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Abstract: We study properties of Linear Genetic Programming (LGP) through several regression and classification
benchmarks. In each problem, we decompose the results into bias and variance components, and explore the effect
of varying certain key parameters on the overall error and its decomposed contributions. These parameters are the
maximum program size, the initial population, and the function set used. We confirm and quantify several insights
into the practical usage of GP, most notably that (a) the variance between runs is primarily due to initialization rather
than the selection of training samples, (b) parameters can be reasonably optimized to obtain gains in efficacy, and
(c) functions detrimental to evolvability are easily eliminated, while functions well-suited to the problem can greatly
improve performance—therefore, larger and more diverse function sets are always preferable.
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1 Introduction

Bias-variance decomposition is a fundamental method in machine learning. It allows for the decomposition of the
error rate of a predictor into two components: the bias, representing the systematic error made by a model, and the
variance, representing the error associated with the particularities of a training set. There are many “non-parametric”
estimators characterized by a learning error that always tends to zero as the number of samples becomes large.
Unfortunately, these learners become computationally expensive to deal with as the number of training samples
increases, especially when problem dimensionality is high. Given a fixed number of training samples, non-parametric
estimators typically encounter the “bias-variance trade-off”, where greater complexity is required to exclude model
bias but too much complexity will cause over-specialization to the training data. In light of this trade-off, several
authors suggest that the “hard” part of solving a complex problem is precisely finding a proper model with a bias
suited for the domain at hand [10, 11], for instance, via the inclusion of appropriate heuristics.

Genetic Programming (GP) refers to the use of evolutionary computation to generate computer programs or
mathematical expressions. The most typical form of GP is the tree-based version pioneered by Koza [17]. There are
many other types, however, including a family easily expressed as graph-based networks, which include Cartesian
Genetic Programming [24], Parallel Distributed Genetic Programming [27], Linear Genetic Programming (LGP) [3],
and others [26]. These forms of GP are often static-length, while the complexity of the program is derived from the
ratio of neutral to active code in the representation. In this work, we concentrate on LGP, an attractive choice for
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applications due to its tendency to produce parsimonious solutions [3] and its capacity to be converted directly to
machine code [28]. We use a variable-length version, in which the effective length of a program will be less than
some varying maximum value.

Our goal in this study is to explore the application of LGP to several benchmark problems under the lens of
bias-variance decomposition. Some analysis of this form has already been conducted for tree-based GP, where it
was shown that GP is generally a low-bias approach for regression problems. Some authors have used variance
adjustment [1, 13] or other strategies [8] to improve generalization of discovered solutions. In particular, Fitzgerald
and Ryan hypothesize that low operator complexity (a smaller or simpler function set) corresponds to lower
variance [7]. In this study, we find some evidence to the contrary.

Here we investigate more deeply this breakdown for several problems, both regression and classification, by
considering the effect of various key parameters on this decomposition. First, we look at program length, a key
parameter for the complexity of GP programs and the variable leading to the classic bias-variance trade-off. Next,
we examine more closely choices involving initialization and function sets as potential means of reducing either
the bias or the variance portions of the decomposition. In these latter cases, we do not attempt to produce yet other
versions of the usual bias-variance trade-off, but rather explore means toward the amelioration of either component
of error given realistic constraints. We believe this analysis will help guide practitioners in their choice of models
and parameter setting.

2 Bias-variance decomposition

Let x € R” be a real-valued input vector, and y € R be an output value, with joint probability distribution P (x, y).
Let our loss function in output space be L(y, y’), some measure of similarity between y and y’ in R. We seek a
function f which, when provided with an input x, will predict an “appropriate” output value f(x), i.e., one that
tends to minimize the average loss at that point: [ L(y, f(x))P(y|x)dy.

2.1 Regression problems

For regression problems, the most common loss function is L(y, f(x)) = (y — f(x))2. The best choice of predictor,
in this case, is the simple conditional expectation, f*(x) = E[y|x] = [ yP(y|x)dy, also known as the regression
function.

Assume that we have some predictor f, generated through the use of a data sample 7', and tuned by a set of
parameter values A. In the case of a stochastic system, it also takes an initial seed /. For a given A, we will write
the output of f at x as f(x; T, I) to recall the other two dependencies. Then, the mean square error (MSE) of f at
point xg can be expressed as the expected loss between f(xp) and f*(xo) over various instances of T and I:

mse(x0) = Er. [ (f(x0: T.1) = E[y[xo)’] M

in which we impose fixed-size training sets 7'. Note here that mse(xg) refers to the error of the expected predictor in
X0, and as such, is a measure of the efficacy of the technique (and parameters) which spawned the predictor.

Via algebraic manipulation, and making the assumption that our problem is deterministic, we can break the
MSE into two components:

mse(xg) = bias(xg) + var(xp)
bias(xo) = (f (xo) ~ Elylxol) @

var(xo) = E7.s [(f(xo; T,1)— f(xo))2i| 3)

where f (x0) = E7.1[f(x0; T, I)] denotes the average response of the predictor over T and /. The bias-variance
dilemma refers to the trade-off between the two components of error: whereas the bias should be reduced, to prevent
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systematic error in predictions due to the model, doing so typically results in an increased variance, such as the
propensity of a learner to rote memorization of training data'.

