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mjoach@iopan.gda.pl

Abstract

The ability to actively forage for resources is one of the defin-
ing properties of animals, and can be seen as a form of min-
imal cognition. In this paper we model soft-bodied robots,
or “animats”, which are able to swim in a simulated two-
dimensional fluid environment toward food particles emit-
ting a diffusive chemical signal. Both the multicellular de-
velopment and behaviour of the animats are controlled by a
gene regulatory network (GRN), which is encoded in a lin-
ear genome. Coupled with the simulated physics, the activity
of the GRN affects cell divisions and cell movements during
development, as well as the expansion and contraction of fil-
aments connecting the cells in the swimming adult body. The
global motion that emerges from the dynamics of the animat
relies on the spring-like filaments and drag forces created by
the fluid. Our study shows that it is possible to evolve the
animat’s genome (through mutations, duplications and dele-
tions) to achieve directional motion in this environment. It
also suggests that a “minimally cognitive” behaviour of this
kind can emerge without a central control or nervous system.

Introduction
In biological multicellular organisms, the dynamics of gene
regulatory networks (GRNs) controls not only the growth
of the organism, including the maintenance of the cells and
overall structure, but also its behaviour. A striking exam-
ple can be observed in social amoeba such as Dictyostelium
(slime mold), where gene regulation controls both the aggre-
gation of single cells into a slug and the adaptive behaviour
of this collective entity (Bonner, 2008).

In theoretical biology and artificial life, artificial gene net-
works are used to understand how computational properties
of biological networks evolve. One area of research is the
evolution of control of multicellular development (Dellaert
and Beer, 1996; Eggenberger Hotz, 1997; Doursat, 2009;
Schramm and Sendhoff, 2011), another is computation in
a more general sense (Banzhaf, 2003; Nicolau et al., 2010;
Lopes and Costa, 2012). We addressed these two areas in
our previous research using the artificial life system that we
created, GReaNs (for Genetic Regulatory evolving artificial
Networks; reviewed in Joachimczak and Wróbel, 2011). We
investigated in particular the evolution of signal processing

using continuous or spiking computational units (Joachim-
czak and Wróbel, 2010; Wróbel et al., 2012), and the evolu-
tion of soft-bodied artificial organisms, or “animats”, whose
development and locomotion were controlled by a GRN
(Joachimczak and Wróbel, 2012; Joachimczak et al., 2012).

The use of a developmentally inspired stage to generate
the morphology of a virtual robot is an active area of re-
search, involving a range of abstractions for cellular and
genetic control (Hornby and Pollack, 2002; Bongard and
Pfeifer, 2003; Kowaliw et al., 2004; Doursat, 2008; Meng
et al., 2011). The main contribution of our system lies in
the combination of a biologically realistic encoding of the
GRN (and genetic operators that allow for their complexi-
fication) with a realistic physics simulation. Physics rules
govern the movement of cells during development, and the
drag forces during locomotion in the fluid. Although in our
current implementation the environment and the animats are
two-dimensional, the system could be extended to 3D to
make our results even more relevant. Physically plausible
robots could take advantage of their softness—and thus re-
sistance to damage and external forces—when interacting
with other objects (for example, changing shape to squeeze
through small openings). Although the properties of non-
rigid, modular bodies have been explored before (Shimizu
et al., 2005; Umedachi et al., 2010; Schramm and Sendhoff,
2011; Doursat et al., 2012; Hiller and Lipson, 2012; Rieffel
et al., 2013), including our previous work on the diversity of
locomotion strategies in soft-bodied animats (Joachimczak
et al., 2012), the present study is the first attempt, to our
knowledge, at evolving a fully decentralized controller and
morphology of elastic animats that can sense and navigate
their environment.

In the present paper we consider the evolution of gene
regulatory networks able to control both the development of
a soft-bodied animat and its emergent multicellular chemo-
taxis, a basic behaviour that consists of moving toward the
source of an external signal. Despite its apparent simplicity,
this task requires generating motion and coordinating nu-
merous local cell actions to turn the body in the direction of
a gradient. We identify and analyze here several morpholo-
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gies and behavioural strategies toward this goal. The main
contribution of this paper is to demonstrate that such mini-
mal cognition (van Duijn et al., 2006) can collectively evolve
in a multiagent system. We also suggest that it could be the
first step toward more advanced cognitive abilities (Wróbel,
2012). Another novelty is a simplification of the artificial
physics: instead of keeping a different set of environmental
conditions for the developmental phase and the behavioural
phase, we adopt the same physical rules for both.

