Complex Systems Made Simple

1. Introduction

2. A Complex Systems Sampler

- a. Cellular automata
- b. Pattern formation
- c. Swarm intelligence
- d. Complex networks
- e. Spatial communities
- f. Structured morphogenesis
- 3. Commonalities

4. NetLogo Tutorial

7/16-18/2008

Complex Systems Made Simple

1. Introduction

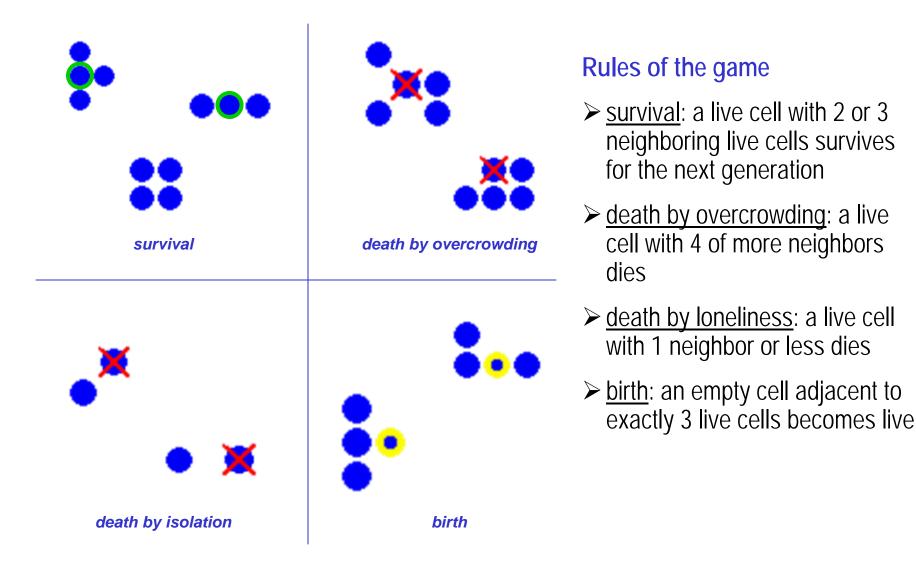
2. A Complex Systems Sampler

- a. Cellular automata:
- b. Pattern formation
- c. Swarm intelligence
- d. Complex networks
- e. Spatial communities
- f. Structured morphogenesis
- 3. Commonalities

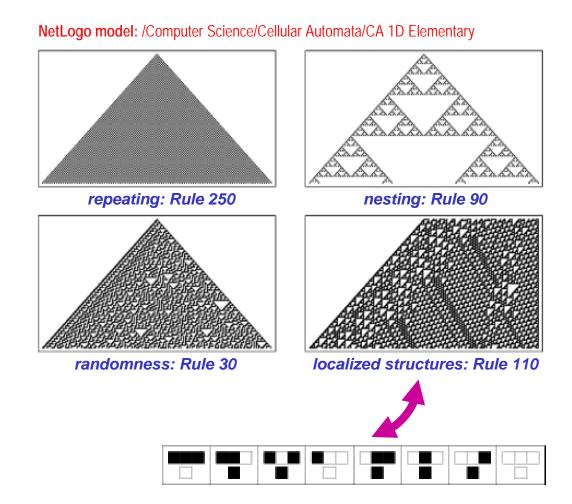
4. NetLogo Tutorial

7/16-18/2008

- Game of life
 - 1-D binary automata


2. A Complex Systems Sampler a. Cellular automata – *Game of life*

NetLogo model: /Computer Science/Cellular Automata/Life Bill Gosper's Glider Gun (Wikipedia, "Conway's Game of Life")


History

- ➤ most famous cellular automaton
- designed by John H. Conway in 1970
- in an attempt to find a simpler self-replicating machine than von Neumann's 29-state cells
- very simple set of rules on black and white pixels
- creates small "autonomous", "life-like" patterns (static, repeating, translating, etc.) on the few-pixel scale

2. A Complex Systems Sampler a. Cellular automata – *Game of life*

2. A Complex Systems Sampler a. Cellular automata – *1-D binary automata*

History

- "elementary CAs" = black and white pixels on one row
- like the Game of Life, simple rules depending on nearest neighbors only (here, 2)
- ➤ total number of rules = 2^(2^3) = 256
- Wolfram's attempt to classify them in four major groups:
 - repetition
 - nesting
 - [apparent] randomness
 - localized structures ("complex")

