Complex Systems Made Simple

- 1. Introduction
- 2. A Complex Systems Sampler

3. Commonalities

- a. Common elementary features of complex systems
- b. Common global properties of complex systems
- 4. NetLogo Tutorial

Complex Systems Made Simple

- 1. Introduction
- 2. A Complex Systems Sampler
- 3. Commonalities
 - a. Common elementary features of complex systems
 - Large number of elements
 - Individual behavior rules
 - Local interactions
 - Node / link diversity & dynamics
 - Hierarchy of levels, heterogeneity, reproducibility
 - b. Common global properties of complex systems

4. NetLogo Tutorial

7/16-18/2008

a. Elementary features – *Large number of elements*

System	Nodes
BZ reaction	molecules
slime mold	amoebae
animal coats	cells
insect colonies	ants, termites
flocking, traffic	animals, cars
swarm sync	fireflies

a. Elementary features – *Individual behavior rules*

System	Nodes	Rules
BZ reaction	molecules	react, diffuse
slime mold	amoebae	diffuse, sync, move
animal coats	cells	activate, inhibit
insect colonies	ants, termites	carry, deposit, follow
flocking, traffic	animals, cars	steer, adjust speed
swarm sync	fireflies	reset phase/freq

Imited repertoire of fixed and reactive behavior

note: elements are not intrinsically "simple", only functionally at the level of description of the studied process

a. Elementary features – *Local interactions: geometric, regular*

System	Nodes	Edges
BZ reaction	molecules	collisions
slime mold	amoebae	cAMP
animal coats	cells	morphogens
insect colonies	ants, termites	pheromone
flocking, traffic	animals, cars	perception
swarm sync	fireflies	photons ± long-range

- interactions inside a local neighborhood in 2-D or 3-D geometric space
- limited "visibility" within Euclidean distance
- one-to-one messaging or one-to-many broadcasting

a. Elementary features – *Local interactions: Semi-geometric, irregular*

	System	Nodes	Edges
	Internet	routers	wires
	brain	neurons	synapses
	WWW	pages	hyperlinks
(The second	Hollywood	actors	movies
har	gene regulation	proteins	binding sites
linsectivorous birds Spiders	ecology web	species	competition

- local neighborhoods can also contain "long-range" links:
 - either "element" nodes located in space
 - or "categorical" nodes not located in space
- still limited "visibility", but not according to distance

a. Elementary features – *Node diversity*

	System	Node diversity	<i>Node state/ dynamics</i>	
	Internet	routers, PCs, switches	routing state/ algorithm	
	brain	sensory, inter, motor neuron	electrical potentials	
	WWW	commercial, educational	popularity, num. of visits	
	Hollywood	traits, talent	<i>celebrity level, contracts</i>	nodes can be of different subtypes: , , , , , , , , , , , , , , , , , , ,
h	gene regulation	protein type, DNA sites	boundness, concentration	► nodes have variable state
linsectivorous birds Spiders	ecology web	species traits (diet, reprod.)	fitness, density	of activity:

a. Elementary features – *Node dynamics: individual nodes*

 ➢ if each node in the network obey some diff equation, e.g.: *dx dt dt*

a. Elementary features – *Node dynamics: coupled nodes*

a complex system is a set of coupled nodes obeying:
 generally, three types of node network dynamics:

$$\frac{dx_A}{dt} = f(x_A) + \sum_{A \leftarrow B} g(x_A, x_B)$$

fixed point node network

limit cycle node network

chaotic node network

a. Elementary features – *Node dynamics: attractors in full networks*

Pattern retrieval in Hopfield memory: full graph with Ising-type interactions

fixed point nodes
fully connected network
→ a few fixed patterns

(≈ 0.14 N)

a. Elementary features – *Node dynamics: attractors in lattice networks*

fixed point nodes
regular lattice network
→ a great number of new patterns

Pattern formation in animal pigmentation: 2-D lattice with stationary reaction-diffusion (NetLogo simulation, Uri Wilensky, Northwestern University, IL)

7/16-18/2008

a. Elementary features – *Node dynamics: sync in full networks*

limit cycle nodes
 fully connected network
 → global synchronization

Spontaneous synchronization in a network of limit-cycle oscillators with distributed natural frequencies (Strogatz, 2001)

7/16-18/2008

a. Elementary features – *Node dynamics: sync in full networks*

limit cycle nodes
 fully connected network
 → global synchronization

Spontaneous synchronization in a swarm of fireflies: (almost) fully connected graph of independent oscillators (NetLogo simulation, Uri Wilensky, Northwestern University, IL)

7/16-18/2008

a. Elementary features – *Node dynamics: waves in lattice networks*

limit cycle nodes
 regular lattice network
 → traveling waves

BZ reaction or slime mold aggregation: 2-D lattice with oscillatory reaction-diffusion (NetLogo simulation, Uri Wilensky, Northwestern University, IL)