Controlling the development and behaviour of
multicellular soft-bodied animats

The model used in this paper builds upon our previous work
on soft-bodied multicellular animats (Joachimczak et al.,
2012; Joachimczak and Wróbel, 2012). As before, the gene
regulatory networks that control the bodies are encoded in
linear genomes. We provide here only a brief summary of
how the encoding works and how the dynamics of the net-
work is simulated, then we describe in more detail two mod-
ifications that we brought to the system: unifying the phys-
ical conditions of the developmental and behavorial phases,
and designing new cell-to-cell communication. In this new
design, chemical signals diffuse between cells under a con-
straint of conservation of their total amount (in the previous
implementation, mass was not conserved).

Genome and gene regulatory network
The genome is represented by a list of genetic “elements”
without fixed length. Genetic elements belong to three
classes: (i) genes, which code for products (transcription
factors or chemicals diffusing between cells), (ii) regula-
tory elements, and (iii) special elements, which encode in-
puts and outputs of the regulatory network. One or more
regulatory elements form a regulatory region, which can be
followed in the genome by one or more genes to make a reg-
ulatory unit. The activation levels of the regulatory elements
of a unit influences the concentrations of products coded by
this unit’s genes (Fig. 1). Conversely, regulatory elements
are activated by the products currently present in the cell,
which virtually “bind” to the genome with various probabil-
ities (related to their concentration) and various affinities to
the regulatory sites.

To simulate the behaviour of a cell, we first decode the
genome to obtain the corresponding GRN, in which nodes
represent regulatory units, and weighted directed edges rep-
resent relations of regulation. The signs of the weights indi-
cate whether the regulation is excitatory or inhibitory, while
the weights tune the chemical affinity between products and
regulatory elements. The affinity also depends on the “dis-
tance” between two elements, calculated by construing each
element as a point in an abstract 2D space of chemical in-
teractions (not to be confused with the physical 2D space of
the animat). The affinity is set to 0 if the distance is above a
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Figure 1: Genome (left) and structure of a genetic element
(right). Each element consists of a type field, which specifies
its class (G: gene, P: regulatory, S: special), a sign field, and
N abstract coordinates (here, N = 2), which determine its
affinity to other elements based on distance in RN .

certain threshold, and to a maximum value if the two points
overlap.

While each cell in the animat body contains the same
GRN, the product concentrations that encode the dynamic
state of this network can be different from cell to cell. Con-
centrations are real values updated in discrete time steps.
The increase in concentration, or “synthesis rate”, of a prod-
uct P is influenced by the concentrations of products that
have a non-zero affinity to the regulatory elements of the unit
encoding P. The combined effect of all the products binding
to the same regulatory element is additive; the combined ef-
fect of all the regulatory elements in a regulatory unit is also
additive. If the net effect of the products that have an affinity
to the regulatory elements of a regulatory unit is negative,
the products encoded by this unit’s genes will decrease in
concentration, or “degrade”. In addition, the products en-
coded by regulatory units degrade spontaneously.

The minimal concentration of a product is always 0, but
the maximum concentration is different for transcriptional
factors (1.0) and diffusive products (10.0). There are two
reasons for this 10-fold difference. First, if the maximum
concentration of diffusive products was low, it could not be
detected in the cells far away from the source cell. Sec-
ond, when the initial population is formed during simulated
evolution (i.e. when the genomes are constructed randomly
for the individuals in this population), elements that code for
diffusive products are introduced in these genomes less often
than elements that code for transcription factors. In contrast
to our previous model, the products diffuse here in the body
along the filaments that connect the cells (both during de-
velopment and locomotion). At each time step, the fraction
of concentration of a diffusive product transferred between
cells is proportional to the difference of concentrations be-
tween these cells.

