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Abstract

We propose a simplified agent-based model of avascularized
tumor. It involves a tissue in which blood vessels introduce
nutrients that diffuse. Cells move, proliferate and die accord-
ing to an individual quantity of “energy” and free space for
their offspring. They can transition to a “cancerous” type and
an intermediate “mutated” type, where they behave normally
but can be affected by cancerous neighbors. We are interested
in finding the key parameters that can lead a majority of can-
cerous cells to be replaced by normal ones. First, we give a
brief overview of previous tumor growth models, especially
in avascular tissues. Then, we describe in detail the agents
and rules of our model, commenting on the choices made.
Next, we conduct a parameter space exploration, varying in
particular the influence of neighbors, the division probability
and mutation probability. Results show a marked phase tran-
sition between domains of high cancerous cell density and
high mutated cell density. We also analyze the importance of
certain rules in our model by “rule knockout” and find that
energy-dependency of division and space for offspring are
essential, while type-specific division probabilities are not.
Finally, we discuss the overall relevance of the model and
possible future improvements.

Introduction
According to the World Health Organization, cancer is
among the leading causes of death worldwide, with 8.2 mil-
lion fatalities in 2012 (Stewart and Wild, 2014). Mathemati-
cal models are being created to help understand the underly-
ing mechanisms of tumor growth, with the potential to create
a framework for simulations and virtual experiments. This
should enable scientists to observe the effects of different
treatments more efficiently, and improve them or suggest
new ones (Roose et al., 2007).

Cancer can generally be defined as the uncontrolled
growth and spread of cells, also referred to as “malignant”
tumors and “neoplasms”. There are more than 100 types
of cancers: lung, liver, stomach, colorectal and breast can-
cers are among the most lethal (Stewart and Wild, 2014).
However, they all have certain characteristics in common:
the tumor mass typically grows beyond its usual boundaries,
invades neighboring parts of the body, then spreads out to
remote organs.

It is still debated how exactly cancerous behavior is initi-
ated. The general consensus is that several gene mutations
are required to turn a normal cell into a cancer cell. The fac-
tors that trigger these mutations are largely unknown, but are
thought to include both environmental and hereditary prop-
erties (Roose et al., 2007).

Once tumor cells have started to appear, tumor growth
goes through three different stages:

• Avascular growth: This stage is characterized by the pro-
liferation of cancer cells. The tumor forms a solid mass
that expands by mitosis, depending largely on available
nutrients. There is no invasion of healthy tissue yet. As
nutrients deplete, the cancer cells die (necrosis) and their
accumulation creates a necrotic core in the center of the
tumor. During this stage, the tumor tends to adopt a
spherical shape in which outer-perimeter cells continue
to proliferate, while cells in the middle are in a resting
state (quiescent). As necrosis and proliferation balance
each other, the tumor reaches a limit size (approximately
1-3 mm in diameter).

• Tumor-induced angiogenesis: In this stage, cells from the
avascular tumor mass induce modifications in the existing
vascular structure to create new blood vessels that can
sustain them. The tumor is able to overcome its limit size,
grow much faster and invade the surrounding tissue.

• Vascular growth and invasive tumor: This is the most
complex stage. The tumor does not form a solid mass
anymore and becomes diffusive. Cancer cells can feed on
nutrients beyond their immediate vicinity. The formation
of necrotic regions becomes much more complex. Tumors
do not have a limit size and can grow indefinitely.

In this work, we focus on the avascular stage of the tumor
and the factors that can provoke its initial growth. We build
a simplified model that takes into account key mechanisms
identified through a selective review of previous models. We
investigate how the model parameters affect the proportion
of cancerous cells. Are there any critical values controlling
a transition of the tumor from a majority of cancerous cells
to a majority of normal ones?
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Previous Work
There is a large number of models of tumor growth, covering
a great diversity of scales and questions. Byrne (2010) pro-
vides a timeline of the most representative models for each
stage of tumor growth. Our own brief summary, focusing
on the first stage, will not attempt to give an overview but
rather highlight rules and parameters deemed important by
the literature. An extensive review of models focusing on
avascular tumor growth is given by Roose et al. (2007).

