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Inserm Unité 483. Université Pierre et Marie Curie 9, quai Saint-Bernard, 75005 Paris, France

Received 10 December 2002; revised 14 July 2003; accepted 21 July 2003

Abstract

Recent atlases of the cortical surface are based on a modelization of the cerebral cortex as a topological sphere. This captures effectively
its organization as a regular bidimensional sheet of layers parallel to the surface and with perpendicular cortical columns. Yet, while in the
vertical direction cortices are almost the same throughout phylia, in the sense of its surface the cerebral cortex is one of the most variable
and distinctive parts of the nervous system. Indeed, gyri and sulci appear to have a crucial organizing role in an architectonic, connectional,
and functional sense. This organization is not explicitly captured by the surface model of the cortex. We propose a geometric model of the
cortical anatomy based on flat representations of principal sulci obtained from surface reconstructions of MRI data, and on neuroanatomical
and theoretical considerations concerning the folding patterns of the cortex. The cortex is modeled by a sphere where primary sulci are
included as axes. The arrangement of the axes is a simplification of the arrangement of principal sulci observed in flat stereographic
representations of the whole cortical surface. The position of secondary and tertiary sulci is then defined by a field of orientations parallel
and orthogonal to the axes. We consider the use of the geometric model as a synthetic reference cortex for addressing reconstructions of
cortical surfaces. We present a method which establishes a bijection between the geometric model and a cortical surface reconstruction by
using the axes of the model as boundary conditions for a set of partial differential equations solved over both surfaces. Using the geometric
model as atlas provides a natural parameterization of the cortical surface that, unlike angular coordinates, allows for a localization based
on the surface distance to its main organizing landmarks and folding patterns.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The cortex as a surface

The concept of the cerebral cortex as a surface is of great
importance in understanding its many topologically orga-
nized maps. Retinotopy, ocular dominance bands, tonotopy,
and somatotopy cannot be properly grasped if they are not
considered within the appropriate two-dimensional metric.

The concern with the bidimensional character of the
cerebral cortex is particularly relevant in human brain map-
ping, where most of the contemporary work is done in a
three-dimensional framework: the stereotaxic space of Ta-
lairach and Tournoux (1988). In this coordinate system, the
points of the brain are associated with three normalized

coordinates related to the AC-PC line. The brain structures
are thus described in relation to the corpus callosum, a
stable reference landmark. Applied to the cerebral cortex,
this method is imprecise (Fischl et al., 1999b). It is frequent
indeed that coordinates supposed to refer to the cortex will
actually address noncortical structures. Conceptually more
important, the euclidean distance between two points risks
to subevaluate the actual distance over the cortical surface.
The lack of an explicit definition of the structure of the
cerebral cortex is at the origin of these problems.

The cerebral cortex is comparable to a highly folded
two-dimensional sheet differentiated in an almost fixed
number of layers. In the sense perpendicular to the surface,
these layers are physiologically and anatomically arranged
in cortical columns. Physiologically, all the neurons in the
same columns have similar functional properties, for exam-
ple, similar receptive fields in the case of the primary so-
matosensory (Mountcastle, 1957) and visual (Hubel and
Wiesel, 1977) cortices. Anatomically, staining the cortical
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afferent fibers has revealed this columnar structure as a
widespread organizational principle of the cortical architec-
ture (Mountcastle, 1957; 1997; Hubel and Wiesel, 1977;
Goldman and Nauta, 1977). These cortical columns are not
isolated elements; they are profusely interconnected in the
horizontal direction (Valverde, 1986). All these anatomo-
functional considerations support the widely accepted com-
putational concept of the cortex as a bidimensional mosaic
of interrelated columnar modules (Mountcastle, 1978,
1997). The layered and columnar structure is in fact a
fundamental characteristic of the cortex that can be traced
back to its ontogeny (Marin-Padilla, 1988; Rakic, 1988).

This regular structure of the cortical surface is well
captured by modeling the surface of a cerebral hemisphere
as topologically equivalent to a sphere (Dale and Sereno,
1993; Thompson and Toga, 1997; Van Essen and Drury,
1997; Van Essen et al., 1998; Dale et al., 1999; Fischl et al.,
1999a). The surface topology allows an easy definition of a
normal vector for the columnar organization, and a tangent
plane for the orientation of the cortical layers that is also the
plane for the horizontal columnar connectivity. A surface

reconstruction of the cortical surface from a three-dimen-
sional matrix of anatomical data can capture its topology in
a way consistent with its ontogeny.

1.2. The cortex as an organized surface

Many fundamental processes of the cortical develop-
ment, however, will disrupt this initial regular structure. At
the end of cell migration from the ventricular plate, synaptic
development (Armstrong et al., 1995), neuronal differenti-
ation and dendrogenesis (Welker, 1990), cortical lamination
(Smart and McSherry, 1986a,1986b), and development of
thalamo-cortical and cortico-cortical connections (Goldman
and Galkin, 1978; Goldman-Rakic, 1980) all mark the be-
ginning of cortical fissuration in most large brain mammals.
The result is the architectonic, connectional, and functional
differentiation of the cortex in gyri and sulci arranged in
folding patterns characteristic of a given species (Welker,
1990; Nieuwenhuys et al., 1997). In the human brain, the
cortical folds have been classified as primary, secondary,
and tertiary according to its time of development, degree of

Fig. 1. Sulcal depth throughout the iterative smoothing. The iterative smoothing of a reconstructed cortical surface produces the successive fading of
tertiary, secondary, and finally primary sulci. The figure illustrates some steps in the iteration of the algorithm that transforms each point of a reconstructed
surface into the average of its neighbors. Iteration steps are respectively 0, 100, 200, 300, 400, 500, 600, and 800. Gray levels are a representation of the sulcal
depth.
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variability, and depth (Jacobson, 1991; Armstrong et al.,
1995; Connolly, 1950; Bailey and von Bonin, 1950). Pri-
mary sulci are quite invariant, while secondary sulci show
more individual variation and tertiary sulci are very vari-
able. Primary sulci appear to have constant relations to
cytoarchitecture, a relation that is less clear for secondary
and tertiary sulci (Zilles et al., 1997; Roland and Zilles,
1998; Morosan et al., 2001; Hasnain et al., 2001). Finally,
primary sulci are also deeper than secondary, and the latter
deeper than tertiary, which can be seen from the progressive
smoothing of a surface reconstruction of the cortex (Fig. 1).