7/16-18/2008

a. Elementary features – *Node dynamics: epidemics in complex networks*

3-D visualization of social links (A. S. Klovdahl, http://carnap.ss.uci.edu/vis.html) understand of beneficial or nefarious activity/failures spread over a network:

- diseases
- power blackouts
- computer viruses
- fashions, etc.
- susceptible-infected-susceptible (SIS) epidemiological model:
 - two node states: infected or susceptible
 - susceptible nodes can get infected with probability v
 - infected nodes heal and become susceptible again with proba δ

 \rightarrow spreading rate: $\lambda = \nu / \delta$

a. Elementary features – *Node dynamics: epidemics in complex networks*

Epidemic on exponential and scale-free networks (Pastor-Satorras & Vespignani, 2001)

exponential network
 → spread with threshold

scale-free network
 → spread WITHOUT threshold

a. Elementary features – *Link diversity & dynamics*

System	Link diversity	Link state/ dynamics	
Internet	bandwidth (DSL, cable)		1
brain	excit., inhib. synapses	synap. weight, <u>learning</u>	
WWW			
Hollywood	<i>theater movie,</i> <i>TV series</i>	partnerships	
gene regulation	enhancing, blocking	<i>mutations, evolution</i>	
ecology web	predation, cooperation	evolution, selection	

links can be of different subtypes: /, /, /...

Iinks can also have variable weights:

a. Elementary features – *Link diversity & dynamics*

- the state of a network generally evolves on two time-scales:
 - fast time scale: node activities
 - slow time scale: connection weights

 \succ examples:

- neural networks: activities & learning
- gene networks: expression & mutations

- the structural complexity of a network can also evolve by adding or removing nodes and edges
- \succ examples:
 - Internet, WWW, actors. ecology, etc.

7/16-18/2008

a. Elementary features – *Hierarchy of levels*

a. Elementary features – *Heterogeneity, reproducibility*

✓ "complex" doesn't imply "homogeneous":

 \rightarrow rich agent diversity and pattern heterogeneity, via positions

- ✓ "complex" doesn't imply "flat":
 - → modular, hierarchical, architecturally detailed (multiscale)
- ✓ "complex" doesn't imply "random":

→ <u>reproducible</u> patterns relying on <u>programmable</u> agents

complex systems are more than spaghetti bowls

Complex Systems Made Simple

- 1. Introduction
- 2. A Complex Systems Sampler
- 3. Commonalities
 - a. Common elementary features of complex systems
 - b. Common global properties of complex systems
 - Emergence, self-organization
 - Positive feedback, decentralization
 - Between simple and disordered
 - "More is different", phase transitions
 - Adaptation & evolution

4. NetLogo Tutorial

3. Commonalitiesb. Global properties

✓ key concepts ("buzzwords") expressing different facets of CS

- some have different definitions across disciplines; no global agreement
- others have a clearer meaning but different weights in "making" CS
- terms overlapping but not equivalent; yet, often grouped or interchanged

b. Global properties – *Emergence*

- ✓ the system has properties that the elements do not have
 - ex: microscopic units form macroscopic patterns (convection rolls, spiral waves, stripes, spots)
 - ex: "ignorant" individuals make intelligent collective decisions (insect colonies, neurons, market traders)
- ✓ these properties cannot be easily inferred or *deduced*
 - ex: liquid water or ice emerging from H₂O molecules
 - ex: cognition and consciousness emerging from neurons
- ✓ different properties can emerge from the same elements/rules
 - ex: the same molecules of water combine to form liquid or ice crystals
 - ex: the same cellular automaton rules change behavior from initial state
- ✓ global properties can constitute local rules at a higher level: jumping from level to level through emergence

b. Global properties – *Self-organization*

- ✓ the organization or "order" of the system increases internally without external intervention
 - ex: aggregating processes (slime mold, pigmentation spots, termite heaps, flocks, etc.)
- ✓ order can be quantified using an "order parameter"
 - ex: cluster rate in aggregation
 - ex: long-range spatiotemporal correlations (spiral waves, synchrony)
- crucial to the notion of *self*-organization are the interactions *among* elements (vs. interaction with an external cause)
 - either directly: element \leftrightarrow element
 - or indirectly: element ↔ environment ↔ element ("stigmergy" in social insects)

b. Global properties - Emergence & self-organization

- ✓ counter-examples of emergence *without* self-organization
 - ex: well-informed leader (orchestra conductor, military officer)
 - ex: global plan (construction area), full instructions (orchestra)
- ✓ immergence: emergent structure feeds back to the elements
 - ex: market influences buyers, traffic jam influences drivers

