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Abstract

We present a model of parallel co-evolution of development
and motion control in soft-bodied, multicellular animats with-
out neural networks. Development is guided by an artificial
gene regulatory network (GRN), with real-valued expression
levels, contained in every cell. Embryos develop within a
simulated physics environment and are converted into ani-
mat structures by connecting neighboring cells through elas-
tic springs. Outer cells, which form the external envelope,
are affected by drag forces in a fluid-like environment. Both
the developmental program and locomotion controller are en-
coded into a single genomic sequence, which consists of reg-
ulatory regions and genes expressed into transcription factors
and morphogens. We apply a genetic algorithm to evolve in-
dividuals able to swim in the simulated fluid, where the fitness
depends on distance traveled during the evaluation phase.
We obtain various emergent morphologies and types of lo-
comotion, some of them showing the use of rudimentary ap-
pendages. An analysis of the selected evolved controllers is
provided.

Introduction

The raison d’etre of the nervous systems is to allow for con-
trollable and adaptable movement, but adaptive locomotive
behavior exists in the absence of neurons as well. For exam-
ple, there is evidence that the movement of the multicellular
body of certain slime molds, such as Dictyostelium (‘“social
amoeba”), results from a difference in activity between the
anterior and posterior cells (Bonner, 2008). Dictyostelium
can respond to minute variations of light, temperature, and
concentrations of ammonia and oxygen. In many cases it is
known that these stimuli affect the relative location of so-
called “organizer cells”, which release a diffusive chemical
signal, the same signal used during the aggregation of single
cells into the body (reviewed in Kessin, 2001). The relative
location of these organizers controls the activity level of the
cells across the body, which in turn controls the direction of
motion. This impressive capacity of Dictyostelium for effec-
tive and reactive behavior occurs without any nerve cells.
Dictyostelium is one of the most important “model organ-
isms” in biology for the study of development because its
structure is simple and the number of cell types limited. The
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assumption that knowledge about complex biological sys-
tems can be gained by first studying simpler organisms has
proven tremendously successful. We share this view and, in
the present work, propose that in order to study body-brain
co-development more effectively, it is helpful to consider the
basic case of a body devoid of any nervous system. Our ap-
proach is related to the investigation of minimal sets of be-
haviors that can still exhibit interesting “cognitive” abilities
(minimal cognition; Beer, 1996). In this context, animats ca-
pable of executing non-trivial tasks are generated and tested
on some cognitive challenge. For example, Dale and Hus-
bands (2009) describe a 1D animat that can perform shape
discrimination with limited memory, using only a reaction-
diffusion system. Such systems are known to model many
developmental processes (Yamada et al., 2007; Lefévre and
Mangin, 2010), hence this choice is consistent with the view
that regulation of development and regulation of behavior
have mechanisms in common.

The present work brings several new aspects to the dis-
cussion of the relations between behavior and development,
minimal cognition, and brain-body co-evolution. First,
we achieve an important step towards minimal cognition,
namely the coordinated behavior of multiple cells, based
on a biologically plausible model of gene regulatory net-
works (GRNs). Second, we utilize the same instance of
GRN for both developmental and behavioral control. Our
experiments rely on a modeling and simulation platform
called GReaNs (for Genetic Regulatory evolving artificial
Networks), which is dedicated to the study of GRN evo-
lution and evolutionary development based on a linear ge-
nomic representation of GRNs. Two of us (Joachimczak
and Wrébel, 2011) have shown previously that GReaNs was
successful at evolving asymmetrical multicellular structures
displaying asymmetrical patterning. We then applied the
same model of GRNs to signal processing (Joachimczak
and Wrdbel, 2010b) and to directing the motion of uni-
cellular animats (Joachimczak and Wrébel, 2010a). In the
present work, we rely on another recent extension of GRe-
aNs (Joachimczak and Wrébel, 2012) to model soft-bodied
multicellular animats in motion.
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On the spectrum of available developmental and genera-
tive systems, the GReaNs platform belongs to a relatively
small family of models that attempt to retain some degree
of “biological realism” (e.g., among others, Mjolsness et al.,
1991; Hogeweg, 2000; Salazar-Ciudad and Jernvall, 2002;
Doursat, 2008). From the viewpoint of artificial life, these
models belong to the “cell chemistry” approaches identified
by Stanley and Miikkulainen (2003) in their taxonomic re-
view of artificial embryogeny research. They all attempt to
combine the essential chemical and physical principles of
both genetic regulation and cellular mechanics, and to form
fine-grained agent-based modeling rules based on these prin-
ciples. In such models, the final shape and behavior of an
organism are the result of complex interactions taking place
at several scales of abstraction. Generally, at the smallest
scale, each cell contains a genome that codes for gene prod-
ucts and regulatory sites, and whose interactions (based on
sequence-matching in GReaNs) can be mapped to a GRN.
On a mesoscopic level, the continuous, dynamic update of
product concentrations in the cells leads to various types of
cell behavior, such as division and differentiation, as prod-
ucts in the genome build up or degrade over time. Finally,
the macroscopic shape and action of the organism emerges
from the physical interactions between neighboring cells,
which move in space during growth and motion.