In the same manner that the stereotaxic space of Ta-
lairach does not define explicitly the structure of the cortex,
the surface-based approaches do not define explicitly the
anatomical organization of the cortex. In the same way that
stereotaxic coordinates do not make any distinction, and
refer all the points of the brain—cortical or non cortical—to
the same landmark (the AC-PC line), spherical coordinates
do not allow any distinction of the points of the cortical
surface in relation to the main gyri and sulci, and refer them
to an abstract point: the origin of the angular coordinates
system.

1.3. Geometric model and atlas

Making explicit the anatomical organization of the cor-
tex is a complicated task, mainly because of its great vari-

ability: even the principal sulci change their shape from one
hemisphere to the other in the same individual (Ono et al.,
1990; Damasio, 1995). However, there appears to be some
regularities that make possible the definition of a basic
pattern of distribution of gyri and sulci over the cortex. As
has been observed by neuroanatomists (Malamud and
Hirano, 1974; Welker, 1990; Ono et al., 1990), the folding
patterns of the medial surface of the hemispheres seem to be
influenced by the development of the corpus callosum. The
congenital absence of this structure is associated with the
absence of a parallel cingulate gyrus and the disruption of
the general radial folding pattern of the medial surface. In
fact, it can be observed that many principal sulci seem to
have the same influence in its surrounding folding pattern.
For example (and as can be also seen in Fig. 1), parallel
secondary sulci appear at both sides of the central sulcus
(the pre- and postcentral sulci) and of the calcarine sulcus.
Furthermore, the superior and inferior opercula can be seen
as gyri parallel to the insula.

Based on their studies of the human sulcal anatomy
Régis et al. (2003) have proposed the parallel and orthog-
onal distribution of convolutions as a fundamental principle
of their organization. This pattern is much more clear in
mammals such as canids, where the sylvian fissure is often
surrounded by parallel ectosylvian and supra sylvian sulci.
Todd (1982, 1985) has proposed a geometric model for the
folding patterns based on this simpler anatomy. It suggests

Fig. 2. Overview. Concepts introduced and related models, methods, and applications.
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Fig. 3. Reconstruction of the cortical surface. A topologically spherical reconstruction of the cortical surface is obtained by the progressive expansion of an initially
small deformable surface. The deformable surface is described both as a vectorial mesh and as a voxel surface, which allows the surface to grow many times its
initial size without self-intersections and without strong smoothing constraints. The initial surface (not shown in the figure) consists of 8 points and 12 triangles, while
the final surface is in the order of 150.000 points and 300.000 triangles. The steps 50, 100, 150, 200, 300 and 400 of the procedure are shown.

Fig. 4. Polar stereographic projection. The z pole of the sphere (left) is at the center of the polar stereographic projection (right). The sphere is opened at the
–z pole that becomes the external circle of the polar stereographic projection.
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that the cortex folds along the orthogonal system formed by
the principal lines of curvature of the surface, in accordance
with a principle of “minimal radial distortion.” This princi-
ple states that transverse motion, or slipping, of the cortical
surface during convolution development will be disfavored
by the mechanical action of the radial glial and neuronal
fibers. Thus the folds will follow the directions of minimal
curvature, which minimize the slipping (Todd, 1982).

In this paper we propose a new geometric model for the
organization of the human cortical surface based on the
following hypotheses: (i) the cerebral cortex can be mod-
eled as a topological sphere, (ii) over its surface, a set of
principal sulci induce a folding pattern field, and (iii) further
secondary and tertiary gyri and sulci will be oriented along
this field parallel to, and orthogonal to, the principal sulci. In
the geometric model, the cortex is represented by a sphere
where principal sulci are included as axes over its surface.
The arrangement of the axes is a simplification of the
arrangement of principal sulci and other important anatom-

ical landmarks as they are observed in flat stereographic
representations of the whole cortical surface. The position
of secondary and tertiary sulci is then modeled as small
circles and geodesics with orientations parallel and orthog-
onal to the axes.

Next, we consider the use of the geometric model as
synthetic reference cortex for addressing reconstructions of
cortical surfaces. We call this atlas the geometric atlas.
Current surface-based atlases of the cortical surface use
reconstructed cortices as reference (Toga and Thompson,
2001). In different approaches this can be an arbitrary con-
sensual cortex (one of the Visible Human Project cortices,
for example (Spitzer et al., 1996; Van Essen and Drury,
1997; Van Essen et al., 1998)), or an average cortex com-
puted from a set of surface reconstructions (Fischl et al.,
1999b; Thompson et al., 1996). While in both approaches
the structure of the cerebral cortex is made explicit (it is
equivalent to a sphere), this is not the case for the structure
of its principal sulci and folding patterns. In the geometric

Fig. 5. Mapping of the sulcal depth and integrated curvature patterns. (Top images) The sulcal depth evaluated as the distance between the surface and a
bounding ellipsoid mapped in levels of gray. The mapping of the sulcal depth gives a hierarchical image of the cortical anatomy where deeper landmarks
are easily distinguishable. From left to right: temporal and medial images of the mapping of the sulcal depth over (A.1) a reconstructed surface, (A.2) a
smoothed surface, (A.3) stereographic representations of the reconstruction and (A.4) its spherical projection. The stereographic representation of the spheric
projection of a reconstructed surface is a flat disk that shows the whole cortical surface. (Bottom images) The integration of the mean curvature patterns
through smoothing steps. Concavity is represented in levels of red, convexity in levels of green, and inflexion in black. The mapping of the integrated
curvature patterns allows an easy distinction of the most persistent gyri and sulci by hierarchically weighting the classical mean curvature representation.
From left to right: temporal and medial images of the mapping of the integrated curvature patterns over (B.1) a reconstructed surface, (B.2) a smoothed
surface, (B.3) stereographic representations of the reconstruction, and (B.4) its spheric projection.
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Fig. 6. Geometric model. (A) Stereographic representation and (B,C) two three-dimensional images of the axes, folding pattern, and regions of the geometric
model. Table D compares the proportions of the cortical regions in the geometric model and in surface reconstructions. The frontal lobe region is represented
in red, parietal lobe region in green, occipital lobe region in violet, temporal lobe region in yellow, limbic lobe region in gray, and insular and noncortical
region in blue. The positions for the frontal pole (FP), temporal pole (TP) and occipital pole (OP) are indicated by a point. Heavy lines indicate the axes of
the model, associated to the central sulcus (CS), callosomarginal sulcus (CalmS), calcarine sulcus (CalcS), collateral sulcus (CollS), and other important
landmarks as the Insula (IN), Sylvian fissure (SF), and superior hemisphere margin (SupHM). Continuous lines and dotted lines represent the induced folding
pattern, and some sulci nomenclature is indicated: small circles concentric to the insula and the callosomarginal sulcus, cingulate sulcus (CingS), superior
and inferior frontal sulci (SFS, IFS), superior and inferior temporal sulci (STS, ITS), occipitotemporal sulcus (OTS), angular sulcus (angS), and intraparietal
sulcus (IPS). In the geodesics orthogonal to the insula and the callosomarginal sulcus: pre- and postcentral sulci (preCS, postCS) and lateral occipital sulcus
(latOS).
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atlas the surface and the organization are represented by the
geometric model, providing a common basic pattern for
overlaying further data. The mapping between the geomet-
ric model and a cortical reconstruction is established using
the axes of the geometric model as boundary conditions for
a set of partial differential equations (PDE) solved over the
surfaces (Chung, 2001; Haker et al., 2000). In this way, we
are able to provide a strict correspondence between the axes
of the geometric model, and an adaptive projection of its
folding patterns.

