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* What | call neurogeometry concerns the
neural implementation of the geometric
structures of visual perception.

* It concerns perceptive geometry “from
within” and not 3D Euclidean geometry of
the outside world.

» The general problem is to understand
how the visual system can be a neural

geometric engine.




» We focus on V1, but there are of
course many top-down feedbacks from
other areas to V1.

Neural implementation varies with
species (rat, ferret, tree shrew, cat,
macaque, man, etc.). The same
functional architecture can be
implemented in different ways.

Stephen van Hooser on “Similarity and
diversity" of V1 in mammals (comparative
study).

The gross laminar interconnections and
the major functional responses are nearly
invariant: 6 layers, LGN projecting mainly
on the granular 4th layer.

» Three principal classes of LGN cells:
parvocellular (P), magnocellular (M),
koniocellular (K), etc.




e But the fine laminar structures are
quite different.

e Tree shrew (Tupaya), Cat, Macaque
have orientation maps with orientation
hypercolumns and a functional
“horizontal” architecture connecting
neurons of similar orientation.

e Rat and Gray squirrel have not.

« Figure. Orientation simple cells are
absent in macaque 4B and tree shrew
layer 4.

* [[ Direction selectivity dominates in the cat
but is only common in specific layers of
macaque and squirrel.

— End-stopped VS lengthsumming cells : they
decrease VS increase their responses as
bars or gratings length increases.|]
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o Another limitation. Neural coding is a
statistical population coding and, for
each elementary computation, a lot of
neurons are involved.

We will not take into account
explicitely this redundancy which leads
to stochastic models.

A typical example of the problems of
neurogeometry is given by well known
Gestalt phenomena such as Kanizsa
illusory contours.

The visual system (V1 with some
feedback from V2) constructs very long
range and crisp virtual contours.




» They can even be curved.

« With the neon effect (watercolor illusion),
virtual contours are boundaries for the
diffusion of color inside them.




— B. Pinna, G. Brelstaff, L. Spillmann (Vision
Research, 41, 2001)): watercolor illusion.




« Kanizsa subjective contours manifest a
deep neurophysiological phenomenon.

Here is a result of Catherine Tallon-Baudry
in « Oscillatory gamma activity in humans
and its role in object representation »
(Trends in Cognitive Science, 3, 4, 1999).

Subjects are presented with coherent
stimuli  (illusory and real triangles)
« leading to a coherent percept through a
bottom-up feature binding process ».

« Time—frequency power of the EEG at
electrode Cz (overall average of 8
subjects), in response to the illusory
triangle (top) and to the no-triangle
stimulus (bottom ».

« Two successive bursts of oscillatory
activities were observed.

— A first burst at about 100 ms and 40 Hz. It
showed no difference between stimulus types.

— A second burst around 280 ms and 30-60 Hz.
It is most prominent in response to coherent
stimuli. »
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* Many phenomena are striking. E.g. the
change of “strategy” between a “diffusion
of curvature” strategy and a “piecewise
linear” strategy where the whole
curvature is concentrated in a singular
point.

* |t is a variational problem.




« Bistability : the illusory contour is either a
circle or a square.

* The example of Ehrenstein illusion:
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In mammals (especially higher mammals
with frontal eyes), due to the optic
chiasm, each visual hemifield projects
onto the contralateral hemisphere.

The fibers from nasal hemiretinae cross
the optic chiasm, while the fibers from
temporal hemiretinae remain on the
ipsilateral side.
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 In the linear approximation, (simple)
neurons of V1 operate as filters on the
optic signal coming from the retina.

Their receptive fields (the bundle of
photoreceptors they are connected with
via the retino-geniculo-cortical pathways)
have receptive profiles (transfert function)
with a characteristic shape.

We look only at the simplest and most
classical definition of the RFs by spiking
responses (minimal discharge field).

We don’t take into account the global
contextual  subthreshold  activity of
neurons.

* We look at the simplest models.
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« For simple cells, RFs are highly
anisotropic and elongated along a
preferential orientation.

» Level curves of the receptive profiles can
be recorded :

1
£,
|

» The receptive profiles can be modeled
either

— by second order derivatives of Gaussians,
— or by Gabor wavelets

exp(i2z)exp (— (22 +y?))

(real part).

e Gaussian derivatives are better (see
Richard Young)
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« The RPs operate by convolution on the
visual signal.

» Let I(x, y) be the visual signal (x, y are
visual coordinates on the retina).