In this study, we introduce in the GReaNs model the pos-
sibility that global patterns of cell activity—themselves the
product of interactions between controller cells, the physical
structure of the individual, and the properties of the simu-
lated environment—give rise to the movement of developed
multicellular bodies. We show that the control and coordi-
nation of this movement do not require an artificial nervous
system, but can merely be achieved by decentralized GRN
activity in every cell and signal diffusion.

A model of development, behavior and
evolution of soft-bodied animats

Genome and GRN

The integrated model of genome, GRN, development and
evolution presented in this paper is essentially the same as
our recent extension of GReaNs that modeled soft-bodied
multicellular animats in motion (Joachimczak and Wrobel,
2012). For the sake of completeness, however, we provide
here a full description of the model. The main difference
is that, in the experiments shown here, the GRN continues
to function during animat movement, while in the previous
version the GRN dynamics stopped at the end of develop-
ment and its final outputs specified the oscillatory behavior
of the cells.

A genome in GReaNs is composed of genetic modules
or “elements”, which are ordered sets of numbers and be-
long to three different classes (Fig. 1): G elements code for
regulatory products/factors, an abstraction of the biological
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transcription factors and diffusive products; P elements are
regulatory regions that control (promote or repress) the ex-
pression of G elements; and S elements are used as inputs
into, and outputs from, the network.

A linear genome is parsed sequentially to build a GRN
in which nodes correspond to regulatory units. A regula-
tory unit is a contiguous series of P elements followed by a
contiguous series of G elements in the genome. The factors
coded by G elements belonging to one unit have the same
concentration. As for S elements, they are each mapped
to a separate node: when the S element corresponds to an
input—to a node with only one regulatory factor (an in-
put factor), when it corresponds to an output—to a node
with one regulatory region and one product (an output fac-
tor). Output factors determine the actions performed by the
cell but do not have affinity to regulatory regions. Products
coded by G elements can have affinity to P elements or reg-
ulatory regions in output nodes. Factors coded by input S
elements can only have affinity to P elements.

The internal structure of each genetic element is com-
posed of several fields (Fig. 1): a type field, which speci-
fies the exact type of the element (subtype of G, P or S);
a sign field; and coordinate fields which specify a point in
RY space (here N = 2). The affinity between a regulatory
factor and a regulatory region is a decreasing exponential
function of the Euclidean distance between their 2D points
(weight reaches maximum 10 when points overlap), with a
cutoff value to prevent full connectivity (weight is 0 when
points are too far apart). The sign of the weight (and thus
if it contributes to inhibition or excitation) is determined by
multiplying the sign fields of the respective elements. Since
one regulatory unit of the GRN can be composed of multiple
P and G elements, any two nodes in the graph can be con-
nected together through multiple edges. There is no limit on
the size of the GRN (number of nodes) in GReaNs.

The concentrations of factors are updated in discrete time
steps. First, the activation level of each regulatory region of
a node is defined as the weighted sum of the concentrations
of all factors (possibly from other units) that have a non-zero
affinity to it. If the node corresponds to a regulatory unit,
the activation of all P elements of a unit is summed. The
rate at which the concentration of factors of a node change
is determined using the following update rule:

AL = (tanhg — L)At (1)

where At (the integration time step) determines how fast
the factors accumulate or degrade in relation to the simula-
tion time step (the value 0.05 is used in this paper), L is the
current concentration of the factors in the node (if there is
more than one, all have the same concentration), restricted
to the interval [0, 1), and A is the summed activation of all P
elements in the unit (the effect of a product on a promoter is
calculated by multiplying the product’s concentration by the
weight).