2. A Complex Systems Sampler a. Cellular automata

Concepts collected from these examples

- \succ large number of elements = pixels
- ➤ ultra-simple local rules
- emergence of macroscopic structures (patterns >> pixels)
- complex & diverse patterns (self-reproducible, periodic, irregular)

Complex Systems Made Simple

•

Physical: convection cells

Chemical: BZ reaction

Biological: animal colors; slime mold

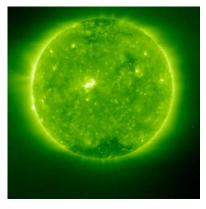
1. Introduction

2. A Complex Systems Sampler

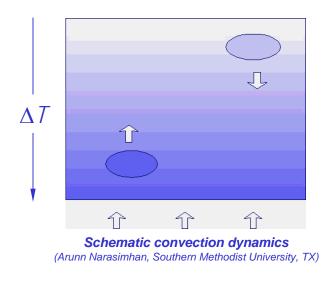
- a. Cellular automata
- b. Pattern formation:
- c. Swarm intelligence
- d. Complex networks
- e. Spatial communities
- f. Structured morphogenesis
- 3. Commonalities

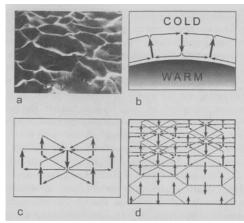
4. NetLogo Tutorial

Rayleigh-Bénard convection cells in liquid heated uniformly from below (Scott Camazine, http://www.scottcamazine.com)


Convection cells in liquid (detail) (Manuel Velarde, Universidad Complutense, Madrid)

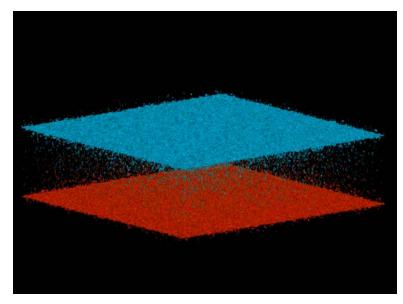
Phenomenon


- "thermal convection" is the motion of fluids caused by a temperature differential
- observed at multiple scales, whether frying pan or geo/astrophysical systems
- spontaneous symmetrybreaking of a homogeneous state
- formation of stripes and cells, several order of magnitudes larger than molecular scale



Sand dunes (Scott Camazine, http://www.scottcamazine.com)

Solar magnetoconvection (Steven R. Lantz, Cornell Theory Center, NY)



Hexagonal arrangement of sand dunes (Solé and Goodwin, "Signs of Life", Perseus Books)

Mechanism

- warm fluid is pushed up from the bottom by surrounding higher density (buoyancy force)
- cold fluid sinks down from the top due to surrounding lower density
- ➤ accelerated motion
- viscosity and thermal diffusion normally counteract buoyancy...
- > ... but only up to a critical temperature differential ΔT_c
- > beyond ΔT_c buoyancy takes over and breaks up the fluid into alternating rolls

Convection dynamics (Stéphane Labrosse, Institut de Physique du Globe, Paris)

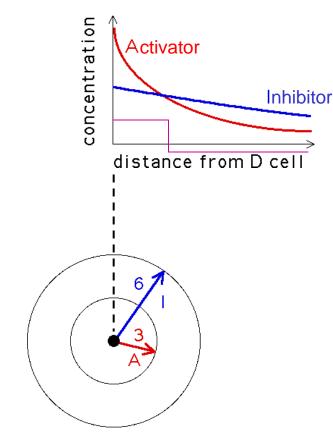
Modeling & simulation

- surfaces of constant temperatures (red for hot, blue for cold)
- visualization of ascending and descending currents
- \succ notice the moving cell borders at the top
- ➤ marginal case of multi-agent modeling:
 - top-down modeling by discretization of macroscopic differential equations
 - extremely fine-grain and dense distribution of agents = fixed grid

Concepts collected from this example

- > large number of elementary constituents
- emergence of macroscopic structures (convection cells >> molecules)
- ➢ self-arranged patterns
- amplification of small fluctuations (positive feedback, symmetry breaking)
- phase transition
- ➢ far from equilibrium





Mammal fur, seashells, and insect wings (Scott Camazine, http://www.scottcamazine.com)

Phenomenon

- \succ rich diversity of pigment patterns across species
- \succ evolutionary advantage:
 - warning
 - camouflage, mimicry
 - sexual attraction
 - individual recognition
 - etc.