Following previous work by Geman et al. [10], we will approximate these values as follows: 50 pairs of training
set-seeds are generated, denoted T and [ K )k =1,...,50. We calculate the average response for the evolutionary
algorithm as

50
Flo)~ g5 3 f (v 790, 19). @
k=1

Then, we estimate the bias(xg) ~ (f(xo) — E[y|x0])?, the variance as

50

var(xo) & g5 Y (f (x0T, 1) — F(x0)) ®)

k=1

and mse(xg) as the sum of both terms.

2.2 Classification problems

For classification, it is necessary to use a binary loss function: L(y, f(x)) = 1-=8(y, f(x)), where § is the Kronecker
delta: §(a,b) = 1ifa = b, and 0 otherwise. Kohavi and Wolpert [14] have developed a bias-variance decomposition
for the mean misclassification rate (MMR). Let us refer to the random variable which generates an actual answer to
the input x as Y, and the random variable that generates an answer to input x via the learned function f(x;7,1) as
Y. Assuming a deterministic two-class problem, we can break the MMR into the usual two components:

mmr(xg) = bias(xg) + var(xp)

1
bias(xo) = 5 ) (P[Y=y|x] - Pr.1[Yr=y|x])* 6)
ye{—1,+1}
1
var(ro) = 5 [ 1= 30 (Pralty=ylx])’ | 7
ye{—1.+1}

Note that P[Y = y|x] will be 1 or 0, due to the determinism of the problem. The term Pr r[Ys = y|x] is the
probability of guessing value y via the learning algorithm over all possible training samples 7" and initial seeds /.
As with previous expectations, we estimate this probability via 50 runs of the system.

2.3 Integrated statistics

Finally, we will report the integrated forms of the MSE, MMR, bias and variance, respectively denoted mse, mmr,
bias and var, to compare predictors on the basis of a single global measure in each category. For regression problems,
integrals are computed numerically over a large set of uniformly distributed samples Q = {xé } as follows:

mse = LZ:mse(x({) 8)
0] y

where |Q| = 360,000. Note that since our numerical integration uses independently chosen samples, it can also be
considered as an independent test set, and hence would detect any overfitting. For classification problems, we can
similarly approximate the integrated mean misclassification rate, denoted mmir, over the test problem instances.

I This dilemma cannot be solved in general, but is often ameliorated via ensemble learning, as has been explored with GP [13]. We will
not pursue this direction here, however.
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3 Model and experimental design

3.1 Linear Genetic Programming

We follow Brameier and Banzhaf’s definitions of LGP closely [3], with some minor modifications. An LGP
individual consists of a collection of registers, 1, equal to the number of inputs, 7;,, plus a number of additional
registers initially filled with genetically defined constant values, n¢ong;. Thus nreg = i + 7const. Following this is a
list of n program statements, with 7 ranging from 1 to a maximum program length, 7,,,,. A program is executed by
loading the input values into the initial registers, executing the program statements, then reading the output from the
0-th register. Figure 1 shows an example program.

Fig. 1. An example LGP program, instantiating the 2D Euclidean distance function, written in pseudo-Java notation. Note the existence
of ineffective (“neutral”) code, commented out in light gray.

double LGP(double ig, double i1, double i2, double i3) {

double Rg =ip;

double Ry =iy; . S

double Rp = ip: mput registers

double R =i3; | length
double R4 = 0.836; additional registers | 7treg
double Rs = 0.118; (initialized with

double Re = 0.723; genetically

double R7 = 0.925; specified constants)
R4=R1-Ro;

R4 = square(Ry4);

Ro=R3-R>; program statements

Re = square(R2); length less than 7 prog
R1=Re+ R4

Ro = sqrt(R1);

return Ro: output is always
0 contents of first register

An LGP individual is initialized by generating a sufficient number of constants to fill the additional registers,
then generating a series of program statements. The constants are chosen uniformly and randomly from [0,1]. The
number of program statements is selected randomly and uniformly between 1 and a maximum initialization length
Rinit < Nprog. The statements are generated by selecting three registers r4, rp and r uniformly and randomly from all
the value registers 7., and then selecting a function g from the function set to generate the statement re = g(ra,7p),
orr. = g(rq) if g takes only one variable. Finally, any output from the LGP individual is constrained within a certain
range, where outlying values are rounded to the closest extreme bound. These problem-specific output bounds were
added to prevent undue influence of singularities on statistical analysis. The global output function produced by
the LGP individual is denoted f as before: it is equal to some (more or less complicated) composition of a certain
number of functions g.

We use two function sets to explore our problems: one short list, Gghort, and one long list, Giong. In some
experiments, we utilize arbitrary subsets of Gjong. All possible functions are listed in Table 1. Generally, in this
article, we will write our LGP individuals as mathematical expressions. The reader should be aware that: (1) they are
an expanded view of the program, since modules are written out explicitly, and (2) while we remove unused code,
we do not remove any redundancy (i.e., a statement such as a — a is not replaced by 0), in order to give a realistic
view of the raw evolutionary outputs.
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3.2 Evolutionary algorithm

For all problems, we use a steady-state evolutionary algorithm. In the beginning, a population of Ny, randomly
initialized individuals f is created and each of them is evaluated by calculating its fitness F(f) (see below).
The population is maintained at a constant size Ny, throughout the evolutionary search by performing one-to-one
replacements of individuals. During the search, an additional Ny, evaluations are performed as follows: for each
evaluation, a deterministic tournament is held between two randomly chosen individuals of the current population.
The worse of the two is replaced by either a cross between the winner and a second tournament-selected individual
(with probability pcress), or a mutation of the winner (individual elements are mutated with probability pp,: and
equal chances of macro- or micro-mutation). We also sometimes include a “parsimony pressure”: if the difference
between the fitness of the two individuals selected for tournament is less than A Fp,, then we select the individual
with the smaller number of program statements. In sum, while the population’s size remains Ny, the total number
of evaluations iS Neyai = Npop + Npew and the total number of individuals that are effectively replaced is comprised
between 0 and Ny .