Artificial Life 13



Brainless Bodies: Controlling the Development and Behavior of Multicellular Animats by Gene Regulation and Diftusive Signals

reg. unit #1  reg. unit #2 reg. unit #3
T

———~ —"
leHsHeHrHrHeHPHeHs HeHr HeHP]

-lorl

~ position in
co-regulated genes \ R? space
a special el ¢ ter (2) a gene:

apr
maternal factor (0) or
cellular function (1)

transcription factor (3)
or morphogene (4)

Figure 1: Genome and structure of a single genetic element.
Each element consists of a type field, which specifies the
class of the element (G, P or S), a sign field, and a sequence
of N abstract coordinates in RN space (N = 2 here), which
determine its affinity to other elements.

The S elements of the genome are used to code for GRN
inputs and outputs, which provide to a cell certain external
signals and the ability to perform certain actions. The con-
centration of input factors is determined outside of the cell
and they diffuse in the physical space of the developmental
process (here, in 2D). They can be seen as playing the role of
“maternal morphogens”. We used here four different input
factors, three of which were produced by sources at specific
locations. The fourth factor had a uniform concentration of
1 across the entire space.

Outputs correspond here to six possible cellular actions.
The first four actions—cell division, change in cell orien-
tation (rotation to the left and to the right), and change
in cell size—affect only development, while the other two
actions—coding for cell contraction and expansion—affect
only the physical motion of the multicellular animat.

Developmental process

The developmental process starts from a single cell. Each
cell contains a copy of the genome, which encodes the GRN
and whose activity controls the cell’s developmental behav-
ior. This behavior comprises mechanical rules and chemical
rules, which are coupled and influence each other.

Mechanical rules: Cells occupy real-valued positions in
2D space (Fig. 2). An embryo develops in a simulated fluid-
like environment, in which cells behave as soft (non-rigid)
physical objects. The overall structure of the embryo is
maintained by elastic forces between nearest-neighbor cells.
Forces are repulsive when cells are too close and attractive
otherwise, reaching an optimal distance at equilibrium. Af-
ter each division of a mother cell, the two daughter cells
partially overlap (see rotation action below), so they imme-
diately repel each other.

Chemical rules: Exogenous maternal morphogens lo-
cated in the environment allow differentiation based on
cells’ location in space. Cells also produce endogenous dif-
fusive factors that affect morphogenesis (morphogens). In
the simplified, grid-less diffusion model used here, the con-
centration of these regulatory factors in a cell at a given loca-
tion is a function of the distance from the source and (for en-
dogenous factors) the historical concentration in the source
cells.
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Figure 2: Example of the developmental mechanics. Cells
are represented as circles. In (e), cells have just divided
but elastic forces have not yet pushed them apart. This was
achieved in (f). (h) shows the final structure after cells were
connected with springs, see Fig. 4a for the same animat in
motion.

Mechanical-chemical coupling: We describe the first
four output functions mentioned above. Cell division is trig-
gered when the concentration buildup of a specific “division
factor” (coded by one of the S elements) reaches a threshold
of 0.9. Should this element become disconnected from the
GRN (due to mutation) or lost (due to deletion), the indi-
vidual would consist of a single cell and have zero fitness.
The division is asymmetric: a new “daughter” cell is formed
from a given “mother” cell. In this paper, there is no asym-
metry in the distribution of gene products (the daughter in-
herits all the concentrations from the mother), but rather in
the cell’s size and orientation angle. This angle is an abstrac-
tion of the cell’s polarization axis and/or cleavage plane and
determines where the daughter cell is placed with respect
to the mother. The orientation of the mother cell remains
the same after division, while cell rotation factors change
the daughter cell’s angle proportionally to their concentra-
tion. A “right rotation factor” causes an increase of the an-
gle, while a “left rotation factor” causes its decrease (a £27
rotation corresponds to the maximum concentration 1 of the
right/left factor). Finally, size increase determines the radius
of the daughter cell at division, which may be up to 1.5 times
the default radius when the concentration of the correspond-
ing “size factor” is at the maximum of 1.