Once the mapping between geometric model and recon-
structed cortical surface has been established, the cortical
surface is parameterized by a coordinate system whose
constant lines globally follow the principal orientations of
the cortical convolutions. We call these coordinates anatomy-
constrained angular coordinates. All the points of the
cortical surface can be addressed by this coordinate system
and we can also obtain two vectors for its two principal
orientations in the folding pattern field (parallel to, and
orthogonal to, the curves of the insula and the callosomar-
ginal sulcus). The anatomical landmarks represented by the
axes of the geometric model have constant reference posi-
tions, which allows us to measure the surface-distance be-
tween a given point of the surface and the set of axes along
the lines of the anatomy-constrained angular coordinates.
We call these the anatomy-relative distances. As pure an-
gular coordinates, anatomy-constrained angular coordinates
address the cortex as a two-dimensional surface. Unlike
pure angular coordinates, anatomy-constrained angular co-
ordinates give a meaningful parameterization of the cortical
surface in relation to its folding patterns and to the primary
developmental, architectonic, functional, and connectional
axes of the cortex.2

2. Methods and results

2.1. Overview

We have introduced a theoretical framework for the
construction of a basic model of the anatomical organization
of the cortical surface. Here we present the methods for the
construction of the geometric model, the geometric model
itself, and finally we propose a set of methods that allows us
to use the geometric model as a deformable atlas of the
cortical surface. Fig. 2 shows the relations between the
concepts and the methods introduced. For the three main
aspects of the cortical surface that we consider—homoge-
neous surface, organizing principal sulci, latter developing

secondary and tertiary sulci—we construct a geometric
model defined as a spherical surface with explicitly defined
axes and induced folding orientation field (Section 2.4). The
structure of the axes of the model is based on the mapping
of primary sulci from reconstructed cortical surfaces (Sec-
tions 2.2 and 2.3).

In order to use the geometric model as a deformable atlas
(Toga and Thompson, 2001) we need to create a bijection
between the model and a given reconstructed surface. Here
we provide a method based on the numeric solution of a set
of PDEs that allows a bijection between any topologically
spheric surface and a sphere to be established (Sections 2.5
and 2.6). The axes of the geometric model are then manu-
ally adjusted to the corresponding landmarks in the recon-
structed surface based on the mapping of primary sulci. The
adapted axes are used as boundary conditions for the PDEs
to create an anatomy constrained bijection between the
cortex and the model (Section 2.7). This defines an anatomy-
constrained angular coordinate system for the reconstructed
surface, and allows us to obtain for any point a set of
anatomy-relative distances, and two folding pattern orien-
tation vectors (Section 2.8) that provide an informative
parameterization of the cortical surface.

2.2. Surface reconstruction

We obtain cortical surface reconstructions from anatom-
ical MR images (124 slices, T1-weighted (see also Dale et
al., 1999; Dickson et al., 2001). The white matter is selected
by thresholding and is then filtered by a 3D Dynamic Shape
algorithm (Koenderink and van Doorn, 1986). Mathemati-
cal morphology techniques are used to isolate the cortical
white matter inside a hemisphere (Mangin et al., 1995; Dale
et al., 1999).

A reconstruction of the cortical surface topologically
equivalent to a sphere is then obtained by a hybrid algorithm
between deformable surfaces (Kaas et al., 1996; Cohen and
Cohen, 1993; Terzopoulos and McInerney, 1996) and vox-
elization techniques (Kaufman et al., 1993). In the classical
deformable surface model the evolution of each vertex vi is
governed by

vi
t�1 � vi

t � k0Fint � k1Fext, (1)

where the external forces Fext drive the surface to the ob-
ject’s boundary (usually a balloon force normal to the sur-
face and a boundary-dependent energy functional (Cohen
and Cohen, 1993; McInerney and Terzopoulos, 1996; Xu et
al., 1997; Pham et al., 2000)), and the internal forces Fint

ensure the smoothness of the surface (usually by fixing
elasticity and rigidity constraints). The external forces are
not able to handle self-collisions, and given this definition,
the only means to avoid self-intersections of the surface is to

2 The source code used for the construction of the geometric model and
atlas can be freely obtained at http://www.snv.jussieu.fr/insermu483/
geometricatlas/index.html.
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use as a starting point a surface very close to the solution or
to impose strong smoothness constraints (Xu et al., 1997;
Pham et al., 2000). In the deformable hybrid surface the
surface mesh is complemented by its voxelization. The
external forces are then computed from the voxelized ob-
ject, which enables us to handle self-collisions while avoid-
ing the use of strong smooth constraints. Unlike classical
deformable surfaces, the hybrid surface can expand many
times its initial size, and it is able to reconstruct the cortical
surface (up to 150.000 vertices) beginning from a single
voxel and a cubic mesh (8 vertices). In order to keep a good
triangle resolution, the surface is dynamically retriangulated
(Schroeder et al., 1992). By labeling the inside of the sur-
face in the voxel volume at each iteration, we override the
convergence problem of deformable surfaces, and we avoid
using strong smoothing and inflating forces. We start the
reconstruction from a one-voxel cubic deformable surface
(8 points, 12 triangles) inside the white matter, and expand
this surface in its normal direction while dynamically retri-
angularizing it. Fig. 3 illustrates the reconstruction of the
white matter.

