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This workshop aims to promote and expand Morphogenetic Engineering, a field of research exploring the
artificial design and implementation of autonomous systems capable of developing complex,
heterogeneous morphologies. Particular emphasis is set on the programmability and computing abilities of
self-organization, properties that are often underappreciated in complex systems science—while,
conversely, the benefits of self-organization are often underappreciated in engineering methodologies.
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Overview

Traditional engineered products are generally made of a number of unique, heterogeneous components assembled in
complicated but precise ways, and are intended to work deterministically following specifications given by their
designers. By contrast, self-organization in natural complex systems (physical, biological, ecological, social) often
emerges from the repetition of agents obeying identical rules under stochastic dynamics. These systems produce
relatively regular patterns (spots, stripes, waves, trails, clusters, hubs, etc.) that can be characterized by a small
number of statistical variables. They are random and/or shaped by boundary conditions, but do not exhibit an intrinsic
architecture like engineered products do.

Two salient exceptions, however, strikingly demonstrate the possibility of combining pure self-organization and
elaborate architectures: biological development (the self-assembly of myriads of cells into the body plans and
appendages of organisms) and insect constructions (the stigmergic collaboration of colonies of social insects toward
large and complicated nests). These structures are composed of segments and parts arranged in very specific ways
that resemble the products of human inventiveness. Yet, they entirely self-assemble in a decentralized fashion, under
the control of genetic or behavioral rules stored in every agent.

How do these collectives (cells or insects) achieve such impressive morphogenetic tasks so reliably? Can we export
their precise self-formation capabilities to engineered systems? What are principles and best practices for the design
and engineering of such morphogenetic systems?
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Deadline for abstract submission: July 4, 2017
Notification of acceptance: July 14, 2017
Camera-ready abstract due: July 31, 2017
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based on their relevance to the workshop, clarity, and overall quality. Whether submitting or simply attending, please
register via the online ECAL 2017 conference registration system.
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Design techniques for morphogenetic engineering
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Towards an Artificial Polytrophic Ecosystem
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Artificial Ecosystems
Ecosystems are modeled in disciplines ranging from eco-
logy to art whether to produce accurate prediction tools or
simply aesthetically pleasing environments. The computer
science literature contains a number of works focusing either
on plants (e.g. Bornhofen (2008)) or animals (e.g. Miconi
(2008)).

This work lays the basis for a ”Polytrophic” ecosystem
that would exhibit a simplified food chain. The rationale
behind this goal is to study the large amount of interactions
between plants and animals observed in the natural kingdom
(pollination, zoochory, etc.).

L-Systems proved to be powerful tools for encoding plant
morphologies, yet their application to mobile creatures was
more difficult, e.g. Komosinski (2003). In addition, black-
box models such as GRNs, while flexible enough, were put
aside due to their relatively high computational cost as well
as their inability to produce intelligible genomic data. The
directed graphs described by Sims (1994) (hereafter called
’graphtals’) have been successfully used to generate com-
plex yet functional body plans for animated creatures. How-
ever, despite their potential to be applied to plants, they have,
to the best of our knowledge, not been so far. Neverthe-
less their expressive prowess and structural simplicity were
deemed enough to model both the animal and vegetal king-
doms while allowing for insights into the mechanisms of
evolution. This paper shows how graphtals can be used to
generate plants which are growing from a seed in a physi-
cally simulated 3D world.

Model
Environment
In this work, plants are growing in a 3D environment com-
posed of a flat ground, a light source and a simplified water
cycle. Sun is designed as an infinitely far directional light
whose position is a function of both night/day and seasonal
cycles. These constraints should induce more robust behav-
ior in evolved individuals as they have to find strategies to
cope with unproductive night-time and low-angle light (dur-
ing “winter”) which would prevent most leaves from direct

exposure.
The water cycle was modeled in two steps: First, rain

patterns were generated pseudo-randomly (but consistently
across evaluations) both in terms of occurrence and inten-
sity so as to appear unforeseeable. Second, rain falls on the
ground but is only accessible to plants once it is absorbed,
at a slow rate, by voxels below the surface whose satura-
tion level is rather low (2L/m3). These levels increase lin-
early until the deepest layer, which behaves as a groundwa-
ter table. Moreover a portion of water is removed at each
tick from the top (resp. bottom) layer to simulate evapora-
tion (resp. water displacement). This aims at inducing two
classes of behaviors observed in natural plants: large near-
ground root networks to capture precipitations and digging
tendencies to exploit deep water reserves.