Final structure

The developmental phase is followed by a transformation
of the obtained morphology into the actual structure of the
animat (Fig. 3). In principle, this transformation restricts the
set of evolvable structures, but it is also a way to keep the
evolutionary search focused, provided that such restriction is
still able to produce individuals that are diverse and relevant
to the challenge at hand.

The first step of the transformation process consists of
outlining a tight, but not necessarily convex, hull that en-
closes all the cells. This requires identifying the “outer”
cells and connecting the centers of adjacent cells with edges,
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Figure 3: Algorithmic transformation of a set of points into
an animat structure: (a) cell centers at the end of the devel-
opmental phase, (b) Delaunay triangulation of the set, (c)
Gabriel graph of the set (final structure).

while preserving “concave” regions. The resulting hull cor-
responds to the external surface or “skin” of the animat’s
body, which in a simulated fluid-like environment is the only
source of drag forces. In a second step, the animat’s inter-
nal structure is completed by connecting all the remaining
neighboring cells through elastic edges modeled as damped
springs. This structural graph is calculated on the basis of
cells’ centers only. Cells’ radii affect the final structure only
implicitly, by determining the equilibrium positions of the
cells during development.

To calculate connectivity, we use a particular notion of
spatial proximity defined by the Gabriel graph (Gabriel and
Sokal, 1969), which is different from nearest neighbors: any
two points will be connected by an edge if and only if there
are no other points inside the circle whose diameter is that
edge. The Gabriel graph is a convenient way to obtain non-
convex hulls: it is non-parameterized, scale invariant, and
relatively straightforward to compute. Because it is a sub-
graph of the Delaunay triangulation, it can be derived from
the latter in linear time by removing all the edges that do not
fulfill the above proximity criterion.

Motion generation

The final structure of the animat defines a soft body consist-
ing of springs (the edges of the Gabriel graph), masses (the
cells, vertices of the graph), and pressurized chambers (the
polygons formed by the edges). We employed the Bullet li-
brary (2011), but since it was originally created to simulate
rigid-body objects, forces affecting the soft-bodied animats
were calculated by custom GReaNs code while the Bullet
library was only used to integrate the motion of cell centers.

All cells have the same mass, and all edges have the same
elasticity and damping coefficients (Hook’s coefficients).
Actuation is achieved by varying the resting lengths of the
springs in the structural graph. Each cell-vertex can con-
tract or expand the elastic edges that are connected to it, pro-
voking the shrinkage or dilation of the regions around that
cell. A cell can control this process using two outputs of its
GRN: one output for the contraction of the resting lengths,
the other output for their expansion. Together, two cells con-
nected by an edge modify the resting length L of that edge
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additively:
L=(1+Anu-(e1+e2—c1—c2))-Lo ()

where eq, es (respectively, c1, co) are the concentration lev-
els of the expansion (respectively, contraction) factors in the
two cells, and A, is a parameter of the system represent-
ing the maximum actuation amplitude (set to 0.2 here).

Additionally, a mechanism of pressurized chambers is in-
troduced in the body to oppose excessive compression and
prevent collisions of internal nodes with springs. These
chambers play the role of a “hydrostatic skeleton” for the
animat. At the time of the transformation to the final struc-
ture, the area of each chamber is computed and defined as
its equilibrium area. Then, as a chamber shrinks or expands
during movement, pressure forces react along the normal of
each one of its edges:

Fp:cp'L'(l_ﬁ) (3)
So
where I, is the pressure force acting outward along the nor-
mal of the edge that is considered, L is the length of this
edge, S and S represent the current and equilibrium areas
of the chamber, and c,, is a global pressure coefficient con-
trolling the resistance to compression.