David Young's model of fur spots and stripes (Michael Frame & Benoit Mandelbrot, Yale University)

Possible mechanism (schematic)

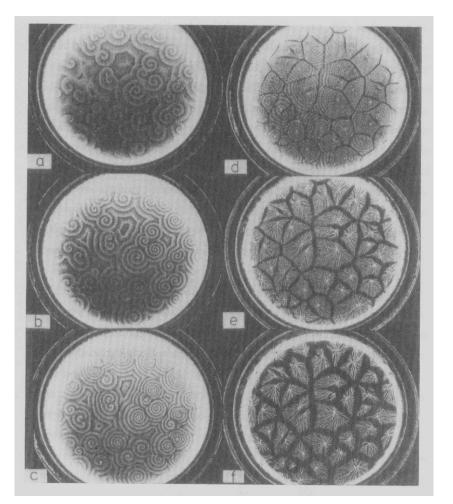
- development of spots and stripes on mammal fur
- melanocytes (pigment cells) can be undifferentiated "U", or differentiated "D"
- ➢ only D cells produce color → they diffuse two morphogens, activator "A" and inhibitor "I"
- neighboring cells differentiate or not according to:
 - short-range activation
 - long-range inhibition
- ➤ a classical case of *reaction-diffusion*

NetLogo model: /Biology/Fur

NetLogo fur coat simulation, after David Young's model (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

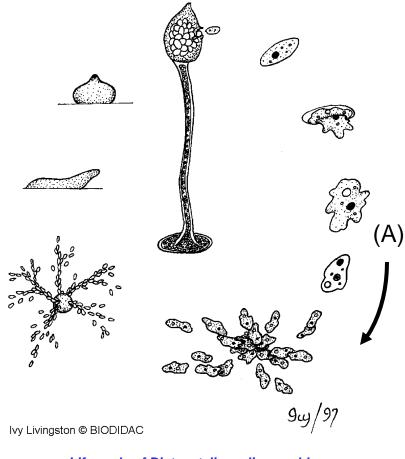
example of *cellular* automaton


➤ each cell has 2 states:

- "pigmented" (black)
- "undifferentiated" (white)

- \succ each cell's state is updated by:
 - counting pigmented neighbors within radius 3 (they contribute to activation)
 - counting pigmented neighbors between radius 3 and 6 (they contribute to inhibition)
 - calculating weighted vote

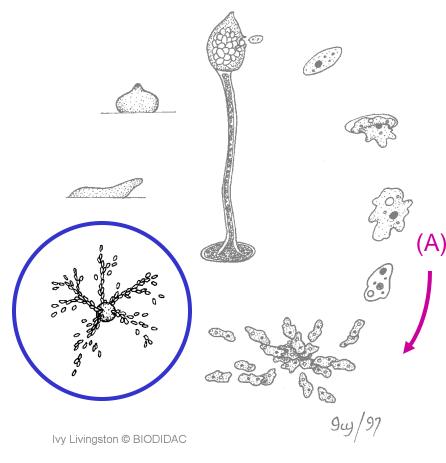
Concepts collected from this example


- ➢ simple microscopic rules
- emergence of macroscopic structures (spots >> cells)
- self-arranged patterns (random, unique)
- amplification of small fluctuations (positive feedback, symmetry breaking)
- ➢ local cooperation, distant competition (cell ↔ cell)

Phenomenon

- unicellular organisms (amoebae) clump together into multicellular "slugs"
- with enough food, they grow and divide independently
- under starvation, they synchronize (chemical waves), aggregate and differentiate
- aggregation phase shows same concentric wave patterns as BZ reaction
- a famous example of "excitable medium" and self-organization

Synchronization, breakup and aggregation of slime mold amoebae on an agar plate (P. C. Newell; from Brian Goodwin, "How the leopard changed its spots", Princeton U. Press)


Life cycle of Dictyostelium slime mold (Ivy Livingstone, BIODIDAC, University of Ottawa)

Mechanism

life cycle of slime mold amoebae (Dictyostelium):

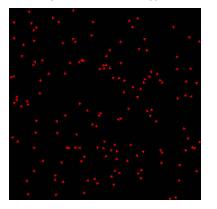
independent amoebae (A)