Plant growth model
This work expands upon the original model by allowing each
node to specify its shape (sphere, box, cylinder), skill (root,
leaf), initial dimensions and anisotropic growth factor. Be-
havior is controlled by two tuples A,S ∈ [0, 1]E with E
the number of elements (water and glucose in this experi-
ment). A models an organ balance between production and
consumption: a value of 0 (resp. 1) indicates a source (resp.
sink). S enables quiescent behavior by imposing a thresh-
old below which no growth or budding actions can be per-
formed.

Evolving plants do not require the bilateral symmetry
present in the original animat experiments by Sims, links in
this model instead use an ’effect’ to generate multiple child
organs at once (e.g. Radial(V, N ) creates N − 1 copies of
the target organ uniformly rotated around a vector V)

Metabolism
All individuals start from a seed, root and sprout. To main-
tain comparability between evolutions the seed is set to a
spherical 2cm-radius organ saturated in both nutrients.

To survive, plants must draw water from the ground (using
organs with the appropriate skill) and use a portion of it to
generate a certain quantity of glucose in its leaves given by
Eq. 1.



(a) Multiple sprouts (b) Grass-like (c) Upward growth

Figure 1: Various plant morphologies obtained by evolution1

k ∗
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Resources distribution is centralized to prevent unneces-
sary complexity, each organ receiving a portion relative to
its size and its genomic parameter A. Organs consume part
of their reserves as a function of their skill (e.g. 150% for
photosynthesis and 75% for the roots). A negative balance in
either nutrient or disconnection from the parent triggers the
organ’s death which deletes the individual and all its chil-
dren from the simulation. A seed behaves like an organ but
its death does not affect its descendants.

Experiments
In a first experiment, individuals were evaluated in an empty
environment with a sunset every 100 ticks and 300-day
years. The sun started at its apex position (3π/8) and went
as low as π/8 during winter. Rain patterns provided an av-
erage precipitation of 787mm per year, two thirds of which
occurred during the first half of the year.

The fitness, computed as in Eq. 2, rewarded glucose pro-
duction in such a way that individuals were incited to stay
alive the maximal duration of 2 years (N=60,000 ticks) and
develop multiple leaves (see Figures 1a and 1b).

Fitness =
2

N(N − 1)
∗
∑

i ∗Gi (2)

In the second experiment, 100 hand-made grass blades
were placed around the seed to simulate the competition for
light observed in nature and stimulate vertical growth. This
induced a size increase of the evolved plants in order to rise
above the grass blades (see Figure 1c).

Conclusion and Future Work
One the most crucial natural resources not included in the
present work is the effect of heat on the plants. While its
impact could be manifold, e.g. on the transpiration rate or

the speed of chemical reactions, it could easily be coded by
genomes through a bell curve with a ’preferred’ temperature
and a tolerance range.

From a broader perspective, as our end goal is the emer-
gence of complex ecosystems, this work provided a proof-
of-concept for the use of graphtals in plant modeling as well
as a few promising initial individuals to seed such a world.

Indeed, populating large non-uniform environments
would allow for competition and speciation processes to oc-
cur spontaneously. Further evolution of the topological and
meteorological parameters through a classical genetic algo-
rithm would allow for comparison between the complexity
of the generated plants and that of their world.

Finally, including motorized connections and heterotroph
capabilities in the genomes while providing central con-
troller, such as an ANN, would see the emergence of animals
and close the food chain.
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Vascular Morphogenesis Controller: Guiding Morphology by Competition for
Resource Distribution

Daniel Nicolas Hofstadler1, Payam Zahadat, Thomas Schmickl

University of Graz, Austria
1daniel.hofstadler@uni-graz.at

Biological morphogenesis is the manifestation of interac-
tions between a genome, its products and the environment.
While animals possess genetically defined body plans and
cease to grow in adulthood, plants have evolved to grow
indefinitely into potentially massive, enduring structures by
means of a modular organization.

Approaches to developing morphologies of artificial
structures (Doursat et al., 2013) include works inspired by
biological processes such as embryogenesis (Wolpert, 1996;
Cussat-Blanc and Pollack, 2014), as well as abstract genera-
tive encodings such as variants of L-systems (Lindenmayer,
1975; Hornby and Pollack, 2001; Sims, 1994).

We present a distributed algorithm, the Vascular Morpho-
genesis Controller (VMC, originally introduced in Zahadat
et al. (2017b)), that draws its inspiration from the competi-
tive dynamics of the plant vascular system, mediated by hor-
mone signalling (Lucas et al., 2013).