Let o(x-x,, y-y,) be the RP of a neuron N
whose RF is defined on a domain D of the
retina centered on (x,, y,).
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e N acts on the signal I as a filter :

Iy (x0,50) = [1(x. Y )p(x" —x0,y" = yo)dx'dy’
D

A field of such neurons act by convolution
on the signal. It is a wavelet analysis.

Ip(xy)= [I, )0 = x5y = y)dx'dy = (I* 9)(x,y)
D

o
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Due to the classical formula
I+DG = D(I+G)

for G a Gaussian and D a differential
operator, the convolution of the signal 1
with a DG-shaped RF amounts to apply D
to the smoothing /+G of the signal I at the
scale defined by G.

» Hence a multiscale differential geometry.
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» If we add time (spatio-temporal RPs) we find
even fourth order derivatives.

— White noise method. Correlation between
(i) random sequences of flashed bright / dark bars at
different positions , and
(i) sequences of spikes. The time is the correlation
delav (see Younaq).

200/ | ~1200
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 True RF are far more complex. They are
adaped to the processing of natural
images (and not bars and gratings).

An efficient coding must reduce
redundancy and maximize the mutual
information between visual input and
neural response.

The statistic of natural images is very
particular because there exist strong
correlations between nearby RF.

» Yves Frégnac (UNIC) : 4 statistics. Drifting
gratings, dense noise, natural images with
eye movements, gratings with EM.

» The variability of spikes decreases with
complexity and their temporal precision
increases.




+ Drastic simplification : simple cells of V1
detect a preferential orientation.

* They measure, at a certain scale, pairs
(a, p) of a spatial (retinal) position a and
of a local orientation p at a.

 For a given position a = (x,, y,) in R, the
simple neurons with variable orientations 6
constitute an anatomically definable
micromodule called an “hypercolumn”.

* The hypercolumns associate
retinotopically to each position a of the
retina R a full exemplar P, of the space P
of orientations p at a.
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» So, this part of the functional architecture
implements the fibrationw: RxP — R
with base R, fiber P, and total space
V=R XP.

Hypercolumns are geometrically organized
in 2D-pinwheels.

The cortical layer is reticulated by a
network of singular points which are the
centers of the pinwheels.

Locally, around these singular points all
the orientations are represented by the
rays of a “wheel” and the local wheels are
glued together into a global structure.
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» The method (Bonhoffer & Grinvald, ~ 1990) of in
vivo optical imaging based on activity-
dependent intrinsic signals allows to acquire
images of the activity of the superficial cortical
layers.

Gratings with high contrast are presented many
times (20-80) with e.g. a width of 6.25° for the
dark strips and of 1.25° for the light ones, a
velocity of 22.5°/s, different (8) orientations.

Lateral
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» There are 2 classes of points :

— regular points where the orientation field is
locally trivial;

— singular points at the center of the pinwheels;

» Two adjacent singular points are of
opposed chirality.
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» What is the structure near singularities ?

* The spatial (50u) and depth resolutions of
optical imaging is not sufficient.

* One needs single neuron resolution to
understand the micro-structure.

» Two-photon calcium imaging in vivo
(confocal biphotonic microscopy) provides
functional maps at single-cell resolution.

— Kenichi Ohki, Sooyoung Chung, Prakash
Kara, Mark Hubener, Tobias Bonhoeffer and
R. Clay Reid:

Highly ordered arrangement of single neurons
in orientation pinwheels, Nature, 442, 925-928
(24 August 2006) .
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(In cat) pinwheels are higly ordered at the
micro level and « thus pinwheels centres
truly represent singularities in the cortical
ETIS

Injection of calcium indicator dye (Oregon
Green BAPTA-1 acetoxylmethyl esther)
which labels few thousands of neurons in
a 300-600u region.

Two-photon calcium imaging measures
simultaneously calcium signals evoked by
visual stimuli on hundreds of such neurons
at different depths (from 130 to 290u by
20u steps).

One finds pinwheels with the same
orientation wheel.

« This demonstrates the columnar
structure of the orientation map at a very
fine spatial scale ».
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» The “vertical’ retinotopic structure is not
sufficient. To implement a global
coherence, the visual system must be able
to compare two retinotopically neighboring
fibers P, et P, over two neighboring points
a and b.

This is a problem of parallel transport. It
has been found at the empirical level by
the discovery of “horizontal” cortico-cortical
connections.
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- Cortico-cortical connections are slow
(= 0.2m/s) and weak.

They connect neurons of almost similar
orientation in neighboring hypercolumns.