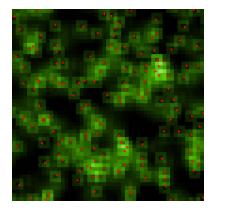
- \rightarrow aggregation
- \rightarrow clump
- \rightarrow slug
- \rightarrow growth
- \rightarrow body & fruit
- \rightarrow spore release & germination
- \rightarrow amoebae (A)

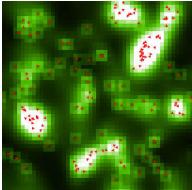
Life cycle of Dictyostelium slime mold (Ivy Livingstone, BIODIDAC, University of Ottawa)

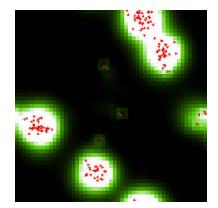
Mechanism

life cycle of slime mold amoebae (Dictyostelium):


independent amoebae (A)


- \rightarrow aggregation
 - stage 1: oscillatory secretion of chemical (cAMP) by each cell
 - stage 2: local coupling of secretion signal, forming spiral waves
 - stage 3: pulsatile motion toward spiral centers


 \rightarrow clump

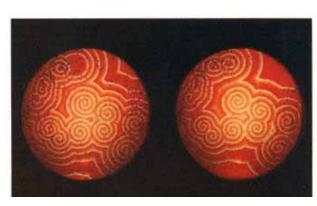

≻ ...

NetLogo model: /Biology/Slime

NetLogo simulation of slime mold aggregation, after Mitchel Resnick (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

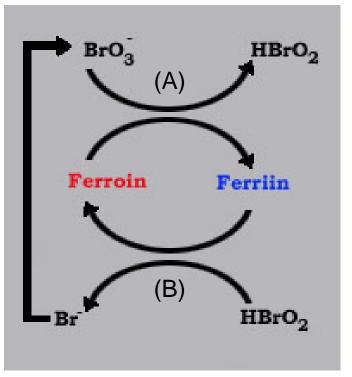
- For wave formation (stages 1 & 2 of aggregation)
 - \rightarrow see B-Z reaction model


- for clumping (stage 3 of aggregation), three simplified rules:
 - each cell (red) secretes a chemical (shades of green)
 - each cell moves towards greater concentration of chemical
 - chemical evaporates

Concepts collected from this example

- simple, "blind" individual behavior
- emergence of aggregates
- cluster centers are *not* already differentiated cells (decentralization)
- \succ local interactions (cell \leftrightarrow chemical)
- phase transition (critical mass)

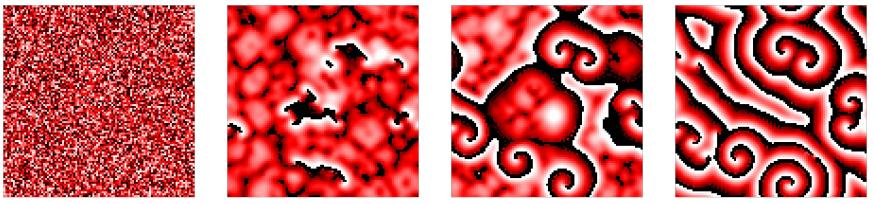
The Belousov-Zhabotinsky reaction (a) well-stirred tank; (b) Petri dish (Gabriel Peterson, College of the Redwoods, CA)



Spiral and circular traveling waves in the Belousov-Zhabotinsky reaction (Arthur Winfree, University of Arizona)

Phenomenon

- Belousov-Zhabotinsky reaction: "chemical clock"
- \succ if well stirred, it oscillates
- if spread on a plate, it creates waves (reactiondiffusion)
- example of an "excitable medium"
- often cited in selforganization



Simplified diagram of the Belousov-Zhabotinsky reaction (Gabriel Peterson, College of the Redwoods, CA)

Mechanism

- in each elementary volume of solution, there is competition between two reaction branches, A and B
- A is faster than B, but B is autocatalytic
- when A runs out of reactants, B takes over and regenerates them
- ➤ a color indicator signals the oscillation between A and B through iron ions (Fe²⁺/Fe³⁺)

NetLogo model: /Chemistry & Physics/Chemical Reactions/B-Z Reaction

NetLogo B-Z reaction simulation, after A. K. Dewdney's "hodgepodge machine" (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

➤ abstract, simplified rules

- ➤ each cell has 3 states:
 - "healthy" (x = 0, black)
 - "infected" (0 < x < 1, red)</p>
 - "sick" (x = 1, white)

