COGNITIVE MORPHODYNAMICS

Dynamical Morphological Models of Constituency in Perception and Syntax

Jean PETITOT
In collaboration with René DOURSAT
Grammatically specified structuring appears to be similar, in certain of its characteristics and functions, to the structuring in other cognitive domains, notably that of visual perception.

Len Talmy
By the same author

- e-mail: jean.petitot@polytechnique.edu
- URL: http://www.crea.polytechnique.fr/JeanPetitot/home.html
Contents

Introduction ... 11
1. Purpose and scope of this book 11
2. Acknowledgements .. 12

Chapter 1. The Cognitive and Morphodynamical Turns 15
1. Introduction .. 15
2. Morphodynamics in cognitive semiolinguistics 16
 2.1. Characteristics of the cognitive turn 16
 2.2. The path-breaking point of view of Morphodynamics ... 20
3. Three main examples of a cognitive approach to language ... 22
 3.1. Ray Jackendoff .. 22
 3.2. Ronald Langacker 25
 3.3. Len Talmy .. 32
4. Previous cognitive perspectives 35
5. The problem of formalization and modeling 38
 5.1. The limits of formalism 38
 5.2. Computationalism: the symbolic/physical dualism 40
 5.3. Mathematization vs. Formalization 43
 5.4. Modeling and schematization 43
 5.5. Morphodynamical models and connectionist models 44
6. Semantic realism and pheno-physics 45
 6.1. Thom’s squish and pure “etic” linguistics 45
 6.2. The phenomenological question 48
 6.3. Pheno-physics and ecological information 51
 6.4. Realist phenomenology 53
7. Morphodynamics and complex systems 54
8. The problem of Universals 55
9. Morphological schemata and proto-linguistics 60