Most models fall into two broad categories: continuum
mathematical models, which are based on partial differential
equations and spatial averages; and discrete cell population
models, which involve individual cell-cell interactions.

Continuum Cell Population Models
These models focus on the relationships between cell den-
sity and chemical species that provide nutrients. Typically,
they consist of reaction-diffusion and convection equations.

The earliest spatiotemporal and biomechanical models of
avascular tumor growth construed the tumor as a 3D “multi-
cellular spheroid” (MCS; Greenspan 1972). Tumor growth
was regulated by a single diffusible chemical (oxygen or glu-
cose), supplied externally. The resulting chemical distribu-
tion was then taken as a predictor of the underlying spheroid
structure, comprising regions of cell proliferation, quies-
cence and necrosis. However, several simplifications gave
these models little applicability: spheroids were assumed to
grow radially and symmetrically, there was a single popula-
tion of cells, and stochastic effects were ignored.

Several modifications and extensions were later brought
to the MCS model: relaxing the assumption of radial
symmetry, distinguishing different cell populations within
the spheroid, and introducing cell movement and pressure
(Araujo and McElwain, 2004). One of the most represen-
tative works (Casciari et al., 1992) considered a spherical
tumor and the effects of certain chemical substances (oxy-
gen, glucose, lactate, and carbon dioxide; bicarbonate, chlo-
ride, and hydrogen ions) on cell growth and metabolism.
The basic principle at play here is that growth can be lim-
ited by chemical diffusion and nutrient consumption. This
model also takes into account changes in cell proliferation
rate within different chemical environments, and cell move-
ment derived from a law of mass conservation.

Continuum models share several features: they do not dis-
tinguish between individual cells, they see tumors as contin-
uous masses, stochastic effects are usually neglected, and
subcellular phenomena are ignored. A good review of con-
tinuum models and techniques to analyze treatments can be
found in (Perthame, 2014).

Discrete Cell Population Models
This category relies on various techniques, such as cellu-
lar automata (CA), lattice Boltzmann methods, agent-based
modeling, extended Potts, and stochastic approaches (Roose

et al., 2007). In all cases, cell state is generally character-
ized by a multidimensional variable w = {x, v, u}, where
x is the position of the cell, v its velocity, and u its biolog-
ical state, which may include its phase in the cell cycle, its
interactions with the local chemical environment, and so on.

One of the first discrete models, proposed by Düchting
and Vogelsaenger (1985), considered a complex cell cycle
model in 3D. Another important study by Qi et al. (1993)
used CA rules to reproduce the Gompertz law of cancer
growth. Kansal et al. (2000) developed a 3D CA model that
did not explicitly include nutrients or mechanical interac-
tions but rather considered proliferation and death rates to
be functions of position. “Cellular Potts” approaches, where
each biological cell is made up of several lattice points, can
also take into account cell membrane tension, cell-cell and
cell-matrix adhesion, and chemotaxis (Turner and Sherratt,
2002). Recent years have seen a rise in “hybrid” models,
which attempt to combine continuum equations for nutrient
concentrations and CA models of cell cycle and migration
(Trucu and Chaplain, 2014).

Model
We propose a new model of avascular tumor in its initial
stages. The underlying space is a 2D tissue where nutrients
are diffusing (Fig. 1). Cells can mutate and become cancer-
ous with a certain probability. They move, proliferate, and
die according to the local amount of nutrients, the free space
for their offspring, and an internal “energy” that increases
with nutrients. Cell positions and cell-cell interactions are
constrained to a discrete 50×50 lattice. Cells are represented
by circles inside square patches, and are initially assigned
a certain position, energy level, and one of three possible
types: “normal” (N), “mutated” (M) or “cancerous” (C). A
patch can be occupied by one cell only. A few scattered
patches coded in red represent blood vessels and can also be
occupied by one cell. Despite the presence of blood vessels,
this remains a stage-1 avascular tumor simulation since we
are not including stage-2 angiogenetic mechanisms. Setup
and update rules are explained below.