- \succ each cell follows 3 rules that create a cycle:
 - if "healthy, become "infected" as a function of neighbors
 - if "infected", increase infection level as a function of neighbors
 - if "sick", become "healthy"

Concepts collected from this example

- simple individual rules (modeling a less simple, but small set of reactions)
- emergence of long-range spatiotemporal correlations
- no impurities; spiral centers are not specialized (decentralization)
- Iocal interactions by reaction and diffusion

Complex Systems Made Simple

1. Introduction

2. A Complex Systems Sampler

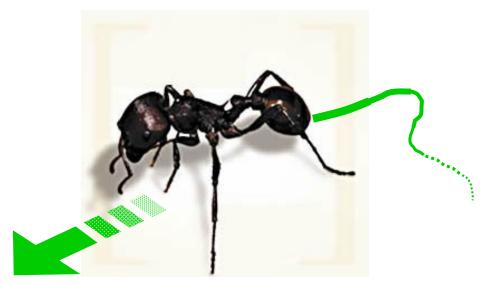
- a. Cellular automata
- b. Pattern formation
- c. Swarm intelligence:
- d. Complex networks
- e. Spatial communities
- f. Structured morphogenesis
- 3. Commonalities

4. NetLogo Tutorial

73

- Insect colonies: ant trails; termites
- Collective motion: flocking; traffic jams
- Synchronization: fireflies; neurons

2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: ant trails*



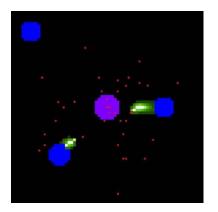
White-footed ants trailing on a wall (J. Warner, University of Florida)

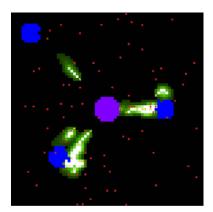
Phenomenon

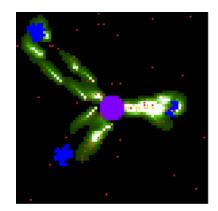
- insect colonies are the epitome of complex systems, self-organization and emergence
- one striking example of collective behavior: spontaneous trail formation by ants, without anyone having a map
- two-way trails appear between nest and food source, brooding area or cemetery
- ants carry various items back and forth on these trails
- the colony performs collective optimization of distance and productivity without a leader

2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: ant trails*


Harvester ant (Deborah Gordon, Stanford University)


Basic mechanism


- while moving, each ant deposits a chemical ("pheromone") to signal the path to other ants
- each ant also "smells" and follows the pheromone gradient laid down by others


2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: ant trails*

NetLogo model: /Biology/Ants

StarLogo ant foraging simulation, after Mitchel Resnick (StarLogo Project, MIT Media Laboratory, MA)

Modeling & simulation

➤ setup:

- 1 nest (purple)
- 3 food sources (blue spots)
- 100 to 200 ants (moving red dots)

- > ant's behavioral repertoire:
 - walk around randomly
 - if bump into food, pick it and return to nest
 - if carrying food, deposit pheromone (green)
 - if not carrying food, follow pheromone gradient
- typical result: food sources are exploited in order of increasing distance and decreasing richness
- emergence of a collective "intelligent" decision

2. A Complex Systems Sampler

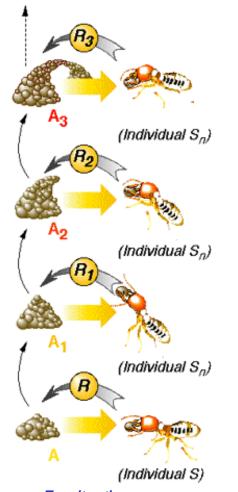
c. Swarm intelligence – Insect colonies: ant trails

Concepts collected from this example

- ➢ simple individual rules
- emergence of collective computation
- > no leader, no map (decentralization)
- amplification of small fluctuations (positive feedback)
- \succ local interactions (ant \leftrightarrow environment)
- phase transition (critical mass = minimal number of ants)

IXXI / ISC-PIF Summer School 2008 - René Doursat: "Complex Systems Made Simple"

2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: termite mounds*

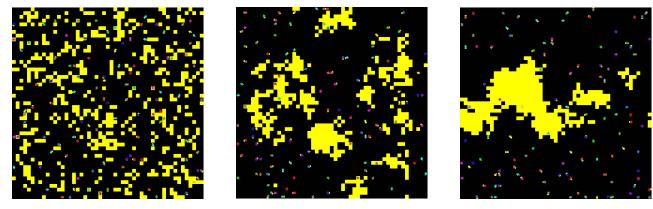

Termite mound (J. McLaughlin, Penn State University)