A plant’s architecture is the outcome of competition be-
tween individual branches, where better situated, more suc-
cessful branches receive a greater share of common re-
sources (Sachs, 2004; Leyser, 2011). The information
needed to direct these resources to the most promising
growth regions is relayed by the plant hormone auxin, which
is primarily produced exactly there: in actively growing
plant apices and unfolding leaves. It is transported root-
ward, and, crucially: where it flows more, more vascular
tissue forms. Finally, a branch with more or larger vessels
and better connectivity to the main stem will draw a greater
share of the common nutrients available to the whole system.
Depending on the scarcity of the environment (and genetic
predispositions), the level of this inter-branch competition is
either enhanced or relaxed (Sachs, 2006). These feedback
mechanisms lead to a continuously globally adaptive mor-
phology of the whole plant.

Algorithm: Vascular Morphogenesis
Controller

We abstract these biological processes into a distributed con-
troller for modular artificial growing structures.

The controller units of the modules are connected to their

Figure 1: An example VMC system.

neighboring units forming a VMC-system. The relational
structure of a VMC-system can be represented as an acyclic,
directed graph, where each node corresponds to a controller
unit and the edges between the nodes indicate the direction
of common resource transportation (see Fig. 1).

Each node has at least one parent-node, else it is a root of
a VMC-system. If two branches fuse, a node has two parent-
nodes. Nodes can in principle have an arbitrary number of
child-nodes, but at least two need to be allowed to retain
the ability to branch. Each node can have arbitrary sensors
attached.

By analogy with auxin, our leaf-nodes of the graph pro-
duce “successin” (S), depending on sensor values and fixed
parameters (from the genome of the VMC-system). The
value of S is then sent on to the parent of the leaf, where
it will again be modified and passed down towards the
root. On the way, S modulates the weights of the edges—
corresponding to vessel thickness, V— through which it
travels. A limited, common resource R is distributed re-
cursively from the root to all its children up to the leaves in
proportion to the relative sizes of V among sibling-nodes.
The amount of R in a leaf indicates its ability to grow.

At every leaf i, a quantity of successin Si is produced
as Si := ωconst +

∑
s∈sensors ωs · Is, where Is is the input

from sensor s. The ωconst and ωs are constant and sensor-
dependent production rates.

Successin flows towards the root. At a junc-



tion (internal node) i, the value of S is updated
as Si := g(ρconst +

∑
s∈sensors ρs · Is) ·

∑
b∈branches Sb, where

g(x) is a sigmoid function. The ρconst and ρs are constant
and sensor-dependent transfer rates of successin.

For every edge connecting a node to its
child i, Vi is adjusted at every time step
based on the successin flowing through it.

Vi :=

{
min(Si, (1− γ) · Vi + β + α · (Si − Vi)) if Si ≥ Vi

max(Si, (1− γ) · Vi) if Si < Vi

where γ, β, and α, are respectively the decay, addition, and
adjustment rates.

The limited common resourceR initiates at the root node.
The quantity Ri of a child i of node m is computed as:
Ri := Rm · Vi/

∑
b∈children Vb

Figure 2: An identical parameter set allows different struc-
tures to grow in different light environments. The violet to
black gradient indicates the amount of resource R at a mod-
ule. [reprinted from Zahadat et al. (2017b)]

Implementations and Implications
Fig. 2 shows snapshots of a physics-based simulator of mod-
ular robots (detailed in Zahadat et al. (2017b)), where the
same VMC-genome (parameter set) is grown in different en-
vironments. The simulated modules contain sensors for light
and gravity which allow the structure to optimize its light-
harvest while balancing against gravity. Clearly, the VMC-
system adapts to its environment: It thrives in full light,
grows out of the shade or, if completely shaded, invests into
growing upwards (to increase the odds to escape shade and
avoid obstacles, as it will grow along the obstacle’s surface if
the way up is blocked). The particular VMC shown in Fig. 2
was manually parametrized, but the genomes can just as well
be evolved to exhibit desired properties and/or to thrive in
adversary environment, depending on the types of sensors
and objectives employed (Zahadat et al., 2017b). It has also
been shown that the VMC algorithm can solve mazes much
like slime molds (Nakagaki, 2001; Zahadat et al., 2017a).