Agents and Variables
There are two agents in the model: cells and patches. An M
cell behaves like an N cell with the difference that it can be
affected by its C neighbors. The simulation begins with an
initial number of cells, n, and a fixed number of blood-vessel
patches, b. Each cell i = 1, ..., n is assigned a state vector
wi = (xi, yi, ei, τi, x

′
i, y

′
i) representing its position on the

grid, its energy level in [0, 1], its type in {N, M, C}, and free
space for its offspring, which can be any unoccupied patch
inside a von Neumann domain (4 nearest neighbors) around
N and M cells, or a Moore domain (8 nearest neighbors)
around C cells. Each patch j on the lattice, whether occupied
or not by a cell, is assigned a nutrient level νj and a type that
can be either “tissue” (T) or “blood vessel” (B).



Parameter Symbol Value
Initial number of N cells n 200
Fixed number of B patches b 30
Diffusion weight d 0.8
Unit of nutrient consumption c 0.02
Division energy of N, M cells EN 0.7
Division energy of C cells EC 0.6
Division probability of N, M cells pN 0.7
Division probability of C cells pC 0.8
Mutation probability in N→M→C m 0.05
Influence of N, M neighb. on C→M εN 0.8
Influence of C neighb. on M→C εC 0.4

Table 1: Parameters of the model and their standard values.

Setup
First, the parameters of the model (Table 1) are given initial
or constant values. Next, each patch is assigned a random
nutrient level νj uniformly drawn in [0, 1] and a correspond-
ing green-scale color (Fig. 1). Then, n cells are created and
placed randomly on the patches. All cells are initialized to
type N and assigned a random energy value ei uniformly
drawn in [0, 1]. Finally, b blood-vessel patches are randomly
created, possibly overlapping with cells, and colored in red.

Figure 1: Screenshot of the model after 100 time steps under
the parameter values of Table 1. N, M and C cells are colored
in blue, cyan and magenta respectively. Patches are in green-
scale according to nutrient levels (white for νj = 1, black for
0). Here, the tissue contains a large majority of M cells.

Update Rules
At each time step, three rules are applied: cell update, patch
update and type update (Fig. 2).

Cell update First, each cell i checks if there are nutrients
in the patch j that it occupies, i.e. whether νj > 0. If not,
the cell dies with probability 1− ei, or if it stays alive, does
nothing. If there are nutrients, it consumes a fixed amount
c, up to the available quantity νj , which increases its energy
level accordingly: ei ← ei + min(c, νj), while the nutrient
level of the patch is decreased by the same quantity: νj ←
νj −min(c, νj). Then, if the cell is cancerous (C), it looks
for free space in its 8-patch neighborhood (including blood
vessels) and whether it has enough energy to divide, i.e. ei >
EC . This leads to four different scenarios:

• Free space, enough nutrients: The C cell divides with
probability ei ∗ pC and, if it divides, reduces its energy
by the cost of division: ei ← ei − EC . Then, it splits
this remaining energy into two, keeping one half ei/2 and
giving the other half to its daughter.

• Free space, not enough nutrients: The C cell moves ran-
domly to one of the unoccupied 8 neighboring patches
(including on top of a blood vessel).

• No free space, enough nutrients: The C cell waits.

• No free space, not enough nutrients: The C cell dies with
probability 1− ei, or does nothing.

The same rules apply to noncancerous cell types N and M,
except that they use a 4-patch neighborhood, a division en-
ergy EN , and a division probability ei ∗ pN . Moreover, they
wait instead of moving in the second case.

Patch update If the patch j is a blood vessel, then it re-
plenishes its 8 nearest neighbors k with maximum nutrient
levels: νk ← 1. After that, nutrients diffuse around all
patches with a “diffusion weight” d ∈ [0, 1]. It means that a
portion d of each patch’s nutrient level is equally distributed
over its 8 nearest neighbors: νk ← νk + (d/8) ∗ νj .