Inside of a termite mound (Lüscher, 1961)

Phenomenon

- another spectacular example of insect self-organization: mound building by termites
- remarkable size and detailed architecture
- essentially made of tiny pellets of soil glued together
- starts with one underground chamber and grows up like a plant

2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: termite mounds*


Termite stigmergy (after Paul Grassé; from Solé and Goodwin, "Signs of Life", Perseus Books)

Mechanism

- ➤ no plan or central control
- termites interact indirectly, through the environment they are modifying
- "stigmergy" is a set of stimulusresponse pairs:
 - pattern A in environment triggers behavior R in termite
 - behavior R changes A into A1
 - pattern A1 triggers behavior R1
 - behavior R1 changes A1 into A2
 - etc.
- ➢ for example, a small heap develops into an arch

2. A Complex Systems Sampler c. Swarm intelligence – *Insect colonies: termite mounds*

NetLogo model: /Biology/Termites

StarLogo termite mound building simulation, after Mitchel Resnick (StarLogo Project, MIT Media Laboratory, MA)

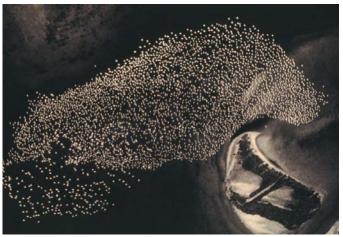
Modeling & simulation

\succ simplified setup:

- randomly scattered wood chips (or soil pellets)
- termites moving among the chips

➤ virtual termite's repertoire:

- walk around randomly
- if bump into wood chip, pick it up and move away
- if carrying wood chip, drop it where other wood chips are
- result: wood chips are stacked in piles of growing size
- explains one aspect of mound formation


2. A Complex Systems Sampler

c. Swarm intelligence – *Insect colonies: termite mounds*

Concepts collected from this example

- ➢ simple individual rules
- emergence of macroscopic structure
- > no architect, no blueprint
- amplification of small fluctuations (positive feedback)
- \succ local interactions (termite \leftrightarrow environment)

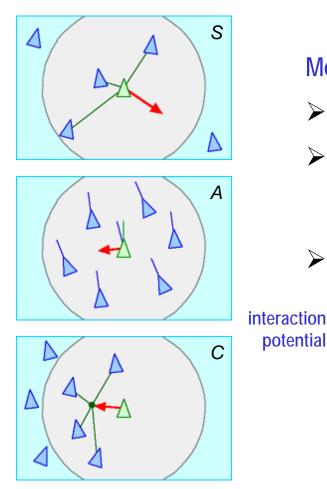
2. A Complex Systems Sampler c. Swarm intelligence – *Collective motion: flocking*

Giant flock of flamingos (John E. Estes, UC Santa Barbara, CA)

Fish school (Eric T. Schultz, University of Connecticut)

Bison herd (Center for Bison Studies, Montana State University, Bozeman)

Phenomenon

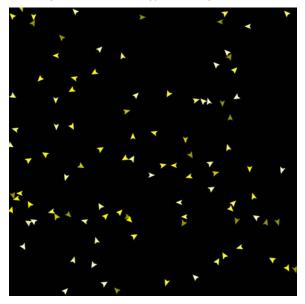

coordinated collective movement of dozens or thousands of individuals

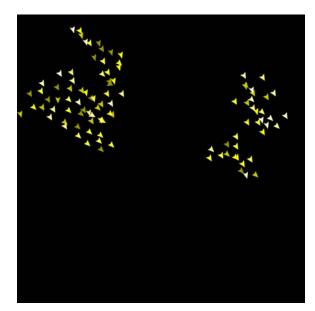
➤ adaptive significance:

- prey groups confuse predators
- predator groups close in on prey
- increased aero/hydrodynamic efficiency

2. A Complex Systems Sampler

c. Swarm intelligence – *Collective motion: flocking*


Separation, alignment and cohesion ("Boids" model, Craig Reynolds, http://www.red3d.com/cwr/boids)


Mechanism

- ➢ Reynolds' "boids" model
- each individual adjusts its position, orientation and speed according to its nearest neighbors
- ➤ steering rules:
 - separation: avoid crowding local flockmates
 - cohesion: move toward average position of local flockmates
 - alignment: adopt average heading of local flockmates