Diffusive products can be considered to be one form of an
output produced by a cell (and input received by other cells).
Our genome model also includes elements that encode GRN
inputs coming from the environment and outputs represent-
ing cell actions. These special elements are not tied to reg-
ulatory units, the graph nodes to which they correspond do
not have recurrent connections, and direct connections be-
tween input and output nodes are not allowed.
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Input elements behave like other regulatory products
(transcription factors and morphogens), but their concentra-
tion represents an environmental signal. In this paper we use
five types of input elements, four of which can be seen as en-
coding “maternal morphogens”. Three of these morphogens
diffuse during development from three point sources, so
their perceived concentration in a given cell depends on the
current position of this cell. One environmental signal is
always present in the same concentration (1.0), throughout
development and beyond, when the animat moves (this sig-
nal plays the same role as a bias node in artificial neural
networks). The fifth chemical starts diffusing in the envi-
ronment when the animat has finished developing, at which
point the animat is supposed to move toward the source of
this chemical. Its concentration in each cell depends on the
cell’s distance from the source, and goes to 0 for a distance
larger than 400 units (noting that the expected value from
multiple trials of the initial distance from the center of mass
of the animat to the food source is 300).

Whereas input elements encode products whose concen-
tration is determined by the environment, output elements
encode products whose concentration impacts the behaviour
of the cells and the entire animat after development. In this
study we use five output elements representing five possible
cell actions: (i) division (when the concentration of the cor-
responding product crosses a threshold), (ii) rotation to the
left and (iii) rotation to the right after division (cell orienta-
tion is represented by a vector; the rotation angle depends
on the concentration of two products), (iv) contraction and
(v) expansion of the filaments linked to the cell (the two
products corresponding to these last actions are used only
after development, when the mature body is able to move).

Physics of cell interactions
As in our previous work, the animats are spring-mass sys-
tems in which cells correspond to point masses, and neigh-
bouring cells are connected by filaments that act as weight-
less springs. This neighbourhood relation is determined by
calculating the Gabriel graph (Gabriel and Sokal, 1969) of
cell positions (Fig. 2).

In our model of two-dimensional swimming, taking after
the simulation of undulatory robotic locomotion by Sfakio-
takis and Tsakiris (2006), the fluid is stationary and only
the spring-edges on the outline of the animat are subject to
fluid drag. The force exerted on an edge of length L is the
sum of a tangential component FT = −dTLv2T sign(vT )
and a normal component FN = −dNLv2N sign(vN ), both
proportional to the squares of the respective velocity com-
ponents vT and vN via fluid drag coefficients dN and dT
(where dN = 200 dT ).

Soft bodies during development and locomotion In con-
trast to our previous work, the rules of physics governing
the development and locomotion are identical. These two
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(f) t=263 (g) t=270 (h) t=400, final shape

Figure 2: Example of the developmental mechanics (for in-
dividual #1, shown in Fig. 3). Cells are represented as circles
of radius r and connected by springs with resting length 2r.

phases remain separate, however, and are different in three
respects. First, to prevent excessive forces and movements
in the developing embryo due to cell division, cells are
slowed down by an extra drag component proportional to
the square of their velocity. This correction can be inter-
preted as the presence of an intracellular fluid more viscous
than the external fluid (an alternative, not used here, would
be to consider that immature filaments are less stiff). The
second difference is that mature filaments in the adult body
define polygons that act as pressurized chambers, whose ex-
pansion and contraction drive them out of equilibrium and
generate a pressure force along the normal of each edge.
Thus these chambers constitute a “hydrostatic skeleton” for
the animat, which also prevents cells from passing through
filaments. Finally, during development cells can break con-
nections or form new ones (as if sprouting filaments or de-
stroying them), whereas the connectivity in the locomoting
adult remains fixed.

Formally, this means that the Gabriel graph is recalculated
at every step of the development, and each pair of neigh-
bouring cells is connected by a spring whose resting length
is the sum of the cells’ radii (in the experiments described
here, all cells have the same radius). When a cell produces a
daughter cell through division, the new cell is placed closer
than the sum of the radii, so the spring that connects these
two cells pushes them away from each other, creating a cas-
cading effect in the body. As the organism is growing, cells
always attempt to maintain constant distances between them
(Fig. 2), and new neighbourhood relations lead to the cre-
ation or removal of springs. To keep computational costs
reasonable, we used a hard limit of 32 cells.