Chapter 2. Things ... 63
1. Introduction .. 63
2. The eidetic kernel of the concept of form 64
 2.1. Verschmelzung and Sonderung 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2. The fit with some current ideas</td>
<td>65</td>
</tr>
<tr>
<td>2.3. The origin of the Verschmelzung concept</td>
<td>66</td>
</tr>
<tr>
<td>2.4. Qualitative discontinuities and segmentation</td>
<td>66</td>
</tr>
<tr>
<td>3. The objective correlates of the phenomenological description</td>
<td>67</td>
</tr>
<tr>
<td>3.1. Topological-geometrical explanation</td>
<td>67</td>
</tr>
<tr>
<td>3.2. Morphodynamical explanation and pheno-physics</td>
<td>68</td>
</tr>
<tr>
<td>3.3. Example: fields of oscillators</td>
<td>69</td>
</tr>
<tr>
<td>4. A first cognitive explanation: Marr and wavelet analysis</td>
<td>70</td>
</tr>
<tr>
<td>5. Global contour extraction</td>
<td>77</td>
</tr>
<tr>
<td>6. Variational segmentation models in low-level vision</td>
<td>77</td>
</tr>
<tr>
<td>6.1. Transforming the signal into a geometric observable</td>
<td>78</td>
</tr>
<tr>
<td>6.2. The Mumford-Shah model</td>
<td>79</td>
</tr>
<tr>
<td>6.3. The link with diffusion equations</td>
<td>81</td>
</tr>
<tr>
<td>7. Scale-space analysis</td>
<td>82</td>
</tr>
<tr>
<td>7.1. Multiscale differential geometry</td>
<td>82</td>
</tr>
<tr>
<td>7.2. Scale-space morphogenesis of images</td>
<td>84</td>
</tr>
<tr>
<td>7.3. Anisotropic diffusion and morphological analysis</td>
<td>87</td>
</tr>
<tr>
<td>7.4. Generalizations</td>
<td>90</td>
</tr>
<tr>
<td>7.5. A few mathematical remarks about contour diffusion</td>
<td>91</td>
</tr>
<tr>
<td>8. Gestaltic applications</td>
<td>92</td>
</tr>
<tr>
<td>8.1. Examples</td>
<td>92</td>
</tr>
<tr>
<td>8.2. Crest, ridges and cut locus</td>
<td>93</td>
</tr>
<tr>
<td>9. Skeletonization</td>
<td>93</td>
</tr>
<tr>
<td>9.1. Harry Blum’s contour diffusion and grassfire models</td>
<td>93</td>
</tr>
<tr>
<td>9.2. Neural implementation of cut loci</td>
<td>95</td>
</tr>
<tr>
<td>9.3. Properties and structure of cut loci</td>
<td>95</td>
</tr>
<tr>
<td>9.4. Leyton’s works</td>
<td>96</td>
</tr>
<tr>
<td>9.5. The neurophysiological relevance of skeletonization</td>
<td>97</td>
</tr>
<tr>
<td>9.6. Skeletonization and mereological constituency</td>
<td>97</td>
</tr>
<tr>
<td>9.7. Multi-scale cut locus</td>
<td>98</td>
</tr>
<tr>
<td>10. The binding problem and oscillator networks</td>
<td>100</td>
</tr>
<tr>
<td>10.1. Cortical fibrations</td>
<td>100</td>
</tr>
<tr>
<td>10.2. The binding problem and the labeling hypothesis</td>
<td>102</td>
</tr>
<tr>
<td>10.3. Networks of oscillators</td>
<td>103</td>
</tr>
<tr>
<td>10.4. Synchronized oscillations and segmentation</td>
<td>107</td>
</tr>
<tr>
<td>10.5. Returning to the morphological nucleus</td>
<td>108</td>
</tr>
<tr>
<td>11. Models for the Clark/Pylshyn debate</td>
<td>109</td>
</tr>
<tr>
<td>11.1. A. Clark: Feature-placing and proto-objects</td>
<td>109</td>
</tr>
<tr>
<td>11.2. Z. Pylshyn: Visual indexes and preconceptual objects</td>
<td>111</td>
</tr>
<tr>
<td>12. From 2D to 3D</td>
<td>113</td>
</tr>
<tr>
<td>12.1. Looking back on David Marr’s perceptual theory</td>
<td>113</td>
</tr>
<tr>
<td>12.2. Marr’s $2^{1/2}$D sketch and Husserl’s adumbrations</td>
<td>114</td>
</tr>
</tbody>
</table>
3.4. The link with spatial cognition .. 174
3.5. The shift of mathematical level: “kernel sentences” 174
4. Connectionism and the theory of dynamical systems 175
 4.1. The CNC main thesis and its precursors 175
 4.2. CN networks and dynamical systems 175
 4.3. Harmony theory .. 180
 4.4. The morphodynamical and PTC agendas 182
5. Fodor and Pylyshyn’s arguments against connectionism 183
 5.1. The general structure of the F-P arguments 183
 5.2. Comments: the problem of a dynamical structuralism 188
 5.3. The main point of the F-P argument 191
 5.4. Towards a geometry of syntax 192
6. Refutation of the F-P argument: the main problem 193
7. Connectionist binding and configurational roles 196
 7.1. Smolensky’s tensorial product 196
 7.2. Dynamical binding ... 198
 7.3. The need for a configurational definition of roles 200
8. The link with Chalmers’ criticism of F-P arguments 202
9. The epistemology of the morphodynamical paradigm 203

Chapter 5. From Morphodynamics to Attractor Syntax 205
1. Introduction ... 205
2. Christopher Zeeman’s initial move 205
3. The general morphodynamical model 209
 3.1. The internal dynamics and the internal states 209
 3.2. The criterion of selection of the actual state 211
 3.3. The external control space 211
 3.4. The field of dynamics ... 212
 3.5. Structural stability ... 212
 3.6. Categorization ... 213
 3.7. Retrieving the morphologies 213
 3.8. Fast/slow dynamics ... 214
 3.9. Lyapunov functions ... 214
 3.10. The reduction to gradient systems 215
 3.11. Contents and complex attractors 215
 3.12. Critical points, jets and Morse theory 215
 3.13. Normal forms and residual singularities 217
 3.14. The local ring of a singularity 218
 3.15. Universal unfoldings and classification theorems 219
4. A few examples: cusp, swallowtail, butterfly 221
 4.1. The cusp ... 221
 4.2. The swallowtail .. 223
 4.3. The butterfly .. 223
5. Applications of Morphodynamics ... 227
 5.1. Dynamical functionalism 227
 5.2. Actantial interactions and verbal nodes 231
 5.3. Actantial paradigms and their temporal syntagmation 233
 5.4. Actantial graphs and their combinatorics 234
 5.5. Summary of the principles 237
6. Import and limits of Thom’s paradigm 239
7. Morphodynamics and Attractor Syntax 240
 7.1. The mathematization of Fillmore’s scenes 240
 7.2. The localist hypothesis (LH) 242
 7.3. The uses of external dynamics 243
8. Force dynamics from Talmy to Brandt 246
 8.1. The key idea ... 246
 8.2. Eve Sweetser’s systematization 249
 8.3. Modal dynamics according to P. Aa. Brandt 249