To simulate the fluid-like environment, we apply the sim-
plified model of fluid drag described by Sfakiotakis and
Tsakiris (2006) and previously used in a work about devel-
oping spring-mass animats by Schramm et al. (2011). This
model assumes that the fluid is stationary and that the force
acting on a single edge of the skin is a sum of tangential
and normal drag components, vy and vy, with respect to
the motion of this edge:

Fr = —dr - L -sign(vr) - (vr)? @
Fy =—dy - L-sign(vy) - (UN)Q )

where dr and dyy are the fluid drag coefficients (here, dy =
200d7). Since animats are soft-bodied, the lengths of the
springs change dynamically and the direction of motion of a
given edge is defined as the direction of its center.

Genetic algorithm and fitness evaluation

We use here essentially the same genetic algorithm as in
our previous work (Joachimczak and Wrébel, 2012), with
constant population size (300), elitism, tournament selection
and multipoint crossover for sexual reproduction (concern-
ing 20% of the individuals at each generation). In GReaNss,
genetic operators act at the level of the genomic elements
(affecting element types, sign bits, and coordinates) and
multiple elements (duplications, deletions, and crossover).
To assess the fitness, the genome is first transformed into a
GRN. If the GRN does not contain a directed path (sequence
of connected nodes) from at least one input element to the
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output elements corresponding to cell division and animat
actuation, the individual is assigned a zero fitness (it would
be motionless). The development is allowed to proceed for
400 simulation steps. Cell division is terminated when the
size of the embryo reaches 32 cells. Individuals contain-
ing less than three cells and individuals whose development
process includes a cell division in the last 100 simulation
steps of their development are assigned a zero fitness. The
purpose of the latter criterion is to allow time for the mor-
phology to equilibrate after the last cell division.

After the transformation into a soft-bodied animat, the
multicellular body is immersed in the simulated physical
world and allowed to equilibrate for 200 simulation steps
while the GRN is stopped. This equilibration step is nec-
essary because the levels of expansion and contraction fac-
tors in each cell at the end of development can be non-zero.
Then, the GRN is started again and the animat is allowed
to move for 6000 simulation steps, at the end of which the
distance traveled by its center of mass is converted into a
fitness value. Since absolute distance is rewarded, it is ben-
eficial for individuals to be bigger. Indeed, we observe that
the best evolved animats almost always have the maximum
possible cell size and number (32 cells). The rules of physics
in the environment used for development and assessment of
mobility are different, but the cells can still communicate
through diffusive factors during motion. This diffusion pro-
cess takes into account distances between cells at the end of
development.

The initial population is generated randomly, by creating
positive-fitness individuals with 10 regulatory units, each
unit containing one P and one G element. Most random
genomes created in this fashion have a zero fitness, so it
is necessary to generate a few hundred of them before a
positive-fitness individual can be placed in the initial pop-
ulation.

Results and Analysis

We have simulated evolution in several independent runs un-
der various environmental conditions (the physics parame-
ters for the simulation of motion, see below). We avoided
settings in which the mass of the cells was so high that it
could result in exaggerated stretch to the body, or in which
spring constants were so high that they would lead to in-
stability or “unnatural” motions. Unnatural motions exploit
unwanted artifacts, such as collisions of internal nodes with
each other or interpenetration of body fragments (the latter
could always be reduced by decreasing the time step). Un-
der these constraints, we were still able to obtain effective
patterns of locomotion over two orders of magnitude of the
fluid drag coefficient d, and across a range of Hook’s elas-
tic coefficients and hydrostatic skeleton pressure values c),.
Evolution was successful at finding animats capable of lo-
comotion. In nearly all runs, using a variety of parameters
for the local physics, our genetic algorithm produced GRNs
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that could control both a developing animat morphology and
its functional motion via coordinated contractions and ex-
pansions. In some evolutionary runs, structures that looked
like “appendages” have emerged. Motion was caused by
emergent oscillations and other periodic patterns controlled
by the GRN in each individual cell of the animat. The re-
sults obtained here are consistent with our previous exper-
iments in which motion was not dynamically controlled by
the GRN in real time, but rather the equilibrium length of the
springs and the phase and frequency of oscillations were de-
termined and fixed at the end of development (Joachimczak
and Wrébel, 2012).