Once the development is finished, the filaments “mature”
i.e. although they retain their elasticity and the body may
change shape during movement, the pattern of connections
between cells is no longer modified. The initial resting
length L0 of each spring is set to the length it had at the
last time step of development. From this point, each cell
controls the springs connected to it using the products en-
coded by two output elements: one product for expansion
and one for contraction. The concentrations of expansion
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products e1 and e2 in the two cells connected by a spring,
and the concentrations of contraction products c1 and c2
combine additively to modify the resting length according
to L = (1 + Amax(e1 + e2 − c1 − c2))L0, where Amax is
a global parameter of the system representing the maximum
actuation amplitude (Amax = 0.2 in this paper).

Evaluation of behaviour and chemotaxis
In our evolutionary model, genetic operators can add el-
ements (duplications), remove elements (deletions), or
change the elements’ type, sign, and coordinates (point mu-
tations). The first two operations affect the size of the
genome and the number of nodes and edges in the GRN,
while the change of coordinates affects the affinities between
products and regulatory elements. The genetic algorithm is
generational, with population size 100, and tournament se-
lection on five randomly drawn individuals. Five of the indi-
viduals in each generation are propagated without change to
the next generation (elitism), and 20% undergo sexual repro-
duction (multipoint crossover). An evolutionary run stops
when the fitness value is stable over a 500-generation span,
which happened between generations #2000 and #3000 in
the experiments described here. To accelerate evolution and
evaluation, nonviable individuals are removed from the pop-
ulation, where an individual is deemed “viable” if three con-
ditions are met: (i) there is a path between at least one input
and the outputs associated with division, contractions or ex-
pansions in the GRN, (ii) no cell division happens during the
last 100 time steps before the end of development (to allow
the physics to equilibrate the adult structure; there is a fixed
number of time steps for development), and (iii) the con-
centrations of expansion or contraction products vary during
locomotion. These criteria of viability guide the search for
the random genome that will be used to create the genomes
of all the individuals in the initial population. These individ-
uals are generated from the seed genome via the duplication,
deletion and point mutation operators. The random search of
a seed genome requires a few thousand trials.

Fitness evaluation
After the soft body has fully developed, through cell divi-
sions starting from a single cell, the animat begins to move.
In our preliminary experiments we placed a food particle re-
peatedly at eight random locations forming a circle around
the animat’s center of mass, and gave higher fitness to ani-
mats closer on average to the particle (after a fixed number
of time steps). Yet, the evolutionary search in this scenario
was not very efficient: only about one third of the evolution-
ary runs resulted in “champions” that showed some chemo-
taxis abilities, but at a considerable computational cost due
to the required eight test cases for each individual in each
generation.

To improve the efficiency of the evolutionary search, we
redesigned the fitness function to be composed of five terms

obtained by evaluating an individual in five test situations.
(1) The first test situation assessed the ability to move as
such: we measured the distance travelled in 10,000 sim-
ulation steps. This evaluation stage also allowed to deter-
mine the main axis of the animat and its preferred direction
of movement. (2) Then, we placed a food particle on the
animat’s left, between -30◦ and -90◦ from the main axis,
at a distance chosen uniformly and randomly in the range
[200,400] from its center of mass (animats cover about 100
units along the main axis), and measured the remaining dis-
tance to the particle after 15,000 simulation steps or, if the
animat’s body overlapped with the particle earlier, the time it
took. (3) The third test repeated the second: the state of the
animat including its shape and the concentrations of prod-
ucts was reset to the state it had at the end of the first test,
and the particle was placed again on the left. (4, 5) The last
two tests were similar to tests (2, 3) with the particle placed
on the right. The resulting fitness function (maximized by
the genetic algorithm) was a linear combination of the dis-
tance d travelled in the first test (via a increasing reward),
the remaining distances dn from the animat’s center of mass
to the food particle, and the total durations tn of the last four
tests (via decreasing rewards):

ffit =
d

cm
+

4∑

n=1

(
1− dn

cf
+ sr

(
1− tn

tmax

))
, (1)

where cf is the maximum distance at which a particle could
be placed, tmax = 15, 000 is the maximum number of steps
in each test, sr is the weight of the time reward with respect
to the remaining distance reward (here, sr = 4), and 1/cm
is the weight of the distance travelled with respect to the last
four tests. This coefficient was set to a value such that, for
an individual with efficient locomotion and chemotaxis, the
first reward component was of the same order as each of the
other four reward components. Our fitness function design
promotes the evolution of a simpler behaviour first (here, lo-
comotion), so that a more complex one (chemotaxis) can be
built upon it. Considering the relations between learning and
evolution, this design brings the fitness function close to a
trainer or tutor that promotes gradual development of com-
petences (by “scaffolding” or “shaping” the agent; (Wood
et al., 1976; Dorigo and Colombetti, 1994)).