The major power of VMC lies not in its capacity to mimic
(the very much optimized) natural plant behaviour to grow
ideal structures in the face of environmental constraints and
hardships, but to extract its self-organizational core to apply
it to a variety of problems not encountered by natural plants
and doing so in a decentralized, scalable way.
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A Model and Pipeline for Interactive Simulation of Morphological Biology
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Abstract

In this work, we present our current efforts towards a com-
prehensive, human-in-the-loop modelling framework for the
study of complex morphogenetic systems. The state of our
physical cell model providing localized surface-based inter-
actions and built on top of a real-time capable particle-based
physics engine is summarized. We further outline our long-
term concept towards an integrated pipeline for automated
model generation and refinement based on empirical data
and human-in-the-loop simulations. With it, we strive to
seamlessly integrate with a biologist’s workflow, for exam-
ple through appropriate import and annotation tools for em-
pirically obtained data, and intuitive and accessible tools and
languages for behaviour description. To integrate the differ-
ent software components into a real-time interactive system,
we use UnrealEngine4, a state-of-the-art game engine.

Introduction
We aim to provide an interactive, immersive, and real-time
framework for the modelling and simulation of morpho-
genetic systems, see Figure 1. At its core, our concept en-
visions a cell-centred simulation approach, where biologi-
cal cells are represented as autonomous spatial agents with
explicit physical shape and local, surface-based interactions
embedded in a fluid dynamic simulation for substance dif-
fusion. This core model needs to be augmented with an ac-
cessible user interface for modelling of cellular behaviour.
By including the “human in the loop”, modelling, retrac-
ing and exploring complex system behaviours is facilitated
(Narayanan et al., 2011). Also, the study of and interaction
with of complex morphologies benefit from spatial visuali-
sation and freedom of exploration made possible by means
of immersive virtual reality interfaces.

In order to closely align the resulting model with biolog-
ically valid empirical data and also in order to inform the
biologists’ work, our targeted framework needs to go be-
yond offering an extensible cell model and interactive sim-
ulation mechanics. To make use of the vast amount of em-
pirical data generated by biologists, import and processing
pipelines must be provided that seamlessly tie into the bi-
ologists’ established toolchains. The user must be able to
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Figure 1: The basic components of our proposed concept.
An interactive, particle-based physical cell model (bottom)
can be programmed using accessible tools such as visual
scripting languages (middle) and integrated directly with
empirically obtained data (top). For the latter, a comprehen-
sive import and annotation pipeline is provided. Based on
this foundation, algorithms to generate or optimise models
based on empirical data and simulation performance allow
for automated model refinement.

quickly and comprehensively define and test models, and to
optimize their parameters. In addition, the integration of au-
tomated model-finding routines that mine the biological data
are highly desirable.

In this extended abstract, we support our vision with out-
lines of system components that we have already imple-
mented. In particular, we briefly present two implementa-
tions that should be merged in the near future: One that helps
to utilise biological data and another one that focusses on the
refinement of a real-time capable virtual cell model.



Related Work
Merks et al. (2005) point to the importance of cell-centred
models and the similarities between current models of bi-
ological cells and the concept of autonomous agents. Re-
cently, the importance of physical interactions in the sim-
ulation of complex behaviour of cellular systems has been
stressed (Drasdo et al., 2007; Hamant et al., 2008; Uyttewaal
et al., 2010). One approach is to model spherical, elastic
bodies in a system of constraints (e.g. the Johnson-Kendall-
Roberts model (Chu et al., 2005)). CellSys (Hoehme et al.,
2010) and CompuCell3D (Swat et al., 2012) offer examples
for an integrated design and visualisation approach. Several
physical cell models have been realised and evaluated suc-
cessfully (Delile et al., 2017; Hoehme et al., 2010; Disset
et al., 2015; Swat et al., 2012), however without real-time
interaction capabilities.

With regards to our long-term vision of integrated devel-
opmental frameworks with automated model building, re-
cent progress has been made. For example, Faure et al.
(2016) realized a pipeline for the reconstruction and visual
analysis of cell lineages from developmental time series of
embryonic cells in the form of image data.

Methodology
To create a rich real-time interactive experience, we draw
from the available technology of state-of-the-art game en-
gines. These systems provide efficient, high-quality visuali-
sations, facilities for the design of accessible user interfaces,
compatibility with current virtual reality interfaces, and a
modular, extensible software design. Also, accessible visual
scripting environments are often provided. We currently use
UnrealEngine4 (EPIC Inc., 2017). We exploit the capabili-
ties of current hardware through massive parallelization, of-
floading work to the GPU.