2.3. Detection and representation of primary sulci

The reconstructed surface is analyzed and deformed to
visualize the primary sulcal patterns. The usual mean-cur-
vature mapping does not allow an easy hierarchical distinc-
tion of primary, secondary, and tertiary sulci. We use two
complementary mappings of the cortical anatomy to detect
primary sulci: the sulcal depth and the integrated curvature
patterns. These mappings have been used for the construc-
tion of the geometric model, and are also used during the
manual adaptation of the geometric model to cortical sur-
faces.

2.3.1. Sulcal depth
The sulcal depth is estimated as the distance from each

vertex in the surface to a bounding ellipsoid (the smallest
ellipsoid containing the whole reconstructed surface). This
distance is evaluated as the resizing factor necessary to
obtain the intersection between the vertices and the bound-
ing ellipsoid. We compute ki, the result of introducing the
i-th vertex of coordinates (xi, yi, zi) in the equation of the
bounding ellipsoid of semiaxes a, b, c along the x, y, z axes,
respectively,

�xi

a�
2

� �yi

b�
2

� �zi

c�
2

� ki. (2)

Next we resize the semiaxes of the ellipsoid by a fac-
tor d,

� x

dia
� 2

� � y

dib
� 2

� � z

dic
� 2

� 1. (3)

Solving for di, we obtain the sulcal depth at this vertex:

di � �ki (4)

2.3.2. Integrated curvature patterns
The curvature patterns are obtained by integrating the

local mean curvature along successive steps of smoothing.
Iterative smoothing produces the fading of structures from
less to more pronounced, and so the integrated mean cur-
vature gives different weights to primary, secondary, and
tertiary sulci.

The smoothing algorithm changes the position of each
vertex pi toward the barycenter of its neighbors. At the
smoothing step t � 1, the vertex pi is defined in function of
its Ni neighbor points Vj(pi) as

pi
t�1 �

1

Ni
�

j

Vj� pi
t�. (5)

The mean curvature is calculated over the surface at each
step. By definition, the mean curvature of a point over a two
times differentiable surface is the average of the two prin-
cipal curvatures k1 and k2 in this point (Do Carmo, 1976).
We obtain an estimation of the mean curvature at the vertex
pi by calculating a weighted average of the directional
curvatures with its neighbors Vj(pi) in its tangent plane of
normal n̂. The directional curvature can be approximated as
(Taubin, 1995)

k� ij � 2n̂
pi � Vj� pi�

� pi � Vj� pi��. (6)

The mean curvature Ki at the i-th vertex is then calcu-
lated as

Ki �
1

4�
�

j

��� � ���k� ij, (7)

where �� and �� are the angles adjacent to the edge (pi,
Vj(pi)) at the point pi. The integral of the curvature at the i-th
vertex at the smoothing step t � 1 is then obtained from

ci
t�1 � �

t

f�t� Ki
t, (8)

where f(t) allows us to give a stronger weight to the weaker
values of the curvature as the smoothing progresses. We
usually set f(t) � 1 � t/T, with T � 0.5 � the number of
iterations.

The integration of the curvature patterns is similar to the
mapping of the convexity in Fischl et al. (1999b) or to the
mapping of the sulcal roots in Cachia et al. (2001, 2003).
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Contrary to Fischl et al. (1999b) what is integrated is not the
surface displacement but the mean curvature, which is
closely related to the position of gyral crowns and sulcal
fundi. The mean curvature is also used in Cachia et al.
(2001, 2003), but there, the mesh remains unchanged while

the mean curvature is iteratively smoothed. The resulting
mapping is rather different, and where the method of Cachia
et al. produces the division of principal sulci into elementary
units, the integrated curvature patterns produce continuous
sulci.

Fig. 7. Bijection between a reconstructed surface and the unitary sphere. The bijection between the reconstructed surface and the unitary sphere is constructed
by solving the same set of PDEs over both surfaces, and relating them by the solution of these equations. From top to bottom: (A) temporal and medial views
of the solution of the PDEs over the reconstructed surface (X coordinate solution in red, Y coordinate solution in blue, and Z coordinate solution in green),
(B) drawing of the spherical coordinates lines, and (C) stereographic representation of the coordinates over the reconstructed surface. Note that while the
bijection effectively parameterizes the surface in 2D, there is no a priori correspondence between coordinate lines and sulcal anatomy.
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2.3.3. Representations and stereographic projection
We deform the shape of the initial reconstruction to have

a better representation of the sulcal patterns. Sulcal depth
and integrated curvature patterns are mapped over recon-
structed, smoothed, and spherical models of the cortical
surface (Dale and Sereno, 1993; Van Essen and Drury,

1997; Van Essen et al., 1998). We can render for each of
these representations a polar stereographic projection (Ma-
ling, 1992) that allows us to visualize the whole cortical
surface in one image. This projection allows the represen-
tation of all the points in the surface but one, and while sizes
are not preserved, it preserves shapes and angles. The depth

Fig. 8. Constrained bijection between a reconstructed surface and the geometric model. The axes of the geometric model are adapted to the cortical anatomy
and a bijection between both surfaces is obtained. By this bijection, the geometric model provides a coordinate system and a folding pattern orientation field
for the reconstructed surface. From top to bottom: (A) temporal and medial images of the anatomy-constrained coordinate system, (B) of the geometric model
mapped over the cortical surface, and (C) over a stereographic representation. Table D shows the relation between different sulci (not belonging to the axes)
and their associated coordinate line (see the text for description). Note that, unlike Fig. 7, the coordinate system lines match the sulcal anatomy.
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of the stereographic projection at a given vertex depends on
its distance to the center of the mesh. The projection is
illustrated for a sphere in Fig. 4.

For each vertex pi � (xi, yi, zi) of the surface, the
cartesian coordinates (ai, bi, ci) in the polar stereographic
projection are given by

�ai, bi, ci� � � xi

� pi�
ni,

yi

� pi�
ni, � pi�� , (9)

where

ni � � �i

sin �i

if �i � 0

1 otherwise

�i � arccos� zi

� pi�
� . (10)

The metric distortion of the projection is given by
�/sin(�), so while there is little distortion at the center of the
projection (where sin(�) � �), it augments toward the
periphery when � 3 � (that actually represents a single
point). Yet, as little computational cost is necessary to
obtain a projection, the center can be interactively displaced
to diminish the distortion.