Table 1. Pool of GP functions, kag, with action on inputs a and b (where b is sometimes disregarded).

func. g | action H func. g \ action H func. g \ action
plus | a+b sin | sina max | max(a,b)
minus | a—b cos | cosa min | min(a, b)
times | ab abs | |a| dist | |a —b|
div | a/b,or inv | 1/a,or thresh | 1ifa > b,
1if |b] < 0.00001 1if la] < 0.00001 0 otherwise
pow | a®, or log | loga, or mag1 | |la| + |b]
1 if undefined 1ifa <0.00001
sqrt Jm square a? mag2 s/a2 + b2

3.3 Four benchmarks

We perform our investigations on several benchmark problems. For each benchmark, we execute approximately
500 runs with randomly chosen parameter values similar to the original source. From these runs, we estimate the
combination leading to the lowest test fitness (since the “fitness” represents an error or a mismatch to be minimized).
The problems and their associated search parameters are summarized in Table 2.

3.3.1 MexHat

The first problem is the “Mexican hat” (MexHat), borrowed from [3] and so named after the shape of its 2D manifold
in 3D space. The MexHat function is reduced here to its 2D expression, denoting x = (a, b):

2 2 _a?4p2
fﬁe,((x):(l—“:b)e( ) ©)

Note that Euler’s number e is not included in the function set, and hence must be approximated genetically. For this
regression problem, the fitness value F of an LGP individual f is defined as the sum of squared errors (SSE), with
respect to the target fy.,, approximated over the training samples 7' = {x; }:

1
Fese(f) ~ 10 D (@) = S (i) (10)
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Table 2. Summary of the three benchmark problems and their associated parameters.

MexHat DistND Spiral Cenparmi
problem parameters
type regression regression classification classification
dimension 2 2N 2 144
axis range [—4, 4] [-10,10] [-27,27] {o0,...,255}
fitness SSE SSE MR MR
|T| 400 2000 194 300
evolutionary parameters
Rin + Reonst 2+4 2N + 2N 242 144 + 19
Mprog 50 40 30 36
Rinit 10 20 20 28
Pmut 0.07 0.15 0.03 0.11
pcross 0 0-0 0.15 0.69
A Fpars 0.0005 0.001 0.001 —
Npop 1000 1000 9000 43000
Neval 5.10° 10°if N < 3, 2.10° 2.0°
107 otherwise
output bounds [-10,10] [—104,104] — —
Gishort plus, minus, plus, minus, plus, minus, plus, minus,
times, div, times, div, times, div, times, div
pow abs, square, sqrt | sin, cos, thresh
Giong || See Table 1
3.3.2 DistND
Next, we evaluate several “distance” problems (Dist1D, Dist2D, ..., DistND). These are a series of regression
problems based on Euclidean distance in any even number of dimensions:
N
[ = | Y (aj —bj)2
Jj=1
Note that, since x = (ai,...,an,b1,...,bn), the dimensionality of the problem is actually 2N. The distance

functions are useful for investigating a related series of problems in increasing dimensionality. The fitness function
FssE is calculated as in Eq. (10), with target fD"Est.

3.3.3 Spiral

We also include two classification problems. The first one is the artificial “spiral” problem, as described by Lang
and Witbrock [19]. Here, the target fST)ir is a binary function whose domains are intertwined in a double spiral
pattern (Figure 2). There has been significant research on this problem, including in the GP community, due to both
its difficulty and its capacity to be easily visualized [5]. For this classification problem, the fitness function is an
approximation of the misclassification rate (MR), i.e., the average of all binary mismatches:

Fur(f) ~ |17| 3 (18700 Sigex))- (12)
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Fig. 2. Output examples from a GP classification run. Positive and negative samples are drawn as white and black dots, while the
pattern produced by the GP individual is drawn as light orange or dark blue.

Fig. 3. 16 samples from the Cenparmi database, divided into classes (left) “zero” and (right) “not-zero”. Note that the machine learner
does not have access to geometric adjacency information about the pixels.

o00e i3d7a
0007 c+T7¢

3.3.4 Cenparmi

The second classification problem is the Cenparmi database of hand-written characters, collected by the CENPARMI
lab at Concordia University (Figure 3). This real-world supervised learning challenge consists of 6000 image samples
of hand-written digits, and constitutes a high-dimensional problem with tightly correlated features. We scaled the
images to a size of 12 x 12 = 144 integer inputs between 0 and 255 representing gray-level pixels. Our treatment
made the classification problem binary by distinguishing between a selected class and the remainder of the set (e.g.,
between “4” and “not-4” instances). At the start of each run, we randomly selected the particular class, involving
|T'| = 300 training samples from the training pool, and |V| = 600 test samples from the test pool. Note that our
approach to the database remained “naive” on purpose, i.e., we did not include geometric information about the
relative location of the pixels. Our goal here was to test the bias-variance limits of genetic programming, not achieve
competitive performance. The fitness function Fyyg was calculated as in Eq. (12), with target fCtnp representing the
correct binary answer for the chosen class. Note that the state-of-the-art MR, across all learning techniques and
available information, is approximately 0.02 [20].