To analyze the behavior of the animats, we describe them
over two axes: the main body axis (front-back) and the left-
right axis. These were determined by computing the direc-
tion of motion of the animat, and declaring the resulting vec-
tor (extending from the center of mass of the animat) as the
main body axis, then the orthogonal direction as the left-
right axis. The activity of each cell was defined as the abso-
lute change in contraction or expansion of the resting length
from the previous time step (|A(e; — ¢;)| from equation 2).
The average activity along an axis was computed by project-
ing all cells onto this axis, and calculating the mean over the
area before and after the center of mass. We will thus discuss
the average cell activity of the front of the animat compared
to the back, and the left compared to the right. We also show
the concentrations of the expansion and contraction factors
in a few selected cells of the animats, to explain how over-
all animat motion is generated by the collective behavior of
several GRNs.

We identified several distinct strategies through which lo-
comotion was achieved. We informally describe four such
strategies here, calling them turtle, shark, worm, and jel-
Iyfish.! Naturally, these metaphors only refer to the vi-
sual appearance of motion, not the actual mechanism by
which these real-world, nerve-endowed animals operate. In-
deed, the difficulty of finding nerve-free organisms for such
metaphors highlights the fact that the biological organisms
that we are familiar with control their motion using nervous
systems. The worms and turtles are similar to individuals
seen in our previous work (Joachimczak and Wrébel, 2012).
The jellyfish strategy, however, is new in our present control
model, and the shark is either new or, perhaps, an extreme
version of a worm-like behavior.

The turtle strategy is based on the use of approximately
symmetric protrusions on the left and right of the animat,
which move in more or less regular oscillatory patterns. Av-
erage cell activity oscillate symmetrically over the left-right
axis, with changes in phase and amplitude over the front-
back axis. Similar individuals constituted the majority of
the best individuals obtained in independent runs under low
fluid drag. In most of these individuals, the motion stemmed

'Supplementary videos of animat behaviors are available at:
http://evosys.org/grnanimats
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(4.3) Plots of pattern of actuation (y-axis) for one or two particular cells over time (x-axis), where the red line
indicates the concentration of the expansion factor and the blue line corresponds to the contraction factor.

Figure 4: Visualization of exemplars of the four strategies of behavior discovered by evolution.
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from a wave of expansions and contractions continuously
traveling from the back towards the front of the animat. The
analysis of one such individual (Fig. 4.a) revealed that cells
shared the same overall evolved pattern of activity. The con-
centration of the factors that caused expansion and contrac-
tion remained antisynchronized inside each individual cell,
while there was another phase shift (almost at antiphase)
when comparing the same product between different cells in
the front and the back of the animat (Fig. 4.3a). Thus con-
tractions in the front practically corresponded to expansions
in the back, and vice-versa (Fig. 4.2a, top), in a manner con-
sistent with a traveling wave of contraction-expansion across
the body.

In the shark strategy, there was a protrusion at the back of
the animat, which oscillated at a relatively high frequency
with a larger displacement than the remainder of the body.
The average cell activity over the front-back axis oscillated
symmetrically, while there was a change in phase over the
left-right axis (Fig. 4.2b). Multiple individuals of this type
have been observed, even though they clearly did not ex-
hibit an aerodynamic shape. For the individual shown in
Fig. 4b, the motion was driven by a wave of expansion that
traveled in the direction perpendicular to the motion, from
the left to the right. However, a cell located at the tip of the
motion-generating protrusion was excluded from this wave
pattern and maintained a constant maximum concentration
of the expansion factor, thereby sustaining the length of pro-
trusion. Furthermore, a bulge located on the left, next to the
back protrusion, collided during its own expansion with the
“tail” in every cycle, passing on its kinetic energy and mak-
ing the tail quickly reverse its direction of motion. Interest-
ingly, the concentration of the contraction factor remained
constant (although not uniform) in all cells, so it only pro-
vided a bias for the resting lengths of the springs. The anal-
ysis of two particular cells located at the back of the indi-
vidual (Fig. 4.3b) revealed sinusoidal oscillations of the ex-
pansion factor. They had the highest oscillation frequency
among all individuals investigated in this paper.