Images of the primary sulci from a reconstructed surface
are shown in Fig. 5. This figure shows the sulcal depth
relative to the bounding ellipsoid and the integration of the
mean curvature through successive smoothing steps over
the reconstructed, smoothed, and spherical surfaces with its
corresponding polar stereographic projections. With a min-
imal computational cost, the sulcal depth mapping gives a
sufficiently accurate hierarchical representation of the cor-
tical surface. The mapping of the integrated curvature pat-
terns, unlike the surface depth mapping, does not depend on
the determination of a reference surface (the bounding el-
lipsoid) for the estimation of the primary sulci. Neverthe-
less, it gives a vision of gyri and sulci, but not of regions as
does the first. We consider both methods as complementary.

2.4. Geometric definition of the model, its axes and
folding pattern orientation field

2.4.1. Spherical surface
The geometric model is defined over a sphere that rep-

resents the global topological structure of the cerebral cor-
tex of a hemisphere. The hemisphere is artificially closed
from the corpus callosum to the hippocampus.

2.4.2. Axes
The axes of the model are a simplification of the primary

sulci of the cortical surface as they can be seen from sulcal
depth and integrated curvature representations. The most
evident anatomical landmarks of the human brain, the insula
and the interhemispheric fissure, are easily distinguishable
in both representations (Fig. 5). In the sulcal depth repre-

sentation, the insula (IN) is particularly visible as a deep
zone at the center of the stereographic projection. In the
integrated curvature representation we can observe that the
insula is well delimited by the sulci underlying the superior
and inferior opercula, and the cingulate sulcus (CingS) that
runs parallel to the callosomarginal sulcus (CalmS) at the
superior half of the stereographic projection. At the inferior
half, the collateral sulcus (CollS) runs parallel to the limit of
the cortex. In the geometric model these landmarks, which
are also the first visible landmarks in the developing human
brain, are chosen as axes of the representation. We further
include the Sylvian fissure (SF), central sulcus (CS), calcar-
ine sulcus (CalcS), and lateral occipital sulcus (latOS) that,
together with the previously defined axes, divide the geo-
metric model into seven regions: the regions of the frontal
lobe (F), parietal (P), occipital (O), temporal (T), insular
(IN), limbic (L), and the noncortical region of the artificial
closure. These sulci reflect the fissures of the human cortex
at approximately 24 weeks of gestation (Feess-Higgins and
Larroche, 1987). The area of the regions in the geometric
model approximates the measures obtained from cortical
surface reconstructions.

2.4.3. Folding pattern orientation field
The orientation field of the geometric model is defined

by the geodesic circles orthogonal to the callosomarginal
sulcus and the insula, and by the small circles concentric to
the insula and the callosomarginal sulcus. This set of curves
parallel and orthogonal to the insular and callosomarginal
axes provides a natural system of angular coordinates for
the cortical surface. In the representation, the distance be-
tween curves is chosen to agree with the size and number of
cortical convolutions. Fig. 6 shows the resulting folding
pattern orientation field of the geometric model with the
name of certain sulci overlaid.

2.5. Bijection between two surfaces

In order to use the geometric model as geometric atlas for
the analysis of reconstructed cortical surfaces, we need to
create a bijection between model and reconstruction. Here
we show how to construct such a bijection by solving the
Laplace equation over their surfaces. The Laplace equation
is frequently used for the definition of coordinates over two
dimensional domains (Thompson, 1985; Angenent et al.,
1999; Haker et al., 2000), because it presents many advan-
tageous properties: Coordinates generated by the Laplace
equation are inherently smooth; they verify the extremum
principle (i.e., there cannot be extrema solutions within the
domain) which guarantees a one-to-one mapping; disconti-
nuities on the boundary conditions do not propagate into the
domain; and finally the coordinate density adjusts itself to
the geometry of the domain.

The first step is to generate three smoothly varying pa-
rameters between three pairs of antipodal points that will
allow a two-dimensional coordinate system to be obtained
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for both surfaces. For each parameter u(pi), we solve the
Laplace equation

�u � 0 (11)

with Dirichlet boundary conditions (u(p̂), u(p̌)) � (�1, �1)
at the two antipodal points p̂ and p̌ (the details of the
numerical solution of the equation and the determination of
the three pairs of antipodal points are given in the Appen-
dix).

2.6. Bijection between the cortex and the unitary sphere

Over the sphere the antipodal points are simply the
maximum and minimum poles at the X, Y, and Z axes; and
for any pair of antipodes the solution of the Laplace equa-
tion is the same. We obtain a numeric approximation of the
function l � L(x); with l, x � [�1, 1] that gives for a
cartesian coordinate x of the unitary sphere, its correspond-
ing Laplace coordinate l. As l � L(x) is a bijection, we can
compute the inverse function x � L�1(l) to obtain the
cartesian coordinate x of the sphere corresponding to the
Laplace coordinate l. Thus, for an arbitrary surface recon-
struction of the cortex, the function L allows us to obtain for
the three Laplace coordinates (lx, ly, lz) of a point its corre-
sponding cartesian coordinates over the unitary sphere. It is
now very simple to deform the reconstructed surface into a
sphere: for every point pi over the reconstruction with
laplace coordinates (lx, ly, lz), we set its cartesian coordi-
nates to pi � (L�1(lx), L�1(ly), L�1(lz)).

The result of the bijection between a reconstructed cor-
tical surface and the unitary sphere is illustrated in Fig. 7. At
this point we only have a two-dimensional parameterization
of the cortical surface. The next step is to adapt this param-
eterization to the anatomy of the cortex through the axes of
the geometric model.

2.7. Constrained bijection between the cortex and the
geometric model

The bijection between the geometric model and a recon-
structed cortical surface is created by adjusting the axes in
the model to the corresponding landmarks in the reconstruc-
tion. The sulcal depth and the integrated patterns of curva-
ture are used to identify primary sulci over the reconstructed
surface deformed into a sphere (cf. 2.6). The geometric
model and the spheric cortical surface are then represented
in a same stereographic projection. We have developed an
interface to interactively rotate the stereographic projection
by dragging it, and manually adjust the superimposed geo-
metric model by acting over the control points of its axes
defined as spherical Bézier curves. The correctness of the
adjustment can be verified over the nondeformed recon-
structed surface.