Chapter 6. Attractor Syntax and Perceptual Constituency 259
 1. “From pixels to predicates”: the seven pillars of cognition 259
 2. Apparent motion and the perception of intentionality 259
 3. From actantial graphs to cognitive archetypes 261
 3.1. Cognitive archetypes 261
 3.2. Reformatting actantial graphs 263
 4. Contour diffusion and singular encoding of relations .. 264
 4.1. The general strategy for solving the main problem 264
 4.2. Contour diffusion, cobordism, and Morse theorem ... 265
 4.3. The example of the Association relation 266
 4.4. Generating potentials 267
 4.5. Processes and potential deformations 269
 4.6. Morse theory ... 269
 4.7. Representing positional information 272
 5. Contour propagation and the cut locus theory 273

Conclusion ... 275

Bibliography .. 279

Index ... 299

List of abbreviations .. 305
Introduction

1. Purpose and scope of this book

The purpose of this book is to present mathematical models of the relations between perception and language. If we had to condense it into one formula, we could say that it tries to show that syntax is to perception what algebraic topology is to differentiable manifolds: spanning several levels of categorization, it identifies in the visual geometry of perceptual scenes abstract invariants that can be reformatted and redescribed as syntactic constituent-structures. Algebraic topology examines the universe of differentiable manifolds and makes explicit rough information about their global structure. This is made possible by categorizing these structures into algebraic structures such as homotopy, homology, and cohomology groups. In this book we will look at the universe of images and try to make explicit rough information concerning their morphological structure. We will show that this is possible if we use specific mathematical theories for categorizing the structures into non-symbolic syntactic scripts or frames, which can then be translated into symbolic syntactic structures.

Our investigation takes place in the context of a naturalist approach to structures conceived in the structuralist sense. Claude Lévi-Strauss famously claimed that “social sciences will be structural sciences or will not be” (“les sciences humaines seront structurales ou ne seront pas”). We would like to add that “social sciences will be natural sciences or will not be”. Of course, this statement can have some plausibility only if we broaden the classical concept of natural sciences to the point where structural phenomena, too, can be construed as natural phenomena.

From the outset, this was one of the main purposes of the research program of Morphodynamics initiated in the 1960’s by René Thom, on the mathematical basis of the theories of singularities and dynamical systems. During the 1970’s and the 1980’s, we applied morphodynamical models to structural phonetics, categorical perception, and visual perception, and, with a few colleagues such as Wolfgang Wildgen and Per Aage Brandt, to structural syntax and structural semiotics.¹

¹ Perhaps the reader will allow us a few bibliographical indications. In what concerns categorization and categorical perception in phonetics, see for instance our texts [261],
At that time, the use of topological and dynamical models in semiolinguistics was completely new and raised a lot of questions since it disrupted the dominant formalist epistemology. The very idea that abstract structures of meaning could be natural structures susceptible of being modeled as a kind of physical and biological phenomena sounded rather provocative. To emphasize the significance of such a “naturalistic” and “morphodynamical” turn, we coined in [279] the neologism “physics of meaning”. In reference to it, René Thom later introduced the term “semiophysics”.

If one’s goal is to “naturalize” semiolinguistics structures, one has to account for them as a special kind of emerging Gestalts. A key consequence of this conversion of paradigm is to abandon the requirement that models of natural syntactic structures be formal (algebraic, combinatorial, etc.). Indeed, in natural sciences, the mathematical structures used for modeling an empirical phenomenal realm have nothing to do with any “ontology” of this realm. Their scope is to provide appropriate computational tools for reconstructing phenomena. It is therefore a deep epistemological mistake to believe that natural languages have necessarily to be modeled using formal languages.

During the 1980’s, the morphodynamical approach to semiolinguistics became more easily and widely accepted due to the tremendous development of connectionist neurocognitive models, which are typical examples of morphodynamical models. It also deeply interacted with the new trends in cognitive grammars—in the sense of Len Talmy, Ron Langacker, Ray Jackendoff, George Lakoff and Terry Regier—focused on the perceptual grounding of linguistic structures.

The core of this work is constituted by the development of this theoretical perspective—structural semiolinguistics, morphodynamics, connectionism, cognitive grammars—during the 1990’s. One of our main goals is to offer a rigorous and operational mathematical basis to the intuitive “image-schemata” of cognitive grammars.