To create an interactive, cell-centred and physical simula-
tion model, fast, efficient, and dynamic soft body simulation
is required. Our current cell model is built on top of FleX,
a real-time physics simulation that can provide plausible re-
sults at interactive speeds (Bender et al., 2013). Individual
cells are modelled by a set of particles combined with inter-
nal constraints, allowing the simulation of deformable exte-
riors and localized interactions, such as adhesion. Fluid dy-
namics and diffusion simulation can be used to retrace the
emergence of morphogen gradients, a fundamental mecha-
nism in the appearance of distinct morphological features.
The features of the model can be presented to the user at ar-
bitrary degrees of complexity, e.g. through visual scripting.

First results towards an integrated developmental biol-
ogy pipeline that integrates empirical data and automated
parameter optimization have been made (Däschinger et al.,
2017b). The system allows to parse volumetric data from
CT scans and annotate it, defining time series data of the
developmental stages of certain regions of the tissue. Such
regions can then be populated with (various types of) cells,

and their parametrization will be continuously optimized by
the means of an genetic algorithm. This process is an exam-
ple of Guided Self-Organisation (Däschinger et al., 2017a).

Future Work
The presented cell model and the steps towards a pipeline
for automated parameter refinement and model building are
at early stages. The cell model requires a quantitative analy-
sis with respect to the accuracy of the model. Consequently,
it is desirable to define clear implementation and usage con-
straints on NVidias FleX physics solver that guarantee for
consistent and sufficiently accurate simulation results. The
current fluid dynamics and diffusion model is overly sim-
plistic and, though highly parallelized, still lacks in accu-
racy and scalability. Integrating different models for cellular
behaviour on top of the physical model, such as Gene Reg-
ulatory Networks, should be investigated. The pipeline was
currently limited both in the kind of data used as an input as
well as the algorithms implemented for the parameter refine-
ment. Also, the task of integrating the two projects remains.
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Abstract
Complex self-architecturing systems are difficult to pro-
gram, i.e. by top-down engineering. Kowaliw and Banzhaf
(Kowaliw and Banzhaf, 2012) argue that the bottom-up
methodology of artificial development is an appropriate
means of approaching complex systems engineering. How-
ever, achieving some sort of self-architecturing proper-
ties, e.g. morphogenesis or self-replication, is not trivial.
One way of “programming” such developmental systems is
through artificial evolution, i.e. a combined evolutionary and
developmental approach (EvoDevo). Searching for a solu-
tion for an artificial EvoDevo system that targets levels of
complexity found in nature can be intractable. Therefore, an
appropriate mapping that scales well and at the same time
allows solutions to evolve incrementally, starting with a so-
lution encoded into a small genome gradually complexified
by adding new degrees of freedom, is desired.

In this work a cellular system is used as testbed for mor-
phogenetic engineering. A traditional CA table-based en-
coding is replaced by a Compositional Pattern Producing
Network (CPPN) mapping, a developmental encoding often
used in systems without local interactions (Stanley, 2007).
In our work a CPPN is used as developmental encoding
based on local interactions, i.e. a true morphogenetic cellular
system. The cellular automata CPPNs are evolved through

(a) Genotype (b) Phenotype

Figure 1: NEAT genotype and phenotype examples. The
phenotype only shows the topology that the genotype en-
codes (weights and activation functions are omitted).

a NeuroEvolution of Augmenting Topologies (NEAT) algo-
rithm, a method that evolves increasingly complex networks
(Stanley and Miikkulainen, 2002).

A NEAT genome consists of genes that encode nodes
and connections between them. Figure 1 shows an example
genotype-to-phenotype mapping. NEAT starts with an ini-
tial population of very simple networks, typically with just
the input and output nodes and connections between them.
Over generations, more nodes and vertices are added or dis-
abled, activation functions are changed, and weights are ad-
justed. The process of gradually expanding the genome is
called complexification, and intends to reflect how life on
earth is believed to have started with simple organisms and
gradually evolved into more complex creatures (Darnell and
Doolittle, 1986; Pross, 2005).

The approach described in this work is termed CA-NEAT.
All cells in the systems are uniform, i.e. they share the same
genome network. Two benchmark problems are investi-
gated: 2D morphogenesis and replication of structures of
increasing complexity.

Figure 2 shows the results for the evolution of the “Tri-
color” flag pattern morphogenesis in 100 independent runs.
In 100 generations, 93 of the independent runs achieved
a perfect solution. The initial populations contained 200
genomes which consisted of an input layer with one node

Figure 2: Tricolor flag pattern morphogenesis, first 100 gen-
erations.