Results: swimming patterns of four champions
from independent evolutionary runs

An analysis of the champions obtained from multiple inde-
pendent evolutionary runs (n = 40) shows that about half
of them were able to change direction and to head toward
the food particle, while the other half could only swim for-
ward. Our previous work (Joachimczak et al., 2012) had
identified four classes of morphologies and styles of motor
behavior that emerged more distinctly among the continuum
of possible scenarios: symmetrical protrusions on the left
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Figure 3: Patterns of cell activation (i.e. concentration of
expansion minus contraction products) in individual #1 dur-
ing one motion cycle while it performs a left (a) or right (b)
turn. Red indicates expansion (positive activation); green:
resting length; blue: contraction (negative activation). Num-
bers indicate time steps. The animat swims upward. Videos
available at: http://youtu.be/zi3p164aefY and
http://youtu.be/Cqt8Fy3CWlA

and right (or “fins”), a protrusion at the end (or “tail”), un-
dulation of the whole body, and alternation of whole-body
pulsations, consisting of either fast expansion and slow con-
traction of bodies that had a pointy front and a blunt end, or
the other way around (fast contraction with a blunt front).
Strategies based on pulsations worked by exploiting the fact
that fluid drag is proportional to velocity squared. It was
also characterized by rapid swings of the concentration of
expansion and contraction products in all cells at the same
time, whereas in the first three strategies these concentra-
tions varied in a sinusoidal fashion and exhibited phase gra-
dients along the axes of the body. In the present work, it is
the pulsation strategy that happened to be the most common
among the champions who showed efficient chemotaxis—
despite the fact that, in our previous work, individuals with
protrusions were the fastest in forward motion. It is interest-
ing to note that the other three strategies also tend to appear
in the experiments reported here, but less clearly or only par-
tially as components of a mix (see examples below). This is
probably due to the different physics model and the new re-
quirements for chemotactic abilities which could be encour-
aging pulsations over protrusions or undulation.

We chose four animats among the fittest to be analyzed
in greater detail. The pulsation strategy is used by the first
three, among which two have elongated bodies in the direc-
tion of motion. Individual #1 exhibits a sharp front and a
blunt end, contracts slowly and expands quickly (Fig. 3). In-
dividual #2 shows the opposite, with a blunt front and sharp
end, contracting quickly and expanding slowly. It also gen-
erates thrust by wiggling a “tail” (Fig.4). Individual #3 also
uses a mixed strategy, generating thrust in part from a pul-

0 3 5 9 13

(a)

0 3 5 13 29

(b)
Figure 4: Patterns of cell activation (i.e. concentration of
expansion minus contraction products) in individual #2 dur-
ing one motion cycle while it performs a left (a) or right (b)
turn. Red indicates expansion (positive activation); green:
resting length; blue: contraction (negative activation). Num-
bers indicate time steps. The animat swims upward. Videos
available at: http://youtu.be/TS8Q0JfI7o0 and
http://youtu.be/Dw8-YCWodn8

sating clump in the middle (by fast expansion and slow con-
traction) and in part by the movement of a small tail, too.
A wave of contraction travelling from the front to the back
moves this tail in a position perpendicular to the main axis
of the animat (equal to the direction of motion) when the
animat’s back expands, so that the tail pushes the animat
forward (Fig. 5). Individual #4 is sharply different from the
other three, as its body is elongated in the direction perpen-
dicular to the main axis, and it moves by using two joined
“fins”, which push backward in synchrony to generate a for-
ward movement (Fig. 6). These fins expand when moving
backward, and contract on their return. Their motion is in-
duced by a wave of contractions travelling from the back
toward the front.

In all four animats the control of chemotaxis performed
correctly in the more general situation in which, after the
animat reached one food particle, we placed another particle
away from the animat without resetting its state to a pre-food
situation (although the state was reset during the evaluation
phase of the genetic algorithm). When turning toward the
food, these four animats did not change their motion pat-
tern, thus it is not immediately obvious how they performed
the turn. Defining the level of “activation” of a cell to be
the concentration difference between the expansion product
and the contraction product, changes in collective activation
patterns between the left and right turn can be observed in in-
dividuals #1 and #4, while this symmetry is much less clear
in individuals #2 and #3 (Figs. 3-6).