Type update (i) If a cell is type N, it can turn into type
M with fixed probability m, then it waits until the next time
step. (ii) If it is type M, it can turn into type C with the same
probability m. Then, if it is still type M, it can turn again
into type C, this time with probability εC ∗nCi /ni, where ni
is the number of neighboring patches (among 8) occupied
by a cell and nCi is the number of type-C neighbors. After
that, it waits. (iii) If a cell is type C, it can revert to type
M with probability εN ∗ nNi /ni, where nNi is the number of
type-N and type-M neighbors counted together. Coefficients
εN and εC are referred to as the “influence of neighbors”.

Rationale
Variables and rules are chosen to reflect a realistic, yet sim-
plified, view of tumor development. Ignoring the detailed
biochemical activity inside each cell, our intention is to fo-
cus on a few key features that affect tumor growth. To rep-
resent the competitive advantage that cancerous cells have
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Figure 2: Flowchart of the initialization and update rules.

over noncancerous cells, we set their division probability
to a larger value (pC > pN ), their corresponding energy
cost to a smaller value (EC < EN ), and the space that
their offspring can potentially occupy to 8 patches instead
of 4. When nutrients are low, C cells can also move to a free
patch, as opposed to just waiting like N and M types.

Our introduction of an abstract M type is meant to provide
an intermediate type between N and C cells. The idea is that
M cells are “carriers of the disease” but still behave like nor-
mal cells. They represent the possibility for cancerous cells
to revert to a certain form of normalcy (observed experimen-
tally), yet without fully returning to the original N type, so
they are still susceptible to their neighbors’ influence. One

could say that mutated cells are similar to the hypothesis of
“dormant” cells in avascular tumors (Udagawa et al., 2002).

We also include the energy as a factor in the actual prob-
abilities of division, ei ∗ pN and ei ∗ pC , to increase the
spread of cells that have more energy, or had enough energy
for a while and were only waiting for neighboring space to
open up. Finally, concerning the influence of neighbors, it is
important to note that if εN = 1 and εC = 0, there would
be only mutated cells at the end of the simulation, whereas
in the opposite case, there would be only cancerous cells.
Therefore these two parameters must be carefully adjusted
to represent a realistic situation. This is one of the topics of
the parametric study that follows.
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Figure 3: Sensitivity analysis of the model. (a) Average density of mutated cells, rM = nM/n, calculated over various numbers
of simulations lasting 700 time steps each. (b) Same average density calculated over 100 simulations lasting various numbers of
time steps. All other parameters are set to the standard values of Table 1. The mean and standard deviation of rM change only
little, at around rM ≈ 74.5% and ∆rM ≈ 2.5%, indicating that the behavior of the model is consistent across experiments.

Results
Measurements
To analyze the dynamics of the model, we measure the over-
all densities and “clustered” densities of normal, mutated
and cancerous cells. An N cell is said to belong to a cluster if
there are at least 5 other N cells in its 8-patch neighborhood
(same for M and C cells).

Sensitivity Analysis
Since the model is stochastic, we must evaluate the number
of simulations S and the number of time steps per simula-
tion T needed to conduct a parameter space exploration that
is sufficiently representative of the generic model behavior.
To carry out this sensitivity analysis, we use the parame-
ters of Table 1 and calculate the overall density of M cells,
rM = nM/n. Setting T = 700 under various numbers
of simulations S = 25, ..., 300 (Fig. 3a), we observe that
the range of rM (mean and variance) is about constant for
S ≥ 100. Conversely, setting S = 100 under various dura-
tions T = 100, ..., 700 (Fig. 3b) shows that rM tends to sta-
bilize for T ≥ 500. Therefore, we conclude that the behav-
ior our model is robust and adopt S = 100 and T = 500 to
keep the computing cost reasonable in the rest of the study,
since the distributions of rM are similar above these values.

Parameter Space Exploration
To explore the dynamical regimes of the model, we select
the following dimensions of parameter space, expected to
have an important impact on the outcome: the influence of
neighbors, εN and εC ; the division probability of noncancer-
ous cells, pN ; and the mutation probability, m. In each case,
a pair of values or a single value is varied, while all other
parameters are kept at the standard settings of Table 1.