2. Acknowledgements

This book advances and expands upon our previous works Morphogenesis of Meaning and Physics of Meaning, which owed much to René Thom’s seminal ideas. It relied highly on Per Aage Brandt’s support and was devised during two stays at the Center for Semiotic Research (Aarhus University), where he was the director at that time. It is for me a great personal pleasure to thank Per Aage who made so many fundamental contributions, whether theoretical

\[269\], [293]. In what concerns a topological and dynamical approach to structural syntax and semiolinguistics, we began to work on the subject since [258]. We connected this morphodynamical setting with case grammars, relational grammars, and cognitive grammars in [260], [261], [262], [265], [266], [267], [268]. For a critical presentation see Ouellet [250].

\[2\] See our papers [276] and [275]. See also Visetti [395] and [396].
or institutional, to dynamical cognitive semiotics. I am also grateful to all the friends of the CSR. I also want to thank the other prominent specialist of Thom’s linguistics, Wolfgang Wildgen, who worked out so many interesting applications of morphodynamical models.

At the outset, this work enjoyed many discussions with Daniel Andler, Elie Bienenstock, Yves Marie Visetti, and also Hugh Bellemare and René Doursat in the context of the DSNC (Dynamical Systems, Connectionism and Cognition) project of the CREA (Centre de Recherche en Épistémologie Appliquée at École Polytechnique). It also greatly benefited from the two Royaumont meetings about Compositionality in Cognition and Neural Networks organized by Daniel Andler, Elie Bienenstock and Bernard Laks (May 1991 and June 1992), and two other meetings, Motivation in Language organized by Umberto Eco and Patrizia Violi at the International Center for Semiotic and Cognitive Studies at the University of San Marino (December 1990), and Le Continu en Sémantique linguistique organized by Bernard Victorri and Catherine Fuchs at the University of Caen (June 1992). My joint researches with my colleague and friend Jean-Pierre Desclés were also essential.

All this technical material was elaborated in an already rather rich context. First, I had the privilege of discussing with eminent linguists such as Hansjakob Seiler and Bernard Pottier who supported Thom’s perspective. Then, there was a dense network of colleagues interested in the new trends in dynamical structuralism: Jean-Claude Coquet, Franson Manjali, Pierre Ouellet, Bernard Victorri, Peter Gärdenfors, David Piotrowski, and many others. In visual perception, there was also a network of mathematicians interested in the geometry of vision: David Mumford, Jean-Michel Morel, Bernard Teissier, Giuseppe Longo, and also the psychologist Jan Koenderink (with his group at the University of Utrecht) who used singularity theory in vision. Finally, I was also closely associated with specialists of Gestalt theory and phenomenology (in Husserl’s and Merleau-Ponty’s sense) such as Barry Smith and Kevin Mulligan, Jean-Michel Roy and Bernard Pachoud, Roberto Poli and Liliana Albertazzi.

In this supporting environment, I was very fortunate to have many opportunities to discuss with Len Talmy, Ron Langacker, Paul Smolensky, and George Lakoff. Particular thanks are due to Tim van Gelder and Bob Port for their idea of organizing the important conference on Mind as Motion.

Another meeting that played an important role in my work was the Conference Topology and Dynamics in Cognition and Perception, which I organized on 11-13 December 1995 at the International Center for Semiotic and Cognitive Studies. Many participants belonged to these scientific networks: L. Albertazzi (Univ. of Trento), P. Bozzi (Univ. of Trieste), P. A. Brandt (Aarhus Univ.),

3 For the actuality of these works, see my recent book (2008) Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles [304], and also [205], [288], [302].
R. Casati (CREA), R. Doursat (CREA), M. Gnerre (Univ. of Cassino), S. Gozzano (Univ. of Roma), R. Langacker (Univ. of California, San Diego), M. Leyton (Rutgers Univ.), R. Poli (Univ. of Trento), T. Regier (Univ. of Chicago), B. Smith (SUNY, Buffalo), L. Talmy (SUNY, Buffalo).

Finally, I extend special thanks to two collaborators: René Doursat who played a fundamental role in the results presented in Chapter 3, which he co-authored for a large part, and in establishing the final version of the manuscript, and Franson Manjali, the translator of *Morphogenesis of Meaning*, who translated Chapter 1.

Jean Petitot