4 OQOverall results

4.1 Initial exploration

As expected, LGP was generally successful at evolving good regression functions and classifiers. Some examples
of outputs for the Spiral problem are shown in Figure 2, and for the MexHat problem in Table 3. In further sections
we will look closely at the variance associated with the individual runs of the evolutionary algorithm. Recall that
we are discussing the variation of the solutions in terms of their behaviour in input, i.e., “phenotypic”, space. While
this is typically the object of interest during the use of genetic programming—as practitioners care how well they
achieve some objective or fit some data—it should be noted that this is not the same as variance in genotypic space.
In other words, two largely different mathematical expressions (genotypes) might have nearly identical performance
(phenotypes), while, conversely, two genetic programs differing by a single instruction might produce dramatically
different output functions.

The question here is about genetic convergence, that is, the propensity of evolutionary methods to find the same
or equivalent mathematical expressions for the same problem on different runs. Indeed, this is a difficult concept to
evaluate, since while there are ways to detect when some related programs are similar, there is no way, in general, to
determine if two arbitrary programs are equivalent. There exist several measures of genotypic dissimilarity (termed



DE GRUYTER OPEN Bias-variance decomposition in Genetic Programming =—— 69

“diversity”, after their typical usagez) for GP. For instance, edit distance (a measure of the number of steps required
to transform one program into another, adapted for LGP in [3]), entropy, and behavioural diversity (comparing
distributions of program outputs) are known to correlate well with expected fitness for some problem domains [4, 12].
Unfortunately, in the case of edit distance and entropy, typical applications of these measures to GP tend to make
the assumption that individuals are genetically related, hence are not useful for programs generated via independent
means. Furthermore, some identities, such as the capacity to construct one primitive function from combinations of
other functions, are not detectable.

Informally speaking, in most cases that we examined, some form of genetic convergence was the norm. For
instance, consider the solutions evolved from the Dist2D problem using the Ggor¢ function set (see Table 2). We
show below the two functions of x = (a1, az, b1, b2) that had the best fitness values among 33 inexact solutions:

Foi ) = \/H(Kbl —ar-DP? + ((VI0.001] —as) + b2)2H

10.053]
0.499

2
() = J <\/H(I(az — b2 +0.053)) + (|(y —a1)|)2H) - ‘

with Fssp(fhy) = 0.0006 and Fsse(fZ,) = 0.0126. In these cases, the evolved solutions strikingly “resemble”
the target function f (x) = ((a1 — b1)? + (a2 — b2)?) 172 genetically speaking. To obtain exactly S all that
would be required is minor tweaks and some elimination of redundancy. One could reasonably expect that additional
computational effort would achieve at least the former, and under parsimony pressure, possibly the latter.

In the case of the Spiral classification problem, we also observed convergence to a similar form of solution, even
if there were differences between the individual runs. For instance, using the Gjone function set, 5 out of 50 runs found
zero-fitness solutions to the problem. Each of the 5 runs admits a similar structure of concentric rings (Figure 2), in
which some additional singular boundary, like a flaw in a crystal, separates regions of rings to compensate for the
ascending radius of the spirals. All five solutions make prodigious use of the div, mag2, and thresh functions, and
one of either sin or cos. While this strategy is relatively consistent for the best of the LGP runs, it is by no means the
only solution to the problem generally. For instance, techniques using constructive neural networks generate quite
different output patterns, including true spirals [6].

On the other hand, consider the best solutions to the MexHat problem using its Giong function set. The three
best solutions are shown in Table 3. Notice how all three individuals depend on a? + b2, ie., they discovered
the radial symmetry of the MexHat target. Otherwise, these solutions display much more genetic variance than in
the previously discussed problems. The edit distance between these statements is evidently quite high, as both the
statement structure and the functions used differ wildly. Regardless, the outputs of these functions in the 2D plane are
quite similar, and do not significantly overfit. Hence, despite great genotypic variation, they are all highly successful
examples of regression solutions.

While our description is rather informal (the development of a more rigorous measure of genetic convergence
lying beyond the scope of this study), we believe that it highlights the possibility of phenotypic convergence in the
absence of genotypic convergence.

4.2 Typical bias-variance humbers

The bias-variance decomposition of each of our benchmark problems, including five different instances of DistND,
is shown in Table 4. Parameters were set as indicated in Table 2. As proceeding sections will show, the listed values
are typical. Nearly everywhere, the variance portion of the error dominates the bias component, often by several
multiples. This is generally consistent with a view of GP as a low-bias/high-variance approach, which suggests that
overfitting should be of concern for GP practitioners. In all cases, the use of Gjong also outperforms Gpor, especially

2 Often, authors are concerned not with the consistency of solutions between runs, but instead with the encouragement of diversity in a
particular population to prevent premature convergence.
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Table 3. The three best solutions on a run of the MexHat problem using the Giong function set.

fitness action
expression f (x), where x = (a, b) F(f) on[—4, 4)?