2. A Complex Systems Sampler c. Swarm intelligence – *Collective motion: flocking*

NetLogo model: /Biology/Flocking

NetLogo flocking simulation, after Craig Reynolds' "boids" model (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

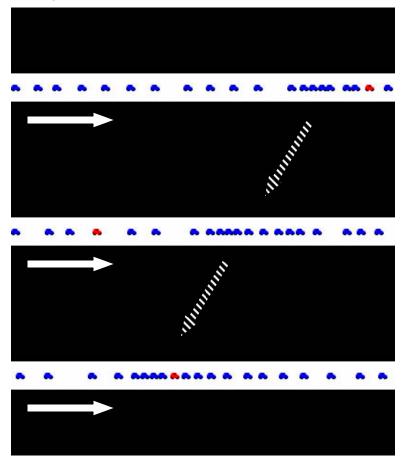
2. A Complex Systems Sampler

c. Swarm intelligence – *Collective motion: flocking*

Concepts collected from this example

- ➢ simple individual rules
- emergence of coordinated collective motion
- no leader, no external reference point (decentralization)
- > local interactions (animal \leftrightarrow animal)
- > cooperation

2. A Complex Systems Sampler c. Swarm intelligence – *Collective motion: traffic jams*


Traffic jam (Department of Physics, University of Illinois at Urbana-Champaign)

Phenomenon

- stream of cars breaks down into dense clumps and empty stretches
- spontaneous symmetry-breaking of initially uniform density and speed
- <u>no</u> need for a central cause (such as slow vehicle, stop light or accident)

2. A Complex Systems Sampler c. Swarm intelligence – *Collective motion: traffic jams*

NetLogo model: /Social Science/Traffic Basic

NetLogo traffic basic simulation, after Mitchel Resnick (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

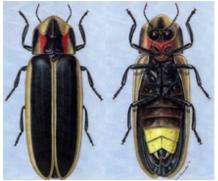
 \succ each car:

- slows down if there is another car close ahead
- speeds up if there is no car close ahead
- traffic nodes move in the direction opposite to cars
- emergence of group behavior qualitatively different from individual behavior

2. A Complex Systems Sampler

c. Swarm intelligence – *Collective motion: traffic jams*

Concepts collected from this example

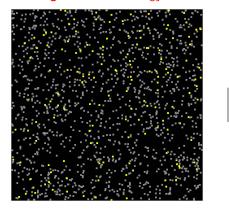

- ➢ simple individual reactions
- emergence of moving superstructures
- no accident, no light, no police radar (decentralization)
- amplification of small fluctuations (positive feedback)
- > local interactions (car \leftrightarrow car)

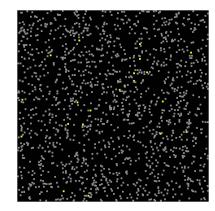
Fireflies flashing in sync on the river banks of Malaysia

Phenomenon

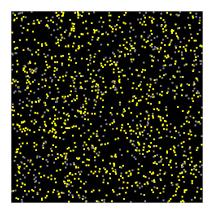
- a swarm of male fireflies (beetles) synchronize their flashes
- starting from random scattered flashing, pockets of sync grow and merge
- ➤ adaptive significance:
 - still unclear...
 - cooperative behavior amplifies signal visibility to attract females (share the reward)?
 - cooperative behavior helps blending in and avoiding predators (share the risk)?
 - ... or competition to be the first to flash?
- famous example of synchronization among independently sustained oscillators

Say's firefly, in the US (Arwin Provonsha, Purdue Dept of Entomology, IN)




Firefly flashing (slow motion) (Biology Department, Tufts University, MA)

Mechanism


- light-emitting cells (photocytes) located in the abdomen
- 1. each firefly maintains an internal regular cycle of flashing:
 - physiological mechanism still unclear...
 - pacemaker cluster of neurons controlling the photocytes?
 - autonomous oscillatory metabolism?
 - ... or just the movie in repeat mode? :-)
- 2. each firefly adjusts its flashing cycle to its neighbors:
 - pushing/pulling or resetting phase
 - increasing/decreasing frequency

NetLogo model: /Biology/Fireflies

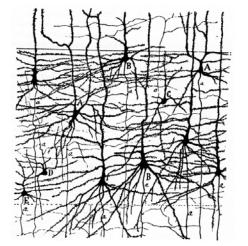
NetLogo fireflies simulation (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