To understand how the control of turning worked, we
compared the average activation of each cell when food was
placed in front of the animat to the activation of each cell
when food was placed on the left or on the right. The ex-
periments were performed as follows: (i) the animat was
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Figure 5: Patterns of cell activation (i.e. concentration of
expansion minus contraction products) in individual #3 dur-
ing one motion cycle while it performs a left (a) or right (b)
turn. Red indicates expansion (positive activation); green:
resting length; blue: contraction (negative activation). Num-
bers indicate time steps. The animat swims upward. Videos
available at: http://youtu.be/-HoN7ZGU6W4 and
http://youtu.be/UZeCkWgeA5Q

allowed to move forward without a particle for 10,000 steps
and the direction of movement in the last 50 simulation steps
was used to determine its main axis, then the average cell
activity was calculated (over 5,000 steps in each case) with
(ii) a food particle placed in the front, (iii) 60◦ to the left,
and (iv) 60◦ to the right. The initial state of the animat (the
product concentrations and body shape) in each case was
identical to the state at the end of step (i).

Analysis of the changes in the average cell activation in-
dicates that pulsating animats use different strategies based
on changing the size of their body parts. Individual #1, the
animat that contracts slowly and expands quickly, turns by
contracting the part of its body closest to the food (Fig. 7a),
as does individual #3, which uses a mixed strategy of pulsa-
tion and tail propelled by a wave of contractions (Fig. 7c).
On the other hand, individual #2, which contracts quickly
and expands slowly, turns by expanding the side opposite to
food (Fig. 7b).

In terms of how forces generate motion, when individ-
ual #1 with a blunt end expands quickly, it pushes the blunt
end against the fluid, and the relative increase in length of
the external edges on the right side causes a push toward
the left. On the contrary, when individual #2 with a pointy
end contracts quickly, a relative increase in edge length on
its right side leads to an additional pull toward the left. Al-
though individuals #1-3 showed similar strategies for con-
trolling turns, only in the case of the individual #1, which
used a pure pulsation strategy, did we observe an immedi-
ate reaction of the cells (i.e. contraction of the springs, but
maintaining their pulsation) to a food particle close to them.
We also observed similar contractions for cells close to the

0 3 19 28 36
(a)

0 3 22 28 36
(b)

Figure 6: Patterns of cell activation (i.e. concentration of
expansion minus contraction products) in individual #4 dur-
ing one motion cycle while it performs a left (a) or right (b)
turn. Red indicates expansion (positive activation); green:
resting length; blue: contraction (negative activation). Num-
bers indicate time steps. The animat swims upward. Video
available at: http://youtu.be/rvM2T8gpDnU

particle when it was placed inside the body, although this
was not experienced during evolution.

In comparison to the first three examples of animats, all
propelled by pulsations, individual #4 using two joined fins
can turn and move significantly faster, sometimes even over-
shooting the target but correcting its trajectory afterwards. It
is able to switch the direction of the wave of contractions:
without food, the wave moves from the back to the front;
with a food particle on the right, it moves from the right tip
to the left tip, and vice-versa (Fig. 7d). During the switch,
the animat maintains the overall motion pattern: the con-
traction waves are synchronized so that when the right half
of the body moves backward, this part contracts. This results
in a lower thrust from the right fin, hence a right turn, which
is captured by the analysis of average cell activation.

Because the chemical diffusing from the food particle is
sensed by all the cells, it is conceivable that the gene net-
work is reacting proportionally to the strength of the incom-
ing signal, and using this direct response to stimulate the
turn. To detect this possibility, we computed the Spearman’s
rank correlation coefficient between the activity (expansion
and contraction) of the cells and the distance to the food, i.e.
strength of the diffusive signal (Fig. 8). The largest corre-
lations can be observed in individual #1, the pulsating ani-
mat that expands quickly. During this animat’s behaviour,
the high correlations vary in regular patterns. This indicates
that cells close to the food expand their springs and cells far
from food contract their springs proportionally to the food
signal. A similar pattern can often be seen, although not as
clearly, in the other two pulsating animats, #2 and #3. This
is not, however, the case for the two-finned individual #4. In
its case, correlations between activity and distance are rel-
atively low and unstructured, which suggests a more com-
plex strategy during behaviour, including a substantial role
played by intercellular communication.
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(a) (b) (c) (d)