= (14 ) 0
cos (m)
f]\}ex(x) = |
(ﬂm)z + (cos <ﬂmﬂsm<m)>> .

with @ = 0.7852 and 8 = 0.742.

Ja2+p2
+ o + gV a%+b2

}) 0.00009

7o = g s [[ V74 7 —0.174] ), ‘ gz

with ¢ = sin(0.673) and B = sin(0.535).

a2+b2
2 2
3 = mi a2+p2 2 a2 b2> 2 /a2 2
Sirtex (X) = min d(a + ) + o ,ﬂ+‘,(a + +a }cos(ﬂ a +b) 0.00010

with & = 0.626, 8 = sin(0.905°-995).

in the bias values. This is true despite the fact that some of the particular functions are known to be detrimental to
evolvability (see Section 5.4).

5 Detailed analysis

In this section, we examine the effects of varying one of four control parameters separately from the others. First,
we look at a key parameter of GP complexity, the maximum program length 7. It is here that we expect to see the
classic bias-variance trade-off, and the existence of a range corresponding to the optimal point in that trade-off.

Next, we examine parameters related to the genetic initialization 7, population size N,p, and choice of function
set G. Our goal here is to explore the potential for reducing the error due to variance and bias, respectively,
in a manner achievable by a GP practitioner. As such, in these latter experiments we aim not to generate new
forms of the bias-variance trade-off, but instead, to study the error components under computationally constrained
experimentation.

5.1 Varying maximum LGP length

First, a series of experiments were undertaken in which the maximum length of the LGP expressions was varied.
The njy;e value (the maximum initial number of program statements) was chosen randomly and uniformly from the
range [1, 150], and the maximum LGP program length was set to 71prog = 27nic. Over 200 values of 71pr0g (including
repeats) were explored, and mse (or mmir), bias and var were computed for each value. The Ggor¢ function set was
used throughout.
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Table 4. Integrated error and bias-variance decomposition on the target benchmarks. “Exact” solutions, for the regression problems
DistND, refer to individuals whose symbolic expression reduces exactly to the target function f* (impossible for MexHat, in the
absence of Euler's number e) and, for the classification problems Spiral and Cenparmi, to those achieving a zero fitness.

problem func. set H error bias [ var. [ #exact
regression problems mse bias var
MexHat Gghort || 0.0486 | 0.0161 | 0.0324 —
Giong 0.0021 | 0.0002 | 0.0019 —
Dist1D Gghort 0.0000 | 0.0000 | 0.0000 50
Giong 0.0000 | 0.0000 | 0.0000 50
Dist2D Ghort 2.4742 | 0.2668 | 2.2073 17
Giong 0.0000 | 0.0000 | 0.0000 50
Dist3D Ghort 13.895 | 6.509 7.386 2
Giong 0.6081 | 0.0178 | 0.5903 43
Dist4D Gghort 14.068 | 8.103 5.966 1]
Glong 1.227 0.093 1.134 44
Dist5D Ghort 16.395 | 11.267 5.129 0
Glong 5.972 1.528 4.444 4
classification problems || mmr bias var
Spiral Gihort 0.1614 | 0.0428 | 0.1186 0
Giong 0.1173 | 0.0235 | 0.0938 5
Cenparmi Gghort 0.0993 | 0.0681 | 0.0312 0
Giong 0.0931 | 0.0613 | 0.0318 0

Our first question dealt with the best choice of model for the integrated error quantities over an independent parameter
A (such as npop here). Based on experimentation with several curve types, we elected to fit mse (or mmr) and bias
to a four-parameter model errg(1) = aebr 4 yAZ + €, and var to either the same curve, or to a straight line.
Our choices are motivated in Annex B. Figure 4 shows the results. The data fits closely to the expected view of
the bias-variance decomposition of a non-parametric learner over a complexity measure . Indeed, as the maximum
complexity of the evolved solutions increases, the bias term quickly drops to a level close to zero. Simultaneously,
however, the variance term rises, showing an increased propensity to overfit.

Clearly, selecting a maximum length too low will significantly sabotage results. An important question is, on the
contrary, whether a practitioner could plausibly be expected to choose higher or intermediate values so as to favor
good results. To verify this, we broke our independent variable 7,0, into a series of equally sized bands of length 50.
We report the mean mse (or mmr) over the best band, as opposed to over all runs, including the improvement and
the certainty (according to a two-sample ¢-test):

best mean mse | mean mse
Rprog or mmr or mmr
benchmark band (all) (best) improve | certainty
MexHat [200, 250] 0.0423 0.0381 11% <0.03
Dist3D [150,200] 15.41 12.16 27% < 0.001
Spiral [150,200] 0.1675 0.1539 9% < 0.001
Cenparmi [150,200] 0.1004 0.0944 6% < 0.002

Hence, we conclude that some reasonable amount of one-dimensional experimentation with 7, could be expected
to lead to improvements.