Chris Langton's view of emergence in complex systems (from "Complexity", Roger Lewin, University of Chicago Press)

b. Global properties – *Positive feedback*

- ✓ positive feedback, circularity
 - ex: ants bring more pheromone where there is pheromone
 - ex: termites bring pellets of soil where there is a heap of soil
 - ex: pigmented cells differentiate next to other pigmented cells
 - ex: fireflies want to synchronize with the swarm's flashes
 - ex: cars speed up where there are fast cars in front of them
 - ex: traders prefer buying stock that goes up
 - ex: the media talk about what is currently talked about in the media
- → amplification of fluctuations (nonlinearity)
- \rightarrow instability of initially homogeneous state
- → broken symmetry
- → creation of structure

b. Global properties – *Decentralization*

✓ order without a leader

- ex: the central amoeba in spiral waves is *not* a pacemaker
- ex: the queen ant is *not* a manager
- ex: the first bird in a V-shaped flock is *not* a leader

✓ the "invisible hand"

- <u>distribution</u>: each element carry a small piece of the global information
- ignorance: elements don't have explicit knowledge or goals about the group
- parallelism: elements act simultaneously
- ✓ decentralized processes are far more abundant than leaderguided processes, in nature and human societies
- ✓ ... and yet, the notion of decentralization is still counterintuitive
 - many decentralized phenomena are still poorly understood
 - a "leader-less" or "designer-less" explanation still meets with resistance
 - → mostly due to human perceptual bias toward an identifiable source or primary cause

b. Global properties – *Between simple and disordered*

- ✓ Warren Weaver's 1948 classification of scientific activity
 - 1. <u>Problems of simplicity</u> 1- to few-variable problems of the 17th, 18th and 19th centuries: Newtonian mechanics, electricity, chemistry, etc.
 - 2. <u>Problems of disorganized complexity</u> million- and billion-variable problems of the 20th century: statistical mechanics (gas, fluid, solid), probability theory, theory of information, etc.
 - 3. <u>Problems of organized complexity ("middle region")</u> dozens or hundreds of *interrelated* variables [21st century problems]: biology, medicine, psychology, economics, social science, etc.

✓ the billiards table analogy (from S. Johnson's book "Emergence")

- 1. a few balls: individual trajectories from velocities, angles, friction
- 2. a million balls: only broad statistical trends (average path, pressure)
- 3. a hundred motorized balls obeying simple rules and self-arranging $\rightarrow ??$

✓ another classification: Wolfram's or Langton's 4 classes of cellular automata

b. Global properties – "More is different", phase transitions

- ✓ Philip W. Anderson's 1972 slogan "More is different"
 - criticism of the reductionist/constructionist hard line: "after discovering the fundamental laws, it is just a matter of reconstructing from them"
 - …however, particle physics does not help solid state physics or biology!
 - reconstructionism crashes on the cliffs of scale and complexity
 - hierarchy levels of science show *qualitative* leaps (*new* properties)
 - psychology is not just applied biology, biology is not applied chemistry
 - ...yet again, this does *not* imply any unknown external or mysterious force; only a fundamental limitation in our analytical tools

✓ notion of "critical mass"

- ex: need enough ants for a pheromone trail to form
- ex: need enough chemical types for an autocatalytic set to appear

✓ phase transitions in parameter space

- broken symmetries
- most interesting: transition from randomness or chaos to order

b. Global properties – *Decentralization vs. "more is different"?*

- ✓ recap: decentralization (the "invisible hand")
 - no leader, no designer, no external organizing force that does not belong to the system
 - the emergent properties entirely rely on the elements' behavior and interactions among *themselves*
- ✓ recap: "more is different"
 - ... but these properties cannot be *inferred* or *predicted* just by looking at the elements
 - beyond a critical mass and across phase transition lines, the system exhibits *qualitatively new* behaviors
- \rightarrow only an apparent paradox
 - both aspects can, and actually *do* coexist in natural systems
 - neither hard-line reductionism ("everything boils down to superstrings")
 - nor "vitalism" or intelligent design ("something else must intervene")

b. Global properties – "Complexity": an illusion?

- ✓ abundance of autonomous, emergent systems in the environment
 - nature: geological patterns, biological cells, organisms, animal societies, ecosystems, etc.
 - spontaneously emerging human-made super-structures: cities, markets, Internet, etc.
- → decentralized, unplanned systems are robust, efficient and constitute the overwhelming majority of system types
 - it is our artificially centralized, planned engineered systems that are fragile, costly to build, and rare, as they require a higher intelligence to arise
- ✓ "complexity", an artifact of our cognitive bias?
 - because we are accustomed to the illusion of a central consciousness, we traditionally refer to decentralized systems as "complex"
 - but in fact these systems might be *simpler* than our familiar engineered devices with their uniquely hierarchical and complicated arrangement