The adjusted axes of the geometric model are then used
to set up boundary conditions for the solution of the Laplace

equations over the reconstructed cortex. The equations are
solved over a modified spherical mesh that has vertices
underlying the adjusted axes. At these vertices we set Dir-
ichlet conditions to the value of the solution of the Laplace
equations over the sphere of the geometric model. The final
bijection between the reconstructed surface and the model is
interpolated from this modified mesh. Fig. 8 shows the
result of the constrained bijection.

Contrary to the unconstrained bijection (cf 2.6), the co-
ordinate lines of the constrained bijection globally follow
the two principal orientations of the cortical folding pat-
terns, providing what we call an anatomy-constrained an-
gular coordinates system for the cortical surface. Table D in
Fig. 8 shows the relation between different sulci (not be-
longing to the axes) and the coordinate lines of the folding
pattern field. The fundi of the sulci in the table have been
manually traced over a reconstructed cortical surface and its
average coordinate and standard deviation calculated. The
average anatomy-constrained angular coordinate of sulci
can be compared to the coordinate assigned by the geomet-
ric model (Table D, � coordinate for parallel sulci, 	 coor-
dinate for orthogonal sulci).

2.8. Anatomy-relative distances and folding pattern
orientation vectors

The explicit definition of the principal anatomical land-
marks, represented by the axes of the geometric model,
enables us to obtain for any point of the surface (except the
poles � � 0, � � �) a set of a anatomy-relative distances.
They measure the surface distance between a point and the
axes of the geometric model along the lines of the anatomy-
constrained coordinate system. The distance is numerically
integrated over the reconstructed cortical surface following
a coordinate line defined over the geometric model.

The model for the orientation of the cortical folding
patterns provided by the folding pattern orientation field
allows us to obtain, for any point of the surface except the
poles, two vectors that locally indicate its principal folding
orientations, the folding pattern orientation vectors. Over
the geometric model, the lines of the folding pattern orien-
tation parallel to the insula form a set of small circles with
the center over the z-axis, while the orthogonal lines follow
the geodesics circles whose plane’s normal is orthogonal to
the z-axis. For a point of anatomy-constrained angular co-
ordinates (�, 	), the parallel and orthogonal orientation
vectors Fp, Fo are given over the geometric model by

Fp � ��sin���sin�	�, sin���cos�	�, 0� (12)

Fo � �cos���cos�	�, cos���sin�	�, �sin����. (13)

Over the reconstructed surface, these vectors are approx-
imated as the tangent to the anatomy-constrained coordinate
lines for the point. The approximation is obtained by a
simple centered finite difference. Fig. 9 shows the anatomy-
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relative distances and folding pattern orientation vectors for
three points over the cortical surface.

3. Discussion

Sulci and gyri are playing an increasingly important role
in functional neuroimaging. For a variety of cognitive pro-

cesses, functional activity is found to be associated to a
particular sulcus or gyrus, and not just confined to a given
Brodmann area.

Recent surface-based atlases avoid an explicit definition
of gyri and sulci, which simplifies the automatization of
morphing in databases. Fischl et al. (1999b), for example,
replace the explicit definition of the sulcal anatomy by a

Fig. 9. Anatomy-constrained coordinates, anatomy-relative distances, and folding pattern orientation vectors. The parameters are given for three different
points oven the cortical surface. The paths over the surface used to compute the anatomy-relative distances are drawn in red; the parallel and orthogonal
folding orientation vectors are drawn in green and red, respectively. Top row from left to right: temporal and parietal views of (A.1) a point on the intermediate
frontal gyrus, (B.1) a point on the precentral gyrus, and (C.1) a point over the lateral occipital sulcus. Middle row from left to right: (A.2, B.2, C.2)
corresponding anatomy-constrained angular coordinates and anatomy-relative distances. (D) Location of the points over a stereographic representation of the
geometric model.
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label of the local convexity over the surface. A correspon-
dence between this surface and an average labeled surface is
then obtained by trying to keep a balance between the
minimization of disparity and the local metric distortion. In
this way it is possible to reparameterize any surface into a
common coordinate system, but without any information
concerning distances to main sulci, or the orientation of the
folding pattern at any point. To obtain it, an explicit defi-
nition of the sulcal anatomy is necessary, where the anat-
omy is not just labeled, but where its form is detected.

The explicit definition of a particular anatomical struc-
ture has been successfully used to measure its variability
inside a population. For example, Thompson et al. (1996)
have used a set of manually traced sulci to evaluate varia-
tions of the cortical anatomy. This allows us to precisely
compare among individual structures of the cerebral cortex.
Yet, the approach does not make explicit a global organi-
zation for the set of locally defined sulci, and the descrip-
tions remain unconnected.

In our present work we have introduced a geometric
model of the cortical surface that explicitly includes prin-
cipal sulci and other important anatomical landmarks in a
global model for the orientation of its folding patterns. The
geometric model addresses two fundamental aspects of the
cortical anatomy: the two-dimensional character of its lay-
ered structure; and its architectonic, connectional, and func-
tional differentiation in gyri and sulci. While much is known
about the ontogenesis of the cortical layered structure, the
mechanisms underlying gyrogenesis remain poorly under-
stood. In consequence, the geometric model only tries to
capture the more basic traits of the cortical folding patterns.
Further studying the mechanisms of cortical development
should permit, for example, a deeper understanding of the
relations between primary and secondary sulci that the geo-
metric model can only suggest based on mainly qualitative
considerations.

We have introduced new representations of the cortical
anatomy intended to simplify the visualization of the prin-
cipal sulci and other anatomical landmarks that serve as
axes of the geometric model. The mapping of the sulcal
depth and the integrated curvature patterns use the differ-
ences in the structure of principal sulci to distinguish them
from secondary and tertiary sulci. The polar stereographic
projections facilitate the inspection of the whole cortical
surface, from any point of view, without need of artificial
cuts, and as fast as a normal render—unlike fixed viewpoint
and time-consuming flat maps (Van Essen and Drury, 1997;
Van Essen et al., 1998; Fischl et al., 1999a).