Figure 3: Example of morphogenesis.

Figure 4: Example of replication.

per CA neighbor (von Neumann 5 neighbors) and one out-
put layer with one node per possible cell state.

An example of evolved network for the “Tricolor” mor-
phogenesis problem is shown in Figure 5. The two hidden
nodes are not connected to output nodes and are thus “vesti-
gial”. Dashed lines represent disabled connections. An ex-
ample of morphogenesis process is depicted in Figure 3 and
an example of replication is represented in Figure 4. Mor-
phologies and structures of increasing complexity have also
been investigated (Nichele et al., 2017), but are not included
in this abstract due to space constrains.

Results show that CA-NEAT is an appropriate means of
approaching cellular systems engineering. We argue that
CA-NEAT could provide a valuable mapping for morpho-
genetic systems, beyond cellular automata systems, where

Figure 5: Network for “Tricolor” morphogenesis that reaches a point attractor equal to the target pattern. Dashed lines represent
disabled connections. Green and red represent positive and negative values. The thickness represents the value intensity. Nodes
can have different activation functions (sigmoid, gaussian, cube, hat, rectified linear unit, etc.) (Nichele et al., 2017).

development through local interactions is desired. In natu-
ral processes of development such as embryogenesis, local
interactions and developmental time are key requirements.
Biological morphogenetic systems are the result of a con-
tinuous computation, i.e. development, where intermediate
phenotypes emerge along the developmental path, and these
intermediate phenotypes influence the decoding and regula-
tion of the genotype for the next phenotypic stage.

References
Darnell, J. and Doolittle, W. (1986). Speculations on the early

course of evolution. Proceedings of the National Academy of
Sciences, 83(5):1271–1275.

Kowaliw, T. and Banzhaf, W. (2012). Mechanisms for complex
systems engineering through artificial development. In Mor-
phogenetic Engineering, pages 331–351. Springer.

Nichele, S., Ose, M., Risi, S., and Tufte, G. (IN PRESS, 2017).
Ca-neat: Evolved computational pattern producing networks
for cellular automata morphogenesis and replication. IEEE
Transactions on Cognitive and Developmental Systems.

Pross, A. (2005). On the emergence of biological complexity: life
as a kinetic state of matter. Origins of Life and Evolution of
Biospheres, 35(2):151–166.

Stanley, K. O. (2007). Compositional pattern producing networks:
A novel abstraction of development. Genetic programming
and evolvable machines, 8(2):131–162.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evolutionary compu-
tation, 10(2):99–127.



Criticality of Gene Regulatory Networks and
Robustness of Morphogenesis Against Perturbations

Hyobin Kim and Hiroki Sayama

Department of Systems Science and Industrial Engineering
Center for Collective Dynamics of Complex Systems

Binghamton University, State University of New York, Binghamton, NY, USA
hkim240@binghamton.edu

Abstract

We introduce perturbations to the gene regulatory networks
(GRNs) of our model of morphogenetic systems and inves-
tigate if the role of “criticality” (dynamical behavior near
phase transition between order and chaos) of GRNs facili-
tating the formation of nontrivial morphologies can be main-
tained. Our model starts with one seed cell and grows into
a cell aggregate, in which all the cells have identical GRNs.
In the present study, we perturbed the GRN of the seed cell
by adding, deleting or switching one regulatory link. We
focused on analyzing morphologies obtained from morpho-
genetic systems with evolvable GRNs that are robust against
the perturbations because they are evolutionarily meaningful.
We found that nontrivial spatial patterns were still generated
most frequently when GRNs were put in a critical state by
adding perturbations.

We have recently proposed morphogenetic systems using
NK random Boolean networks (RBNs) as gene regulatory
networks (GRNs) and spring-mass-damper kinetics for cel-
lular movements. We revealed that the criticality of GRNs
facilitated the formation of nontrivial morphologies (Kim
et al., 2017), where the criticality of GRNs means dynamical
behavior near phase transition between order and chaos. For
perturbations flipping the states of one or more nodes in the
GRN, if the Hamming distances of the original states and the
perturbed states converge, the dynamics are ordered. On the
contrary, if the Hamming distances diverge, the dynamics
are chaotic. In our model, we did not consider perturbations
(e.g., mutations) of GRNs in an evolutionary sense. Here we
introduce perturbations to GRNs and investigate if the role
of the criticality of GRNs can be maintained.