Influence of neighbors We systematically vary εN and εC
in the interval [0, 1] by increments of 0.1, for a total of 11×11
experimental points, and plot the mean and standard devia-
tion of the density of M cells and C cells (Fig. 4). The mean
density of N cells consistently remains under 3% and is not
shown. This reveals a phase transition from a majority of C
cells to a majority of M cells along a boundary line roughly
at εN = εC+0.2. Therefore, to push a cancerous tissue back
into a majority of M cells, the mutating influence of N and
M cells has to be significantly greater than that of C cells.

Division probability We choose two points in the high
M-cell density domain of the neighbors’ influence space
(Fig. 4a): A = (εN , εC) = (0.8, 0.1) and B = (0.8, 0.4)
(the standard values), and vary the division probability of N
cells pN in [0, 0.7] by increments of 0.1. We observe that in
point A, pN does not have much effect on the dynamics in
the model, which invariably ends with many more M cells
than C cells, about 85% vs. 15%, while C cells remain iso-
lated (Fig. 5a,c). In point B, by contrast, pulling pN below
0.2 makes the densities of M and C cells converge to com-
parable values, about 50% overall and 15-20% in clusters
(Fig. 5b,d). It means that to stay outside the high cancer-
ous density domain, N and M cells should have a greater
mutating influence than C cells on their neighbors (previous
conclusion), or N and M cells should divide reasonably fast.

Random mutation probability With the standard param-
eters of Table 1, we vary the cancerous neighbors’ influence
εC under three different basic N→M→C mutation probabil-
ities. Under the standard low value m = 0.05, we find again
a transition between high M-cell and high C-cell density do-
mains at εC ≈ 0.6 (Fig. 6a). Under a higher valuem = 0.15,
the transition happens earlier at εC ≈ 0.2 (Fig. 6b). Under
very high mutation rate m = 0.25, the neighbors’ influence
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Figure 4: Exploring the influence of neighbors. Both mu-
tating factors, εN and εC , are varied in [0, 1] while the other
parameters are as in Table 1. (a) Mean density of mutated
cells, rM . (b) Mean density of cancerous cells, rC . (c) Stan-
dard deviation of density of M cells, ∆rM (same as ∆rC ,
not shown here). All graphs exhibit a clear phase transition
along a boundary line roughly at εN = εC + 0.2. Parametric
point B = (εN , εC) = (0.8, 0.4) in the high M-cell density
domain is the standard. The other point,A = (0.8, 0.1), will
be used when varying the division probability pN (Fig. 5).

is ignored by the system: almost all cells are cancerous and
no transition back to a mutated state is possible. (Fig. 6c).

Importance of Rules
We also analyze the importance of certain rules by measur-
ing the effects of “rule knockout” on our model: (i) remov-
ing energy-dependency from division probabilities and set-
ting them to constant rates pN and pC ; (ii) conversely, re-
moving type-specificity from division probabilities and set-
ting them to the energy level ei for all cells; (iii) finally,
removing type-specificity from division space and giving all
cells the same 8-patch Moore neighborhood to spawn off-
spring. In each scenario, the neighbors’ influence parameter
space (εN , εC) ∈ [0, 1]2 is explored again and the transition
area between high M-cell and high C-cell density domains
is estimated and plotted in 2D (Fig. 7). A parametric point is
considered to lie inside the transition area if the variance of
the M-cell density, (∆rM )2, is greater than the mean vari-
ance over all 121 points. We observe that scenarios (i) and
(iii) provoke a significant displacement of the transition area
(Fig. 7b,d), whereas scenario (ii) leaves it almost unchanged
(Fig. 7c). Therefore, we conclude that energy-dependency
of division and offspring space are key mechanisms, while
type-specificity of division is not.

Discussion
We presented a simple agent-based model of tumor growth
able to give rise to two different situations: one where the
majority of cells is cancerous and another one where it is
mutated. We showed the outcomes of varying the influence
of neighbors, division probabilities and mutation probabil-
ity. A constant feature of the system’s behavior is that most
normal cells disappear and only a competition between mu-
tated and cancerous cells remains (Fig. 1). The biological
conclusion is that, in the end, all normal cells become in-
fluenced by the type of their neighbors. We could expect
normal cells to survive longer, however the rules and stan-
dard parameter values of our model give a clear advantage
to cancerous cells across all dimensions (more space for the
offspring, less division energy, higher probability of divid-
ing) and lead to a rapid depletion of normal cells.