3 The one set of curves which break this rule are the Spiral curves, where no increase in error rate is seen as the variance points remain
flat: we note, however, that the training and test data are the same for this problem, which excludes the possibility of overfitting.
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Fig. 4. Best-fit curves of bias (orange, using errg), var (green, using using err4 or a straight line) and mse or mmr (blue, using errg),
varying over Rpog-
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5.2 Variance due to genetic initialization

Here, we confirm our intuition regarding the role of choice of random seed for the efficacy of the evolutionary
algorithm. Our goal is to estimate the proportion of variance resulting from the training samples 7" versus the random
seed I. For our regression problems, MexHat and DistND, using the Ggpyo function set, we computed mse, bias
and var as described in Section 2. Note that the Spiral classification problem uses a static set of samples, hence
could not be analyzed in this fashion. For the other classification problem, Cenparmi, we calculated mmir. First, we
used different random seeds %) with the same training sample set 7' (“same 7); then, we used different seeds
I® paired with different sample sets 7&) (“normal”). In both cases, the size of the sample set || was fixed, as
indicated in Table 2. Finally, we computed a third experiment in which the training sets were larger (“large |T'|”),
with |T®)| = 6400 for the regression benchmarks and |7 ®)| = 600 for the Cenparmi benchmark. The results over
approximately 50 runs for each trial are shown in Figure 5

Comparing the “normal” runs against the “same 7" runs, we see statistically significant gains in performance
for the latter in the case of the Cenparmi benchmark only, although the absolute difference is small. This implies a
smaller role for the particularities of training set selection in the generation of variance, relative to the role of the
initialization seed. Similarily, comparing the “normal” runs against the “large | 7'|” runs shows statistically significant
gains for the latter in the MexHat benchmark only. This time, the reduction in variance due to the increased training
set size is approximately 40% of total variance, leaving 60% due to initialization seed. For the other two benchmarks,
there is negligible difference in var. Again, we see that the selection of the initialization seed has more influence on
the variance than the size of the training set, even when increased by a factor 16.

Therefore, it is clear that in these examples the majority of the variance associated with the error rates stems
[from the initial sample of genetic space. We would expect this to be reflected in the final genetic outputs.
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Fig. 5. A comparison of the effect of selection of training set 7" on mse or mmr and var on three benchmarks. Plots are “Tukey-style”
boxplots: dark lines are median values, boxes are based on quintiles, whiskers represent the 95% confidence interval, circles are
outliers.
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5.3 Varying the population size

In this third series of experiments, we elected to explore the effect of the population size Ny, (the steady number
of evolved individuals f) on the performance of the algorithm, given a constant number of evaluations Neyy. This
parameter plays here the role of a trade-off, which involves the amount of initial exploration taken by the EA (in a
larger population), as opposed to the exploitation of the better individuals (in a smaller population). In order to avoid
greater amounts of computation, we maintain the number of evaluations Neya) = Npop + Npew constant, i.e., diminish
the number of individuals created via genetic operators, Nyew, a8 Npop Erows.

We computed over 200 samples for each problem, with ranges of [1, 4000]. Due to the different role of parameter
Npop, i.€., that of a trade-off rather than a measure of model complexity like 71,0, We re-evaluated our choice of fitting
curves to model the data and decided to use err4 for all three error measures. These results are shown in Figure 6.

In two cases, we observe that the variance component of error drops to some minimal level, and then plateaus.
This suggests that following some critical population size, an adequate sample of genotypic space is found. The
bias component of error also drops initially, and then gradually begins to climb. This is likely due to a decrease
in evolutionary evaluations, where unnecessarily large initial population sizes encroach on the time devoted to
exploitation in the algorithm. (It is unlikely that the bias is caused by the discovery of difficult-to-find local minima
via larger samples, since these would not only increase bias but also lower variance.) In the other two cases, no
significant effect on variance was observed, suggesting that small populations sample the genetic space sufficiently
well.

A key point here is that the lowest values of variance for all these problems is still significantly higher than the
variance we associate with the selection of the training set (see Section 4.1). That is, we cannot reasonably expect
larger initial samples of the genomic space to eliminate the variance due to initialization.

An interesting effect can be seen with the Dist3D benchmark: namely, the best results were observed with a very
small population, followed by an increase in error rates, and finally a decrease. Indeed, the error scores seen at the
larger population sizes are significantly better than the middle range. This difference is driven largely by bias, not
variance. We are at a loss to explain this behaviour.

Again, we asked whether or not a practitioner could hope to select optimal values of N, in order to increase
success. We broke the possible values into bands of size 500. We summarize our results below (noting that no
significant changes were observed with the Cenparmi runs):
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Fig. 6. Best-fit curves, varying over Npqp.
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MexHat [2500,3000] 0.0393 0.0436 10% < 0.0002
Dist3D [0,500] 15.55 16.32 5% < 0.001
Spiral [3500,4000] 0.1484 0.1709 15% < 0.001

The conclusion here is that, in some cases, modest but significant improvements can be made by adjusting Nyop.

5.4 Varying the function set

In a final series of experiments, we elected to vary the size of the function set, |G|, and its membership. Here, each
run uses a random subset of Gy,png as a selection of available choices for the evolutionary algorithm. In each subset G,
the basic functions {plus, minus, times, div} were included by default. Next, an integer was chosen randomly and
uniformly in [0, 14] and that many additional functions were drawn from G,pg (see Table 1) to form the pool available
to the evolutionary algorithm. Each function was equally likely to be chosen by genetic initialization or mutation.
Results are shown in Figure 7.