The worm strategy involved an elongated body driven by
the propagation of synchronized waves of contraction and
expansion, which traveled in the direction perpendicular to
the motion, from the left side of the body to the right, re-
sulting in undulatory movement. Cell activity here was not
symmetric, neither over the front-back nor over the left-right
axis, and the average activity was less regular than in other
strategies (Fig. 4.2c). Only a few such individuals were ob-
served. Comparing the activity of the expansion and con-
traction factors in cells located symmetrically on the left
and right sides of the body (Fig. 4.3c) revealed sinusoidal
oscillations in antiphase and shifted approximately by half a
period between the sides of the body.

Finally, animats using the fourth strategy, jellyfish, were
bilaterally symmetric with one blunt end and one pointed
end. The whole body expanded or contracted at the same
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time. Because fluid drag generated by an edge was propor-
tional to the square of its velocity, slower expansion resulted
in a smaller drag. Animats with a pointy front contracted
slowly and expanded very rapidly, while animats with a
pointy back expanded slowly and then contracted rapidly. In
the individual of the latter type analyzed in detail (Fig. 4.2d),
the compacted state was sustained and the body moved by
inertia for some time, slowed down by the fluid drag, and
then the cycle repeated itself. The overall impression was
that of a propelling motion similar to a jellyfish. The ob-
served pattern of cell activity resulted from the fact that the
expansion factor’s concentration decreased much faster than
it increased (Fig. 4.3d), and from a matching dynamics of
the contraction factor. The levels of both factors in the cell
were stable when the body traveled by inertia.

Throughout, we noted that evolution found synchronized
actuators for contraction and expansion to great effect. How-
ever, it seemed to avoid using the full amplitude of actua-
tion possible. Rather, it explored a trade-off between ampli-
tude and frequency: increasing the rate of activity buildup
required more products binding at high levels to a given reg-
ulatory unit.

Summary

In this work, we have re-approached the development and
control of virtual soft-bodied robots in GReaNs. In contrast
to our previous study (Joachimczak and Wrébel, 2012) and
other models (Schramm et al., 2011), the simulations de-
scribed here relied on gene regulation for both the devel-
opmental process and behavioral control. Evolution was
successful at generating moving animats and discovering
several functional locomotion strategies. Motion was con-
trolled via coordinated cell actions, where individual cells
displayed emergent periodic patterns of expansion and con-
traction. Moreover, a previously unseen form of behav-
ior, one characterized by rapid contraction or expansion of
a largely symmetric animat, was discovered. This behav-
ior was made possible by the GRN’s fine-grained control
over the contraction and expansion speeds, instead of a sine-
driven actuation as in our previous work.

The reliance of the evolved locomotion mechanisms upon
oscillatory changes in product concentrations is reminiscent
of the rhythmic motor patterns of biological animals. By
contrast, the movement of our animats is not based on a
central pattern generator but a distributed collective effect.
All cells of these soft-bodied, brainless animats can be po-
tentially involved in actuation and control. It was demon-
strated previously that a GRN could easily evolve toward
an oscillatory behavior (e.g., Banzhaf, 2003; Joachimczak
and Wrébel, 2010b). Our results show that, while motion
relies on periodic changes of product concentration, devel-
opment results in the differentiation of cells along the body
axes in terms of phase and amplitude of these oscillations. In
other terms, high evolvability stems from the relative ease of
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evolving oscillatory GRNs, while a natural outcome of the
developmental process is that neighboring cells have similar,
though not identical dynamic properties.

The animat model used in this paper, a collection of
springs modifying their resting length, is similar to a model
of a soft-bodied robot. We expect that altering the physical
part of the model to accommodate other types of actuation
should yield similar results. In particular, the present sys-
tem could be adjusted to generate designs for realistic soft-
bodied robots. One of the possible directions for future work
is to incorporate a notion of “energy efficiency” into the fit-
ness function by assuming the use of a given type of existing
hardware actuators.

Another direction for future work is to allow active guid-
ance without a nervous system. This could be achieved for
example by allowing surface cells to sense chemical gradi-
ents and modify their pattern of activity accordingly, as well
as to pass information to internal cells through the use of
diffusing morphogens.

One of the features of artificial life is the liberty to make
counterfactual assumptions. Amongst other things, we view
this work as a challenge to like-minded practitioners: qual-
itatively describe the role of neural machinery, and from
there, refine our understanding of the role of a neural sys-
tem.
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