decomposed into an attraction-repulsion component and a planarity conservation component. The 
attraction-repulsion force 
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where rij is the distance between i and j; →u ij is the neighbourhood vector from j to i; = +r c R R( )ij i j
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 is an equilibrium distance depending on the cells’ radii Ri and Rj; = +r c R R( )ij i j
max

max  with 
=c 2max  is the maximum distance of contact between two cells; and ωrep and ωadh are adhesion coefficients tuning 

the repulsive and adhesive parts of the force profile. The planarity conservation component 
��
Fij

PC
 was defined as: 
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rig , with →n ij being the bisector of each cell’s normal vector (vector pointing from the 
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centre of the embryo towards the outside) and krig is a planar rigidity coefficient. More details on the derivation 
and implementation of the model can be found in Supplementary Note 3.1.

Estimation of free parameters. In the model several parameters have values that cannot be directly meas-
ured. The values of the free parameters leading to the most realistic spatial modelling and embedding of the 
prototypical cell lineage can be obtained by finding the best fit between the spatially explicit simulations and the 
original data. To this end, we designed a metric based on the shape of the boundaries between cell populations 
(obtained through the network of cell contacts) and two “objective functions” characterising certain properties of 
the simulated embryos: their ability to remain monolayered during development and their sphericity. The values 
of the repulsion coefficient ωrep and the planar rigidity coefficient krig were fixed. The attraction-repulsion force 
adopted different values depending on whether the cells belonged to the same population (via a homotypic adhe-
sion coefficient ωadh,o) or to different populations (via a heterotypic adhesion coefficient ωadh,e). Various values of 
ωadh,o and ωadh,e were systematically explored in a 2D domain of parameter space (from 10 to 1000 with an incre-
ment of 25 for each parameter), by simulating 300 embryos in each point and comparing them to the original data 
via the above metric (Fig. 4c and Supplementary Note 3.2.3).

Software and data availability. The BioEmergences workflow was published as a standalone software6. 
The MecaGen modelling platform was published as an open source software18. The scripts for the statistical 
analysis and for the construction of the prototype from empirical data are provided here as a MATLAB library 
(Supplementary Software 1). The compressed folder contains a preprocessed version of the five sea urchin data-
sets. The raw data is made publicly available on the BioEmergences website:

http://bioemergences.eu/bioemergences/pubs/seaurchin 
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