Temporal Waves of Genetic Diversity in a Spatially Explicit Model of Evolution: Heaving Toward Speciation

Guy A. Hoelzer1, Rich Drewes2 and René Doursat2,3

1Department of Biology, 2Brain Computation Laboratory, 3Department of Computer Science and Engineering
University of Nevada, Reno
Heaving Toward Speciation

1. Introduction
2. Model
3. Results
4. Conclusion
Heaving Toward Speciation

1. Introduction
 - Classical Framework: Biological Species Concept
 - Different Geographical Modes of Speciation
 - Common Themes in Textbook Speciation Models
 - Previous Ideas About Self-Organized Speciation

2. Model

3. Results

4. Conclusion
1. Introduction

➢ Classical Framework: Biological Species Concept

✓ “Species are groups of actually or potentially interbreeding populations, which are reproductively isolated from other such groups.” —Ernst Mayr (1942)

✓ although limited to sexual species, Mayr’s biological/isolation species concept is the most widely accepted definition of species among evolutionary biologists (replacing morphology)
 ▪ conspecifics are able to interbreed and produce viable offspring, but members of different species are not
 ▪ when subpopulations become so genetically different that they can no longer interbreed, speciation has occurred

→ outbreeding depression: offspring viability decreases with genetic distance
1. Introduction

Different Geographical Modes of Speciation

- in space — *allopatric* speciation occurs when populations become geographically separated
- natural selection is a powerful evolutionary force in large populations (dichopatric or vicariant)
- genetic drift might be more powerful in small populations (peripatric or “founder effect”)
1. Introduction

Different Geographical Modes of Speciation (cont’d)

- Cases where gene flow is not interrupted, but still reduced by habitat variation and divergent local adaptation.

- In parapatric speciation, species occupy contiguous ranges (e.g., ring species: seagulls, etc.).

- Sympatric species overlap, exploiting discretely different microhabitats.
1. Introduction

- Common Themes in Textbook Speciation Models
 - common theme among all these categories:
 - speciation is induced by divisive, external factors (physical barrier, habitat variation, assortative mating)
 - the inherent tendency of biological populations would be to remain unified in the absence of these factors

 \[\text{the conventional wisdom is that it is the environment that tears species apart} \]

 - the dogma of relaxation toward a well-mixed equilibrium is reminiscent of pre-oscillatory chemistry: disbelief in the possibility of spontaneous, \textit{intrinsic} heterogenization
1. Introduction

Previous Ideas About Self-Organized Speciation

✓ “species selection” focuses on the traits of species that can influence speciation/extinction rates (Stanley, Jablonski)
 - rate of colonizing new places
 - inherent tendency for isolation of subpopulations

→ our model is based on the genetic dynamics within populations and does not rely on such species-level traits
Heaving Toward Speciation

1. Introduction

2. Model
 - Representing Space and Spatial Constraints
 - Genomics and Sexual Reproduction
 - Offspring Viability Under Outbreeding Depression
 - Model Mechanics, Reproduction, Stabilization

3. Results

4. Conclusion
2. Model

- **Overview**
 - we describe a model of a spatially extended biological population
 - spatiality corresponds to the “isolation by distance” concept (Wright, 1943) — gene flow is short compared to system’s size
 - our model suggests that biological populations inherently and regularly tend toward dividing themselves into daughter species **without the influence of external factors**
 - these daughter species will be
 - parapatrically distributed
 - reproductively incompatible
2. Model

- **Representing Space and Spatial Constraints**
 - $N \times N$ square grid with a homogeneous environment
 - the results presented here are based on the grid wrapped on a torus
 - each grid cell can contain up to a predetermined number of individuals
 - cells are limited to 0 or 1 individual in the results here
 - dispersal occurs within a distance d, drawn from a Gaussian distribution with mean and standard deviation δ
 - we call it the δ-neighborhood, used for migration and to select potential mates
2. Model

- Genomics and Sexual Reproduction
 - diploid hermaphrodites, in which haploid genomes consist of 2 chromosomes of 200 nucleotide bases (G,A,T,C) each
 - each parent produces a haploid gamete by randomly selecting one of the chromosomes from each diploid pair
 - when producing a gamete, some random point mutations are introduced according to a constant mutation probability
2. Model

- Offspring Viability Under Outbreeding Depression

 when outbreeding depression is invoked, offspring viabilities are not equal, but function of the genetic difference between gametes