For all benchmarks save Cenparmi, there is a sharp increase in performance with the number of functions
included (in the case of Cenparmi, the performance is unchanged at all sizes). It is immediately evident that the
expected performance, in terms of mse or mmr, improves rapidly with more functions. Although there is some drop
in variance, too, especially with values near four functions, the primary gains are made via reduction in bias, until
the value drops nearly to zero. The var score, on the other hand, appears to plateau before this.

The fact that var does not begin to increase with more functions is interesting. It suggests that the addition of
new choices to the function set is not an increase in model complexity, i.e., that it does not generally enable the
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Fig. 7. Best-fit curves, varying over function set size |G |. Note the ill-fit curves for Spiral and Dist3D near the mid-range values, due to
the arbitrary presence or absence of particularly useful functions.
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production of things previously impossible. Instead, we should view it as a means of skewing the distribution of

solutions so as to make relevant solutions more probable. Thus, we propose that the function set can be used to

control the bias of the system, that is, introduce heuristics that may (or may not) be appropriate to a given problem.
If the above hypothesis is correct, we should be able to see changes to output associated with the addition of
particular functions while the set size is held constant. To test this, we generated over 50 runs of the system where

the function set was selected as above, but the size was fixed to 11 (the necessarily included functions {plus, minus,

times, div} along with 7 additional randomly chosen functions from Gioyg). For each function, we compared the

mean of mse in those runs which included the function versus those runs which did not.

Indeed, we discovered several important results. Below we list all those functions with significant certainty
(p < 0.05) for the MexHat problem, noting that the mean mse score over all runs is 0.0082 (see Figure 8 for a

graphic comparison):

—

—

function g mse mse Amse cert.
for MexHat | without g | with g
min 0.0064 0.0102 | +0.0038 | p <0.03
inv 0.0062 0.0106 | +0.0044 | p < 0.01
mag1 0.0097 0.0061 | -0.0036 | p < 0.02
mag2 0.0119 0.0027 | -0.0092 | p < 0.01
square 0.0065 0.0107 | +0.0042 | p < 0.02

The majority of the functions had an adverse effect (8 out of 14 increased mse), implying that either they tended
towards overfitting or that evolutionary effort was wasted on removing them from the potential solutions. The most

significant single function, mag2, had a highly beneficial effect, decreasing the expected mse score by about 67%.
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Most of the improvement in efficacy when augmenting the function set can probably be ascribed to this single
function.

Fig. 8. Comparison of the mean mse score on runs with function set sizes of 11, grouped by the presence or absence of particular
functions g. Boxplot conventions as in Fig. 9.
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Similarly, for the Spiral problem, where the mean mse score for all runs is 0.1549, we found:

function g mse mse Amse cert.
for Spiral | without g | with g
cos 0.1922 0.1134 | -0.0788 | p <« 0.01
thresh 0.1251 0.1765 | +0.0514 p<0.03
mag2 0.1981 0.1324 | -0.0657 p<0.01

The full benefits of increasing the function set can be accounted for by the inclusion of two favourable functions, cos
and mag2, undoing the damage caused by the other functions, which had a mostly adverse effect (7 of the remaining
12). The same pattern is seen with the Dist3D problem (where the mean mse score for all runs is 5.175):

function g mse mse Amse cert.
for Dist3D | without g | with g
sin 4.099 7137 -3.038 p <0.05
mag2 9.556 0414 | +9.142 | p < 0.01

The most useful function, mag2, accounts for all gains when increasing the function set. This is not surprising, as
mag? is a repeated element in the target solution fpi«3p. Again, the majority of additional functions (10 of 13) have
an adverse effect on the problem (increasing the fitness), but a very useful function can compensate this, and provide
large gains to overall performance, primarily through elimination of bias.

For the Cenparmi problem, there are several moderately significant functions, but none whose effect increased
or decreased error by more than 0.005.

6 Conclusions

Our study has generally confirmed the view of GP as a low-bias and high-variance approach to regression and
classification problems. Furthermore, our analysis of variation on the maximum program length . has shown
results consistent with the bias-variance decomposition of a non-parametric learning technique.
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We have reached several key conclusions from this study. While these results have been seen in particular
contexts in the literature, here we contrast their effects between benchmarks, and quantify the expected effect. The
conclusions are:

— Initialization creates the most variance: The variance associated with GP runs is largely due to the
initialization seed, and secondarily to the selection of training samples. Further, increasing the sample of the
genomic space taken in the population cannot be realistically expected to reduce this variance.

— Parameters can be optimized: For all three parameters that we examined (maximum program length 7,
population size Npqp, and function set G), one-dimensional selection of a reasonably sized band of values
usually led to significant improvements in overall results. Of the three parameters, the largest gains were
obtained by making minor changes to the function sets: indeed, in three of four benchmarks, the inclusion
of one appropriately chosen function affected performance more than the best expected gains from tuning the
other two parameters. In none of the benchmarks was the inclusion of all functions detrimental. The consistency
of these results between benchmarks suggests that this conclusion can be generalized.

— Population size effects are unclear: The choice of population size, Ny, led to largely inconsistent results.
For two benchmarks, variance could be decreased with larger initial populations. Along with this decrease was
an increase in bias, due to the lessened efforts devoted to genetic optimization. For the other two benchmarks,
significant changes in variance were not seen.