This means that the system is able to
know, for b near a, if the orientation g at b
is the same as the orientation p at a.

The next slide shows how a marker
(biocytin) injected locally in a zone of
specific orientation (green-blue) diffuses
via horizontal cortico-cortical connections.

The key fact is that the long range
diffusion is highly anisotropic and
restricted to zones of the same orientation
(the same color) as the initial one.
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 Moreover cortico-cortical connections
connect neurons coding pairs (a, p)and
(b, p) such that p is approximatively the
orientation of the axis ab (William
Bosking).

—« The system of long-range horizontal
connections can be summarized as
preferentially linking neurons with co-oriented,
co-axially aligned receptive fields ».

* So, the well known Gestalt law of “good
continuation” is neurally implemented.
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* |n fact, a certain amount of curvature is
allowed in alignements.

» These experimental results mean
essentially that the contact structure of the
fibration w : V=R X P—R is neurally
implemented.

» The first model : the space of 1-jets of
curves C in R.

* It is the beginning of neurogeometry
(Hoffman, Koenderink).
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» If Cis curve in R (a contour), it can be lifted to V.
The lifting I" is the map (1-jet)

j:C— V=RXP

wich associates to every point a of C the pair

(a, p,) where p_ is the tangent of C at a.

« This Legendrian lift TI'represents C as the
enveloppe of its tangents (projective duality).

* In terms of local coordinates (x, y, p) inV, the
equation of I" writes (x, y, p) = (x, y, y').

* If we have an image I(x, y) on R, we can lift it in
V by lifting its level curves.
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» The functional interest of jet spaces is
that they can be implemented by “point
processors” (Koenderink) such as
neurons.

But then a functional architecture is
needed.

Functional architectures of point
processors can compute features of
differential geometry.

The key idea is

— (1) to add new independent variables

describing local features such as orientation.

— (2) to introduce an integrability constraint to
integrate them into global structures.

Neuro-physiologically, this means to add
feature detectors and to couple them via
a functional architecture in order to
ensure binding.
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* To every curve C in R is associated a curve I
in V. But the converse is of course false.

If " = (a, p) = (x, y(x), p(x)) is a curve in V, the
projection a = (x, y(x)) of I" is a curve C in R.
But I is the lifting of C iff p(x) = y'(x).

» This condition is called a Frobenius
integrability condition. It says that to be a
coherent curve in V, I' must be an integral
curve of the contact structure of the fibration
Jt.

Frobenius integrability condition
corresponds to the psychophysical
experiments on the association field
(David Field, Anthony Hayes and Robert
Hess).

They explain experiments on good
continuation : pop out of a global curve
against a background of randomly
distributed distractors




* Let (a,, p;) be a set of segments embedded
in a background of randomly distributed
distractors. The segments generate a
perceptively salient curve (pop-out) iff the
p; are tangent to the curve C optimally
interpolating between the a,.
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« This is a discretized version of the
integrability condition.

» The integrability induces a binding of the
local elements. The activities of the
neurons detecting them are synchronized
and the synchronization produces the pop
out.

One must have the following type of
horizontal connectivity :

THE ASSOCIATION FIELD
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e But this is exactly the integrability
condition : the association field (left)
correspond to the simplest integral
curves of the contact distribution (right).

* Frobenius condition is extremely simple :

p = dy/dx

e But it contains deep mathematics.
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Frobenius integrability condition is
equivalent to the fact that if

t=(x,y p;1,y,p)
is a tangent vector to V at the point
(x, y, p), then ¢ is in the kernel of the 1-form
w =dy— pdx
(w =0 means p =dy/ dx).
w(l,y',p)=dyl,y' p)—pdx(,y' p)
=y =p

To compute the value of a 1-form @ on a
tangent vector r = (¢, n, @) at (x, y, p), one
applies the rules

dx(t) =&, dy(t) =1, dp(t) = .

So the kernel of the 1-form w is the field of
the planes (called the contact planes)

nN-pé=0.

X;=0,+pd,=(=1n=p x=0),and
X,=0,=(£=0,7=0, 7 =1) are evident
generators.
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* Moreover, in a Legendrian lift T, the
vertical component p' of a tangent vector is
the curvature of the curve C in the base
space R :

p=y = p'=)y"

The field of the contact planes has many
integral curves : all the Legendrian lifts.
But it has no integral surfaces.

e This is due to the fact that the contact
planes “rotate” too fast to be the tangent
planes of a surface.
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