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Introduction

» Synthetic biology’s ambitions
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SynBioTIC

» The SynBioTIC project envisions a top-down tower of
languages from global shape descriptions to local component
rules, expressable by bacteria
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Gro Programming Language

» The Gro language (E. Klavins) includes pre-programmed
capabilities such as bacterial physics, cell behaviors, and
diffusive chemical signals

» Capable of simulating experiments involving the growth and
self-organization of E. Coli colonies on agar dishes

Cells: 101, Max: 1000, t = 144.80 min

p.type = EMITER & get_signal (A) > .5 :

{
emit_signal (B, 6) ;

}

p.type = DEPLETER & get_signal(B) > 6.5 :

{
absorb_signal (B,17) ;

}
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» Our model of E. coli includes a set of sensors/effectors
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» Bacterial dynamics is encapsulated in a finite state machine:
v Nodes (states) are the types into which bacteria differentiate
= Each state corresponds to a set of actions executed by the bacteria

v Edges (transitions) describe the conditions of differentiation
= Conditions pertain to protein concentrations and time
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Genomic Representation — SBGP

» The Synthetic Biology Genetic Programming (SBGP)
declarative language describes bacterial dynamics and
environmental chemistry

"signals" : | "behavior™ : {
["a™, 3, 0.4], PINIT" : [{"EmitSignal™ : ["A", "50"]}],
["B", 5, 0.011, "INTER" : [{"Ungrowth" : []}],
["c", &, 0.5], "CENTERAL" : [{"Growth"™ : []}],
["D", &, 0.5], "EMIT" : [{"EmitSignal™ : ["A", "35"]}],
["E", &, 0.5], "DEAD" : [{"EmitSignal"™ : ["B", "750"]},
["F", &, 0.5], {"Die™ : []1}1]
[("g", 6, 0.5] T
].l‘
"transition" : |
tlreact iOI‘LE‘." . [ ["NA",- "NA", "Cl", "NA",- "NA" ] .
[ [‘Fl‘_h‘"r 1IB"]’ I'-"cﬂ]’ 05], I'-"NA"’ TINA"’ TINA"’ "NA", "CZ"],
[ ["D"r ilEtl]! ["F"], 05] ["NA",- tlc3tl! "NA", tlcqtlr "NA"],-
] . [PINA?I . "CS" ' ?INAPI ' ?INAPI . PIC2 " ] .
I'-"NA"’ TINA"’ TINA"’ "NA", 1INA1I]
"type" : | 1s
"INIT",
"INTER", "cond_transition" {
"CENTRAL", "Cc1" : {"AfterCond" : ["0.01"]},
"EMIT", 1lc21l . {"O,RTI . [
"DEAD" {"LessThreshold" : ["A"™, "5"]},
1, {"GreaterThreshold"” : ["B", "0.2"]}
11}
"parameters" : { "C3" : {"GreaterThreshold" : ["B", "0.2"]},
"p1" : 250, "Cc4m" : {"GreaterThreshold" : ["&A"™, "25"]},
npa2" . 35 "C5" : {"LessThreshold" : ["A", "25"]},

be }
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> In a first step we experimented with fundamental mechanisms
that could generate collective behaviors typical of a cell
assembly, i.e. homeostasis, shape formation, etc.

» The goal was to find the simplest genome for a given
mechanism

» Examples with homeostatic growth and self-architecture
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Example: Homeostatic Growth

> A leader cell (green cell) emits a diffusive morphogen
> Followers cells (yellow) divide while above a certain threshold
» Death occurs if followers detect morphogens below the

threshold

Differentiation Graph
3 types, 1 action/type
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Example: Shape Formation

» Cells emit a slowly diffusive morphogen

> Cells die if morphogen concentration falls below a certain threshold

» Dying cells also send a faster diffusive signal that reacts with the morphogen
and degrades it.

» This rate difference creates a mechanism of border reinforcement

» Mechanical forces induced by contacts between bacteria support branching
structures

Differentiation Graph
5 types, 1-2 actions/type
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» Rational design faces its limits with an infinite
number of possible gene regulation and molecular
signaling networks.

» Virtual Evolution is difficult to harness when
exploring huge genotype spaces toward specific
goals.

» Staged Evolutionary Engineering of
Development (SEED) proposes to use human
mediation as a tool for exploration and as a means of

refining evolutionary goals between stages.
6%')nbiotic



Evolutionary Scheme

» The idea behind SEED is to inject at each stage hand-designed
mechanisms in the population,

» For example, branching mechanism is injected in randomly generated
population

» Human mediation leads to a new kind of branching structure after
spheroidal growth
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» Combine homeostatic and branching mechanisms
to build complex stable structures

» Combine interactive and automatic selection in the
SEED process

» Evaluate SEED vs classical evolution
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