— Larger function sets are better: Regarding the choice of function set G for inclusion in the genetic search
space, the widest possible space was consistently preferred by evolution, reflected in a steady decrease of
regression or classifier bias to near-zero levels. This was true despite the fact that the majority of functions were
demonstrably detrimental to the evolvability of the problem. Thus it appears easier for evolution to eliminate
ill-suited heuristics than to construct well-suited heuristics from more primitive operators. In particular, when
increasing the function set size, we found no increase in either the average error or the variance of the results,
thus providing evidence against the hypothesis of Fitzgerald and Ryan [7].

—  Well-chosen functions are best: In most cases we explored here, there existed some non-standard functions
in the larger function set very well suited to the problem at hand. It is these functions which accounted for the
majority of gain in efficacy.

7 Future directions

Today, GP is increasingly being applied to knowledge extraction, where a symbolic description of a given database
is desired. For instance, GP serves to extract scientific hypothesis from selected databases [2, 30, 33]; extract
symbolic features from image databases [15, 16, 25, 34]; explore the space of network generators to create predictive
descriptions of agent behaviours or complex networks [22, 23]; and other engineering-related applications [18]. In
all these tasks, the genetic component of the evolved solution has definite meaning, possibly independently of the
evaluation of the solution.

The most popular philosophy of science generally admits any model which makes useful and testable
(falsifiable) predictions, and is parsimonious [21]. These conditions, however, are the product of an age in which the
general assumption was made that only a few competing hypothesis would be available at any time, and hence, that
determination of the most accurate or parsimonious solution would be simple. In the case of automated knowledge
extraction, the possibility exists that indefinitely many models can be posited without any clear means of determining
a best one: generalization becomes a multi-dimensional question, and parsimony, if at all definable, is potentially
subject to the non-computability of minimal program length.

While in some cases human-understandable (or even elegant) solutions are discovered [2, 30], generally
speaking, little attention has been paid to the matter. This study has shown that these issues are problem-dependent:
in cases where a clear solution existed in the space (such as the DistND regression problems) genotypic convergence
was possible, while in other cases (such as the MexHat regression problem) many competing genotypically
distinct solutions existed. The consequences of consistent genetic diversity on the capacity to extract knowledge
automatically remains to be investigated.
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A A note on several other UCI databases

In the course of conducting this research, we also experimented with several popular data sets from the University
of California, Irvine (UCI) [9]. They were explored in some detail, but ultimately rejected as inappropriate for
this style of research. Specifically, we worked with the Breast Cancer Wisconsin (Diagnostic) data set [32], the
Pima Indians Diabetes data set [31] (both original and corrected versions), and the Statlog (Australian Credit
Approval) data set [29]. Performance was systematically tested by measuring MR for different program lengths:
Nprog € 11,2,20,50,100}. We discovered that in all three cases the naive application of GP was incapable of
improvement when given additional complexity (i.e., increasing npg), relative to the natural stochasticity due to
the selection of training and test sets. For all data sets, the difference in MR on randomly chosen test samples was
not significantly different between 71,0, = 2 and 11,0, = 100 (over 30 runs, a textbook z-test did not discover any
trends with p < 0.1). This implied that a simple threshold on one or two input variables was the best discoverable
performance by a naive technique.

Fig. 9. Distribution of training MR (dark gray) and test MR (light gray) for at least 30 runs. (Left) Results of LGP on the credit card data
set varying over npo,- (Right) Results of neural networks on the corrected diabetes data set varying over the number of hidden nodes.
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Lest our results be interpreted as a failure of our particular approach to GP, we re-ran the same experiments using
another non-parametric learner, a neural network. Specifically, neural networks with a varying number of hidden
nodes were trained and tested on the above databases, and trained via backpropagation (using a sigmoid activation
function ¢(v) = 1.7159 - tanh(2v/3), and 50 epochs of training). The number of hidden neurons used varied over
the set {1, 2,5, 10, 50, 100} and 30 runs. In all cases, the test error did not change significantly, save for the Diabetes
database, where in fact the test error worsened significantly.

An illustration of these results is shown in Figure 9. In conclusion of these findings, we deemed the above three
databases too noisy for non-parametric learning, and recommend future researchers to proceed with caution.

B Curve selection

Selection of a model (curve) for data fitting was carried out using the MexHat domain, using the Gy function
set, and over 100 runs. All curves were fit using the Gauss-Newton method of non-linear regression. Goodness-of-
fit error was the residual standard error. All polynomials up to degree seven were fit. We also tested three curves
designed to resemble expected curve shape (from previous experiments with MSE):

errs(\) = aeP* + yA2 + 80 + €

erra(A) = aeP* + YAZ 4+ €
errgs(A) = aePr 480 + € (13)
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The best error rate for fitting the mse data was achieved by the err4 curve (0.00809), slightly outperforming the other

two exp curves, and even outperforming the more complex 7-term polynomial (0.00865). Further simplifications to
the exp curves rapidly increased the error rate. Hence, we elected to use errs as a default guess for all curves, with
other err curves substituted in the case of an improvement of error greater than 0.001. The var curves were typically

modelled via straight lines, unless a curve improved error by more than 0.001.
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