Figure 7: Change in average cell activation (i.e. concentration of expansion minus contraction products) when moving a food
particle from the left or right side to the front of an individual. White cell: no change; blue: average activation is lower; red:
higher. The four pairs from (a) to (d) correspond respectively to individuals #1 to #4. All animats shown moving upward.
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Figure 8: Variations of the Spearman correlation between cell activity and distance to food. Three curves are shown for
individuals #1 and #4. They represent the correlation between cell activity X and the cells’ absolute distance to food, where X
stands for the cells’ expansion (in red), their contraction (in blue), and their activity (expansion minus contraction, in black).
The total period (60 to 70 time steps) corresponds to an animat turning left and moving toward the food. Values near 0 mean
no correlation; values near +1 and −1 mean high correlations, which indicate here a direct relationship between the cells’
behaviour and their distance to the food.

Summary, perspective, and future work
In this work, we showed that it was possible for an evolu-
tionary process to successfully produce soft-bodied multi-
cellular animats that can forage for resources in their envi-
ronment, and whose embryonic development and adult be-
haviour are both controlled by the same gene regulatory net-
work. Neither a particular morphology nor a particular type
of control were enforced, but different strategies were dis-
covered by evolution starting from random genomes. The
chemotactic behaviour that emerged from the interplay be-
tween the shape of the body and the local responses of dif-
ferentiated cells, in the absence of any central control, can
also be regarded as “minimally cognitive”.

The simulated evolution of a coordinated collective be-
haviour, where multiple agents are driven by the same dis-
tributed controller, provides a way to explore the space of
possible morphologies and efficient modes of control in the
nascent field of soft-bodied robotics. Our results show that
soft robots are able to navigate efficiently and robustly by
pulsing the body (symmetrically along the main axis) and
expanding their left or right side slightly more in order to
turn. We hope that these results can contribute to providing
a source of inspiration for the development of new materials
and actuators for soft robots.

Before such materials and actuators are available, how-
ever, much work can still be accomplished in virtual envi-
ronments. As future work, we plan to investigate more thor-
oughly the types of motion and the nature of communication
and synchronization among the cells of evolved individuals.
In particular, we want to analyze how intercellular commu-
nication works to achieve efficient behaviour by exploring a
scenario where only a subset of cells (for example, the cells
on the surface) can sense the environment, while the rest of
the body must rely on indirect information passed through
diffusive substances. We would also like to better assess
the benefits of distributed control, especially in terms of ro-
bustness to damage (e.g. malfunction of springs or cells)
and resistance to external disturbances (e.g. distractors and
noise).
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neering. In Würtz, R. P., editor, Organic computing, Under-
standing complex systems, pages 167–199. Springer.

Doursat, R. (2009). Facilitating evolutionary innovation by devel-
opmental modularity and variability. In Proc. of the 11th An-
nual Conference on Genetic and Evolutionary computation,
GECCO ’09, pages 683–690. ACM.

Doursat, R., Sanchez, C., Dordea, R., Fourquet, D., and Kowaliw,
T. (2012). Embryomorphic engineering: Emergent inno-
vation through evolutionary development. In Doursat, R.,
Sayama, H., and Michel, O., editors, Morphogenetic En-
gineering: Toward Programmable Complex Systems, pages
275–311. Springer-Verlag.

Eggenberger Hotz, P. (1997). Evolving morphologies of simu-
lated 3D organisms based on differential gene expression.
In Proc. of the 4th European Conference on Artificial Life
(ECAL 1997), pages 205–213. MIT Press.

Gabriel, K. R. and Sokal, R. R. (1969). A new statistical approach
to geographic variation analysis. Syst. Zool., 18(3):259–278.

Hiller, J. and Lipson, H. (2012). Automatic design and manufacture
of soft robots. IEEE Trans. Robot., 28(2):457–466.

Hornby, G. S. and Pollack, J. B. (2002). Creating high-level com-
ponents with a generative representation for body-brain evo-
lution. Artif. Life, 8(3):223–246.

Joachimczak, M., Kowaliw, T., Doursat, R., and Wróbel, B. (2012).
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