→ in this work we will compare the behavior of the model with and without invoking outbreeding depression
2. Model

- Model Mechanics

✓ initial conditions

- grid space is 80% filled — emptiness is not traditionally found in cellular automata models, yet is an important feature that will allow future species to separate

- all individuals are genetically identical (exact same genome) — all the creation of diversity will be endogenous

✓ migration

- individuals migrate to a cell chosen at random within the probabilistic δ-neighborhood, where δ typically equals 1.5
2. Model

➢ Reproduction

✓ each member of the population is selected once to be the “father” in a mating; for each father, the “mother” is chosen within its δ-neighborhood

✓ the number of potential offspring resulting from each mating is given by a Poisson distribution with mean 1

✓ generations do not overlap (all parents die after reproduction)

✓ each offspring is placed in a random grid cell within the δ-neighborhood of the mother

✓ if no grid cell within range has a vacancy, then the offspring of this mating are lost
2. Model

- Population Size is Stabilized

 - the population size stays about the same from generation to generation because

 - each individual is the father in exactly one mating and the mother in an average of one mating

 - each mating has an average of one offspring

 - to compensate for fluctuations (Poisson, viability, vacancy) and maintain the initial population size:

 - either supernumerary offspring are culled,

 - or parents are selected for additional mating at random
Heaving Toward Speciation

1. Introduction

2. Model

3. Results
 - Spatial Self-Organization: The Essence of Parapatric Speciation
 - Distribution of Empty Space
 - Mismatch Distribution Histograms
 - Isolation-by-Distance Scatter Plots

4. Conclusion
3. Results

- **Spatial Self-Organization: The Essence of Parapatric Speciation**
 - all haplotypes sharing a color are part of a graph where:
 - the nodes are individuals
 - graph edges are discovered pair differences smaller than .6 threshold = outbreeding thresh.
3. Results

- **Spatial Self-Organization: The Essence of Parapatric Speciation (cont’d)**

 - ✓ here, threshold .3 < outbreeding thresh.
 - ✓ different random seeds also show cluster consistency
 - ✓ outbreeding depression sharpens natural tendency toward spatial order
 - ≈ *inhibition at distance as in Turing patterns*
3. Results

➢ Distribution of Empty Space

✓ the interstitial areas in the color plots are actually empty space (not isolated individuals)

→ subpopulations isolate themselves from each other to pursue different evolutionary paths
3. Results

- **Mismatch Distribution Histograms**
 - We sample gametes (haplotypes) uniformly at random on the grid and plot the frequency histogram of pairwise differences.
 - Histogram bars start at 0 and move to the right.

- Without outbreeding depression: global randomization march to 0.75

- With outbreeding depression: emergence of multimodality = subpopulations
3. Results

- **Isolation-by-Distance Scatter Plots**
 - plot of geographical distance vs. genetic distance
 - same as mismatch distributions, with added spatial information

- without outbreeding depression:
 - global randomization march to .75

- with outbreeding depression:
 - emergence of multimodality = subpopulations
Heaving Toward Speciation

1. Introduction
2. Model
3. Results
4. Conclusion
4. Conclusion

- Concluding Points

- as in previous models, isolation by distance leads to the formation of localized subpopulations; gene flow is short compared to the system’s size

- moreover, our model illustrates a process of parapatric speciation *in the absence* of environmental variation or species-level traits

- we invoked a selection process that is *endogenous* to the population dynamics, not due to the environment

→ *thus, this is a model of speciation through the spatial self-organization of the gene pool*
4. Conclusion

Concluding Points (cont’d)

- in Gavrilets (2004), outbreeding depression is modeled as a step function — the population “stumbles upon” speciation
- in our model, reproductive incompatibility accrues by degree — speciation takes on a gradually increasing demographic cost
- while in a classical well-mixed model, gradual incompatibilities could not invade the population...
- under isolation by distance, the demographic cost can be partially or completely avoided

→ in a spatially extended gene pool, outbreeding depression serves as a mechanism of “inhibition at a distance” in a process of pattern formation a la Turing
4. Conclusion

- **Primary Conclusion**
 - if the degree of outbreeding depression grows as gamete genomes become increasingly different, then:
 - the pattern of genetic and spatial population subdivision becomes far more well-defined
 - some subpopulations can diverge to the point where they complete a process of parapatric speciation
Heaving Toward Speciation

1. Introduction
2. Model
3. Results
4. Conclusion