Our model starts with one seed cell and grows into a cell
aggregate, in which all the cells have identical RBNs as
GRNs (Fig. 1 top). The properties of GRNs change as the
node in-degree K is varied; K = 1 leads to an ordered state,
K = 2 to critical, and K > 2 to chaotic, on average (Kauff-
man, 1969). Based on empirical evidence that attractors of
GRNs correspond to cell types/fates (Chang et al., 2008), we
randomly assigned cell fates to attractors of GRNs. If there
is only a single attractor, proliferation is assigned to the at-
tractor. If there are two attractors, proliferation and differ-

Figure 1: Schematic diagrams of a GRN and its state space.
Top: A GRN (= RBN) with five nodes (genes) under K = 2
(16 nodes were used in actual simulations). Each node can
be either ON (1) or OFF (0). Bottom: State space of the
GRN with four randomly assigned cell fates. The state space
consists of 25 = 32 configurations and transitions among
them. Highlighted are attractors, and the boundaries of their
basins of attraction are shown by dashed lines.

Figure 2: Schematic diagrams illustrating the concept of ro-
bust and evolvable GRN.



Figure 3: Probability of generating robust and evolvable
GRNs per group (K = 1, 2, 3, 4).

entiation are randomly assigned to the two attractors. Sim-
ilarly, if there are three, proliferation, differentiation, and
apoptosis are randomly assigned to those attractors. If there
are four or more attractors, proliferation, differentiation, and
apoptosis are randomly assigned to three attractors and qui-
escence is assigned to the rest of the attractors. (Fig. 1 bot-
tom).

In the present study, the GRN of the seed cell is per-
turbed by adding, deleting, or switching one regulatory link.
If GRNs conserve their existing attractors and create new
attractors at the same time against the perturbations, the
GRNs are considered robust and evolvable (Fig. 2) (Aldana
et al., 2007). The robust and evolvable GRNs are evolution-
arily meaningful because their robustness and evolvability
are two essential properties of biological systems for evolu-
tion (Stelling et al., 2004). We performed 10,000 indepen-
dent simulation runs for each value of K (from 1 to 4). We
found that robust and evolvable GRNs were generated with
the highest probability against the perturbations for K=2
(Fig. 3).

Focusing on morphologies acquired from morphogenetic
systems having robust and evolvable GRNs, we measured
the Kullback-Leibler (KL) divergence between pairwise par-
ticle distance distributions of a simulated pattern and a ran-
dom pattern to detect nontrivial morphologies based on
Sayama and Wong’s approach (Sayama et al., 2011). Specif-
ically, a pair of coordinates of cells were randomly sampled
10,000 times to generate an approximate pairwise particle
distance distribution, first from the simulated pattern, then
from a randomly distributed pattern made of the same num-
ber of cells within the same spatial dimensions.

To compare the means of the KL divergence for K=1, 2,
3, 4, we calculated the averages through 1,000 bootstrap it-
erations from the KL divergence values of robust and evolv-
able GRNs for each value of K. We found that the KL di-
vergence was highest for K=2, which means that nontriv-
ial morphologies were still generated most frequently after
adding perturbations to GRNs (Fig. 4). Fig. 5 shows the
examples of nontrivial morphologies for K = 2. This find-
ing implies that the criticality of GRNs facilitates the for-

Figure 4: Comparison of the mean KL divergence between
groups, where all the simulated patterns are obtained from
morphogenetic systems with robust and evolable GRNs.
(Kruskal-Wallis test: p < 2.2−16, Nemenyi test (post-hoc):
*** p < 0.001).

mation of nontrivial morphologies in GRN-based morpho-
genetic systems, even in the presence of evolutionary per-
turbations.

Figure 5: Examples of nontrivial morphologies for K = 2.
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                                       Abstract

 
 Many natural systems such as cells, chemical compounds, galaxies, 

organisms, and planets show self-organized construction. The 

theory of autopoiesis proposed to define the universal self-

organization of living systems, where each natural system builds 

and regulates itself in an organizational “closure”. Taking 

inspiration from these processes, Morphogenetic Engineering tries 

to reach the capacity and mechanisms of natural systems in self-

creating and self-organization. In this work, we used concepts from 

the autopoeitic theory to create a machine able to display individual 

building and organization like an artificial embryogenesis process. 

In this paper, we discuss how our system is an autopoietic machine. 

Using this theory, our model shows that each entity (cell, tissue, 

organ) is an autopoietic machine, which creates and organizes itself 

as a cyclic network of production of components and exhibits self-

organization. 