We have presented a new method that allows us to adapt
the surface and the folding pattern of the geometric model to
a reconstructed cortical surface. The geometric model can
be then used as a two-dimensional coordinate system, fold-
ing orientation field and deformable atlas. The adaptation is
based on a general procedure to establish a two-dimensional
coordinate system over topologically spheric surfaces. A
first parameterization in angular coordinates is obtained by

solving a set of PDEs directly over the reconstructed surface
mesh, avoiding the previous step of spherical deformation
required by most of the current surface-based approaches
(Van Essen and Drury, 1997; Van Essen et al., 1998; Fischl
et al., 1999a). Then, the adaptation of the folding pattern is
obtained by using the axes of the geometric model (manu-
ally adjusted to its corresponding cortical landmarks) as
boundary conditions for the set of PDEs. This produces an
anatomy-constrained angular coordinates system, where the
coordinate lines are related to the principal folding direc-
tions of the cortex. The anatomy-constrained angular coor-
dinates provide new means for the characterization of the
cerebral cortex in relation to its main organizing landmarks
(through the anatomy-relative distances) and folding pattern
orientation (through the folding pattern orientation vectors).

The geometric atlas makes two hypotheses concerning
the organization of the cortical surface: that a set axes
induce a folding pattern field, and that remaining sulci are
oriented along this field. Only the set of axes is strictly
matched between the geometric atlas and reconstructed cor-
tices. How precisely is then matched the same sulcus among
different cortices when the sulcus does not belong to the
axes? While it should seem natural to respond by increasing
the number of sulci in the axes set, registering different
cortices based on matching every sulci is a controversial
strategy. Indeed, a relation between sulcal anatomy and
cortical architecture or function seems clear at present only
for some primary sulci (Zilles et al., 1997; Roland and
Zilles, 1998; Morosan et al., 2001; Hasnain et al., 2001).
Furthermore, it is possible that even if a cytoarchitectonic
(or functional) border does not match a specific gyri or sulci,
it can follow the local orientation of the folding pattern field
(e.g., borders in the somatosensory cortex are oriented along
the postcentral gyrus). The validation of the geometric atlas
involves then two complementary aspects: how well sulci
are related to the directions of the folding pattern field, and
how well cytoarchitectonically or functionally stable sulci
are related to a particular coordinate line. This validation
might lead to the introduction of new axes to the geometric
model only if this improves the global matching of the
folding pattern and if the new axes are stable. In order to
simplify the validation of the geometric model and the
adaptation method against a database of cortices it seems
important to introduce an automatic strategy of sulcal de-
tection, such as those proposed by Rivière et al. (2002) and
Tao et al. (2002), which should also improve the adaptation
method.

The restriction of the analysis of functional activity to the
cortical surface has been shown to improve the statistical
power of statistical parametric maps when compared to the
classical three-dimensional analysis in Talairach coordi-
nates (Fischl et al., 1999b). Equivalently, in regards to the
role of gyri and sulci in the organization of the cerebral
cortex, it is reasonable to expect that an anisotropic analysis
of functional activity directed by the principal orientations
of the folding pattern will further improve the detection of
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functional activity. However, beyond a possible enhance-
ment of the detection of activity, we believe that the major
contribution of our present work is the proposition of a
theoretical framework for the study of the anatomical orga-
nization of the cortical surface, on which further modeling,
representation, and mapping are based. It is an initial step,
and a first tool, for investigating the relationship between
the fundamental processes of convolution development and
the final adult structure and function of the human cerebral
cortex.
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Appendix

Bijection between two surfaces

We solve numerically the Laplace equation over each
surface

�u � 0 (A.1)

with three pairs of antipodal poles set as Dirichlet condi-
tions of values �1 and �1. The solution is obtained by the
finite element method (Hughes, 1987), that we will briefly
outline.

To approximate the solution of the Laplace equation over
a surface 	 composed of triangular finite elements, we first
construct a weak formulation for the problem,

��
	

�u f dS � 0, (A.2)

where the function f is composed of piecewise linear func-
tions �p that for each vertex p, q of the mesh satisfy �p (q)
� 
pq (
ij � 1 iff i � j is the Dirac symbol). Integrating by
parts we obtain that (A.2) is equivalent to

��
	


u
f dS � 0. (A.3)

Next, the same piecewise linear functions �p are used to
interpolate the solution u as

u � �
p

up�p (A.4)

so we need to solve the set of linear equations

Au � B, (A.5)

where

Apq � ��
	


�p
�qdS (A.6)

with

u � the solution vector
A � the stiffness matrix
B � the boundary condition vector (zero for the homo-

geneous solution)

The coefficients Apq for a vertex p will only depend on
the j vertices q � Vj(pi) of its neighborhood. For any other
q such that q do not belong to the neighborhood, �p�q � 0.
The coefficients of the matrix A are given by

Apq � �1
2

(cot���� � cot����), p � q

App � �� Apq, (A.7)

where ��, �� are the angles adjacent to the edge (pi, Vj(pi))
at the point pi.

Now we need to modify the matrices A and B to intro-
duce the Dirichlet boundary conditions. In order to set a
Dirichlet condition at the vertex p, i.e., to fix the solution at
the vertex p to the value u0, we modify (A, B)3 (A�, B�) as

A�ip � A�pi � 
ip

B�p � u0

B�q � Bq � Apqu0 (A.8)

for i � 1 . . . N and q � Vj(pi).
To solve the system of linear equations we use the

conjugated gradients method (Press et al., 1992), with an
appropriate sparse matrix storage scheme to avoid using the
raw N2 matrix.

When the system (A.5), (A.8) is solved over a sphere
with boundary conditions at the poles p̂, p̌ set to (u(p̂), u(p̌))
� (�1, �1) the level curve for the value u � 0 is a great
circle, i.e., a geodesic circle that divides the sphere in two
equivalent hemispheres. If p̂ and p̌ are antipodal points the
level curves of the solution form a set of parallel small
circles. In a general surface, the level curve u � 0 will not
divide the surface in two equal-area halves, so we have to
force the level curve u � uh to uh � 0. If m and s are the two
vertices of an edge (m, s) such that the solution of (A.5) is
u(m) � uh and u(s) 
 uh, we will have the new problem

A�u � B� (A.9)

with the new constraints

u�s�

�1 � t�
�

u�m�

t
� 0 (A.10)

where t � 1 � uh/(um � us), or equivalently

u�s� � au�m� (A.11)

where a � (t � 1)/t.
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To include these new equations we have to change A�3
A� such that

A�mm � A�mm � a2A�ss

A�im � Ami � A�im � aA�is

A�is � A�si � 
is (A.12)

Solving this new linear system we obtain a coordinate
that distributes smoothly from one pole to the other.