➤ each firefly "cell":

- hovers around randomly
- cycles through an internal flashing clock
- resets its clock upon seeing flashing in the vicinity

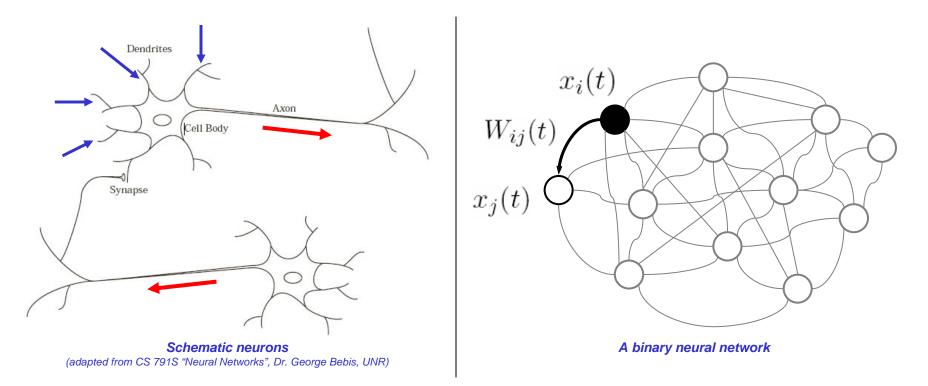
distributed system coordinates itself without a central leader


Concepts collected from this example

- ➢ simple individual rules
- ➤ emergence of collective synchronization
- no conductor, no external pacemaker (decentralization)
- \succ local interactions (insect \leftrightarrow insect)
- ➤ cooperation

2. A Complex Systems Sampler c. Swarm intelligence – *Synchronization: neurons*

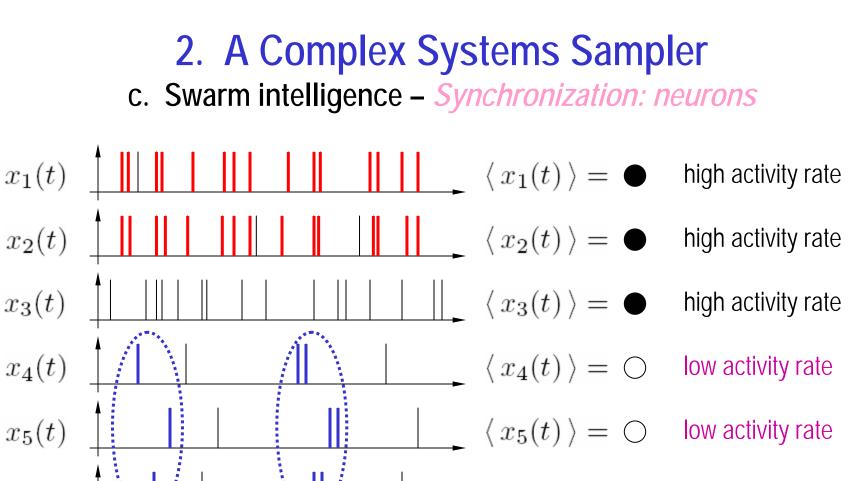
Medial surface of the brain (Virtual Hospital, University of Iowa)



Pyramidal neurons and interneurons, precentral gyrus (Ramón y Cajal 1900)

Phenomenon

- neurons together form... the brain!
 (+ peripheral nervous system)
 - perception, cognition, action
 - emotions, consciousness
 - behavior, learning
 - autonomic regulation: organs, glands
- ➤ ~10¹¹ neurons in humans
- communicate with each other through electrical potentials
- neural activity exhibits specific patterns of spatial and temporal synchronization ("temporal code")


2. A Complex Systems Samplerc. Swarm intelligence – *Synchronization: neurons*

Mechanism

> each neuron receives signals from many other neurons through its *dendrites*

- ➤ the signals converge to the soma (cell body) and are integrated
- \succ if the integration exceeds a threshold, the neuron fires a signal on its *axon*

 $\langle x_6(t) \rangle = \bigcirc$ low activity rate

 $\langle x_1(t) x_2(t) \rangle \gg \langle x_1(t) x_3(t) \rangle$

➤ 1 and 2 more in sync than 1 and 3

 $\langle x_4(t) x_5(t - \tau_{4,5}) x_6(t - \tau_{4,6}) \rangle > 4$, 5 and 6 correlated through delays

 $x_6(t)$