Our exploration of neighbors’ influence parameter space
revealed a phase transition area, inside which the standard
deviation of cell densities is clearly positive, i.e. the out-
comes of simulations vary significantly more (Fig. 4). This
implies the existence of two types of parametric points in the
model: ones such as A which are far away from the phase
transition and create a stable system, and ones such as B
which are close to the phase transition and create instabil-
ity. This was illustrated by varying the division probability
in point B and showing that the density of mutated cells
could drop below that of cancerous cells (Fig. 5b,d). An-
other transition between highly mutated and highly cancer-
ous states was found along the mutation probability axis at
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Figure 5: Exploring the division of noncancerous cells. The probability pN is varied while other parameters are as in Table 1,
except the pair (εN , εC) which is set to point A or point B as in Fig. 4a. (a,b) Average overall densities of mutated cells (in
blue) and cancerous cells (in red). (c,d) Average densities of clustered M and C cells. (a,c) Parametric conditions A: pN has
little effect on the outcome, characterized by a significant majority of M cells and isolated C cells. (b,d) Standard parametric
conditions B: low values of pN (highlighted in yellow) lead to comparable numbers of M and C cells.

around 20%, above which only C cells remained (Fig. 6).
By varying these parameters, we examined both internal

and external factors of tumor growth. In future work, the
diffusion weight d will be another important parameter to
explore, in order to check whether growth can be limited by
diffusion as it was the case in earlier models of avascular
tumors. Finally, by analyzing the effect of rule knockout on
the transition curve we were able to assess the significance
or neutrality of certain rules in our model.

Compared to our work, other agent-based models in the
literature generally contain more complex and realistic de-
scriptions of cellular agents and tumor environment (review
in Wang et al., 2015). They strive to take into account mul-
tiple phenotypic features such as molecular signaling, cel-
lular metabolism and other mutation-induced changes (e.g.
Ramis-Conde et al., 2008). By contrast, our goal was to
identify a minimal set of rules enabling behaviors typical
of avascular tumor growth: proliferation in nutrient-rich re-

gions, limitation in size, and phase transitions. This also
allowed us to conduct a parameter space exploration along a
few dimensions and assess the effects of varying key values.

Naturally, our model can be improved in several ways.
For example, in order to minimize the processing time, we
assumed that nutrients diffused at constant speed regardless
of patch occupancy. In reality, proteins, lipids and other par-
ticles undergo anomalous diffusion due to molecular crowd-
ing (Banks and Fradin, 2005). Second, instead of setting the
parameters to empirical values appropriate for the numeri-
cal simulations, one could try to match them to real imaging
datasets and measurements from specific tumors, for exam-
ple via a “fitness” function evaluating the realism (overlap)
between the digital and the physical object.

In sum, we tried to describe the dynamics of the initial
stages of avascular tumor growth using only key principles
and concepts without including chemical or mechanical de-
tails. Future extensions of this model should take into ac-
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Figure 6: Exploring the mutation probabilitym. The cancerous neighbors’ influence εC is varied while other parameters remain
as in Table 1. (a) At the standard, low m value, we obtain the same transition as Fig. 4. (b,c) At higher m values, the transition
shifts in favor of all-cancerous end states.
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Figure 7: Importance of rules. The transition curve in
(εN , εC) space can be more or less shifted in different ver-
sions of the model. (a) Standard rules: curve as in Fig. 4.
(b) No dependence on energy in the division probabilities
→ significant shift. (c) No distinction between types in the
division probabilities→ no significant shift. (d) More neigh-
borhood space for noncancerous cells→ significant shift.

count both aspects as well as the cell cycle. Moreover, they
should address the possibility of fitting the parameters to
clinical data about the delimitation of the proliferating re-
gion, the location of the phase transition, and the limit size
of the avascular tumor.
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