 

   Maturana and Varela believed that, although living systems 

are diverse, they still share a common organization which we 

implicitly call “living”. They also claim that some biological 

processes such as reproduction and evolution are secondary to 

the establishment of this unitary organization. To the question 

“what is the necessary and sufficient organization for a given 

system to become a living unity?”, they often argued that living 

organization is characterized by specifying the network of 

interactions of components to form the living system as a whole 

“unity”. On this basis, they proposed the concept of 

“autopoiesis” to define the system that produces itself, which 

means self-production or self-creation. They affirmed that the 

autopoietic mechanisms of self-production are crucial in 

understanding both the diversity and the uniqueness of the 

living system. In short, autopoiesis is used to explain the basic 

characteristic of living systems, and can be viewed as a 

particular way of universal self-organization [2]. Maturana and 

Varela describe an autopoietic machine as “a machine 

organized (defined as a unity) as a network of processes of 

production (transformation and destruction) of components that 

produce the components which: (i) through their interactions 

and transformations continuously regenerate and realize the                 

network of processes (relations) that produced them and (ii ) 

constitute it (the machine) as a concrete unity in the space in 

which they (the components) exist by specifying the 

topological domain of its realization as such a network.” [3]. 

    

   Even though the theory of autopoietic systems was originally 

proposed in biology, this did not prevent to apply it in different 

fields such as sociology and the nature of creativity [4]. 

   In this work, we use an interpretation of the autopoietic 

theory in one of its most complex processes studied in artificial 

life, that is “artificial embryogenesis”, which combines self-

organization and complex architecture. Because of the 

complexity of its natural equivalent, “multicellular 

development”, biologists realized that multiple elements such 

as mechanical forces between cells, coupled with morphogen 

diffusion and gene regulation affect this process without fully 

understanding how these work together. Simulating these 

complex processes is a long journey which scientists only 

started. However, we can take inspiration from these 

mechanisms in order to produce system with equivalent 

capabilities and organization to build better and more reliable 

systems. 

   We choose to use the theory of autopoietic machines in the 

organization of our system, because they define the 

organization of a living system. However, this theory was 

successfully applied to a different level of organization in our 

system (MLAS) (for more details see [5]). 

   Our MLAS  has several levels of organization: cell level, 

tissue level, and organ level. Fig.1a presents these different 

levels. At the beginning, the system is composed of a single 

morphogen in organ level which concentration is given by the 

“organ state” (Fig. 1a-1). In addition to this morphogen, the 

system has one inactive stem cell with irregular artificial GRN 

and chromosome of functions (Fig. 1a-2).   

With this global function of the system (organ state) and the 

stem cell, the MLAS network organizes and creates itself to 

reach the second chromosome of the system (chromosome of 

fitness levels Fig. 1a-3).  
   This fitness chromosome provides a threshold for each level 

of organization to reach by the corresponding individual 

(organs, tissues or cells). Each individual in the system is an 

autopoietic machine in its process of production and regulation. 

They create and regulate themselves in an organizational 

closure by a network of component production. These 

components can interact together and even catalyse themselves 

(directly or indirectly). This cyclic production network shows 

the capacity of individuals to organize and create themselves 

without any external driver from the environment.  



 

 
 
 

 
 

 
 

 
   

 

   

 

 As presented in (Fig. 1b), the higher level of the system, the 

“organ autopoietic machine”, begins with the first node “Organ 

state”. The components of this individual, the tissues, are on a 

sub level. Tissues are themselves other autopoietic machines, 

with a production network and components to create 

themselves. Components in the tissues are cells, which 

constitute another autopoietic machine. The production 

network in cells is an artificial gene regulatory network (GRN), 

and its components are the actions executed by the GRN, 

Which regenerate and regulate itself, too. The cell autopoietic 

machine is self-created, meaning that cells can create and 

regulate their own pathway of actions and history. 

The interactions between the production network and the 

components in the autopoietic machine lead the individuals to 

create and regulate themselves in an organizational “closure”, 

which achieves to self-organization throughout the system. 

 

Conclusion  

Following Morphogenetic Engineering [1], we try to export 

from natural systems their abilities to self-create and self-

organize. The autopoietic machine is one of the most important 

theories explaining how natural systems can create and 

organize themselves. Our ASML model is at the intersection  

 

 

 

 
 

 

 

 

 
between these two fields, where each individual is an 

autopoietic machine showing capacities for self-creation and 

organization. 
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Figure 1: (a) The MLAS and its initial components. (b) The different autopoietic machines in the system and their components.   
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