We create a coordinate system over the surface by ap-
plying three times this procedure to obtain the (redundant)
surface coordinates uX, uY, and uZ. First we choose two
preliminary X poles (the most frontal and most occipital
point over the surface, for example), and at the uX � 0 level
curve we choose a pair of preliminary Z poles (the most
temporal and most medial point over the curve, for exam-
ple). At the intersection of the curves uX � 0 and uZ � 0 we
obtain the first pair (�Y, �Y) of “antipodal” points (points
at the intersection of two great circles). Solving for these
antipodal points we obtain two new pairs of antipodal points
(�X, �X), (�Z, �Z). The final coordinate system is ob-
tained by solving the PDEs with Dirichlet conditions (�1,
�1) at the antipodal points and zero at the corresponding
great circles.

As the algorithm calculates a transformation that ad-
dresses the surface reconstruction as a topologic sphere
(unlike Haker et al., 2000), we obtain a coordinate system
for the whole cortical surface instead of only a disk.

References

Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R., 1999. Laplace-
Beltrami operator and brain surface flattening. IEEE Trans. Med. Im-
aging 18, 700–711.

Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K., 1995. The
ontogeny of human gyrification. Cereb. Cortex 1, 56–63.

Bailey, P., von Bonin, G., 1950. The Isocortex of Man. Univ. of Illinois
Press, Champaign.

Cachia, A., Mangin, J., Rivière, D., Boddaert, N., Andrade, A., Kherif, F.,
Sonigo, P., Papadopoulos-Orfanos, D., Zilbovicius, M., Poline, J.,
Bloch, I., Brunelle, F. and Régis, J., 2001. A mean curvature based
primal sketch to study the cortical folding process from antenatal to
adult brain, in: Proc 4th MICCAI, Utrecht, The Netherlands, 2001,
Springer-Verlag, Berlin, pp. 897–904.

Cachia, A., Mangin, J., Rivière, D., Kherif, F., Boddaert, N., Andrade, A.,
Papadopoulos-Orfanos, D., Poline, J., Bloch, I., Zilbovicius, M.,
Sonigo, P., Brunelle, F., Régis, J. 2003. A primal sketch of the cortex
mean curvature: a morphogenesis based approach to study the variabil-
ity of the folding patterns. In press.

Chung, M., 2001. Statistical Morphometry in Neuroanatomy. Ph.D. thesis.
McGill University, Montreal.

Cohen, L., Cohen, I., 1993. Finite-element methods for active contour
models and balloons for 2-D and 3-D images. Pattern Anal. Mach.
Intell. 15, 1131–1147.

Connolly, C., 1950. External Morphology of the Primate Brain. Thomas,
Springfield, IL.

Dale, A., Fischl, B., Sereno, M., 1999. Cortical surface-based analysis. I.
Segmentation and surface reconstruction. NeuroImage 9, 179–194.

Dale, A., Sereno, M., 1993. Improved localization of cortical activity by
combining EEG and MEG with MRI cortical surface reconstruction: a
linear approach. J. Cogn. Neurosci. 5, 162–176.

Damasio, H., 1995. Human Brain Anatomy in Computerized Images.
Oxford University Press, London.

Dickson, J., Drury, H., Van Essen, D., 2001. ‘The surface management
system’ (SuMS) database: a surface-based database to aid cortical
surface reconstruction, visualization and analysis. Philos. Trans. R.
Soc. London B. 356, 1277–1292.

Do Carmo, M., 1976. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ.

Feess-Higgins, A., Larroche, J., 1987. Development of the Human Foetal
Brain. Inserm-Masson, Paris.

Fischl, B., Sereno, M., Dale, A., 1999a. Cortical surface-based analysis. II.
Inflation, flattening, a surface-based coordinate system. NeuroImage 9,
195–207.

Fischl, B., Sereno, M., Tootell, R., Dale, A., 1999b. High-resolution in-
tersubject averaging and a coordinate system for the cortical surface.
Hum. Brain Mapp. 8, 272–284.

Goldman, P., Galkin, T., 1978. Prenatal removal of frontal association
cortex in the fetal rhesus monkey: anatomical and functional conse-
quences in postnatal life. Brain Res. 152, 451–485.

Goldman, P., Nauta, W., 1977. Columnar distribution of cortico-cortical
fibers in the frontal association, limbic, and motor cortex of the devel-
oping rhesus monkey. Brain Res. 122, 393–413.

Goldman-Rakic, P., 1980. Morphological consequences of prenatal injury
to the primate brain. Prog. Brain Res. 53, 3–19.

Haker, S., Angenent, S., Tannenbaum, R., Kikinis, R., Sapiro, G., Halle,
M., 2000. Conformal surface parameterization for texture mapping.
IEEE Trans. Visual. Comput. Graphics 6, 181–189.

Hasnain, M., Fox, P., Woldorff, M., 2001. Structure-function spatial co-
variance in the human visual cortex. Cereb. Cortex 11, 702–716.

Hubel, D., Wiesel, T., 1977. Functional architecture of macaque monkey
visual cortex. Proc. R. Soc. London B 198, 1–59.

Hughes, T., 1987. The Finite Element Method. Prentice Hall, Englewood
Cliffs, NJ.

Jacobson, M., 1991. Developmental Neurobiology, third ed. Plenum, New
York.

Kaas, M., Witkin, A. and Terzopoulos, D., 1996. Snakes: active contour
models, in: International Conference on Computer Vision, pp. 259–
269.

Kaufman, A., Cohen, D., Yagel, R., 1993. Volume graphics. IEEE Comp.
26, 51–64.

Koenderink, J., van Doorn, A., 1986. Dynamic shape. Biol. Cybern. 53,
383–396.

Malamud, N., Hirano, A., 1974. Atlas of Neuropathology, second rev. ed.
Univ. of California Press, Berkeley.

Maling, D., 1992. Coordinate Systems and Map Projections, second ed.
Pergamon, Elmsford, NY.

Mangin, J., Bloch, I., Régis, J., López-Krahe, J., 1995. From 3D magnetic
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