
Recent demonstrations of direct, real-time 
interfaces between living brain tissue and 
artificial devices, such as computer cursors, 
robots and mechanical prostheses, have 
opened new avenues for experimental and 
clinical investigation1–13. Interest in these 
brain–machine interfaces (BMIs) has been 
kindled by the contribution that they may 
make to the treatment or rehabilitation of 
patients suffering from severe motor dis-
abilities6,8,9,14–17. As such, BMIs have rapidly 
become incorporated into the development 
of ‘neuroprosthetics’, devices that use neuro-
physiological signals from undamaged com-
ponents of the central or peripheral nervous 
system to allow patients to regain motor 
capabilities. Indeed, several findings already 
point to a bright future for neuroprosthet-
ics in many domains of rehabilitation 
medicine6,18–28. For example, scalp electro-
encephalography (EEG) signals linked to a 
computer have provided ‘locked-in’  patients 
with a channel of communication5,19,29–32.

BMI technology, based on multi-electrode 
single-unit recordings — a technique 
originally introduced in rodents33–36 and 
later demonstrated in non-human pri-
mates1,7,11–13,37–45 — has yet to be transferred 
to clinical neuroprosthetics. Human trials 
in which paralysed patients were chroni-
cally implanted with cone electrodes5 or 

intracortical multi-electrode arrays46 allowed 
the direct control of computer cursors. 
However, these trials also raised a number 
of issues that need to be addressed before 
the true clinical worth of invasive BMIs can 
be realized6. These include the reliability, 
safety and biocompatibility of chronic brain 
implants and the longevity of chronic 
recordings, areas that require greater atten-
tion if BMIs are to be safely moved into the 
clinical arena46–48.

BMIs provide new insights1,4,6–13 into 
important questions pertaining to the 
central issue of information processing by 
the CNS during the generation of motor 
behaviours49–60. Many recent review articles 
have covered BMI methods6,10,25,61,62 and 

their potential implementation in medical 
rehabilitation18–20,22–25,27,28, and so these issues 
will not be covered here. Instead, we focus 
on how modern BMI research has led to the 
proposal, and in some cases validation, of 
various physiological principles governing 
the operation of large populations of corti-
cal neurons in behaving mammals (animals 
performing a given action or movement).

Neuronal ensemble recordings
Although the first multi-electrode recording 
experiments in rhesus monkeys date back to 
the mid 1950s63,64, the current neurophysio-
logical approach for sampling the extracellu-
lar activity of large populations of individual 
neurons in behaving animals emerged in the 
early 1980s65–70. At that time, most of the sys-
tems neuroscience community considered 
the single neuron to be the key functional 
unit of the CNS and, therefore, the main tar-
get for neurophysiological investigation71,72. 
Not surprisingly, the transition to neural 
ensemble recordings was slow and difficult. 
In addition to the enormous technological 
and technical barriers, few systems neuro-
physiologists saw any advantage in invest-
ing effort and resources into this paradigm 
shift. As a result, the concept of population 
coding73–76, first proposed by Young77 and 
further popularized by Hebb78, played a 
distant second fiddle to the single-neuron 
doctrine71,79–83 for many decades.

Today, the weight of evidence supports 
the idea that distributed ensembles of neu-
rons define the true physiological unit of 
the mammalian CNS73,84–86. However, this 
does not mean that neurophysiologists have 
given up examining the degree to which 
animal behaviour can be affected by single-
neuron activity87–90. Significant examples of 
the importance of single-neuron physiology 
to BMI research include the demonstration 
that single neurons can be conditioned to 
produce particular firing patterns if their 
activity is presented to primates as sensory 
feedback91–94. In these experiments, the firing 
of single cells became so well correlated to 
the desired motor output that primates could 
use this single-neuron activity to control the 
movements of a gauge needle93 or drive a 
functional electrical stimulator to produce 
an isometric contraction94.
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Abstract | Research on brain–machine interfaces has been ongoing for at least a 
decade. During this period, simultaneous recordings of the extracellular electrical 
activity of hundreds of individual neurons have been used for direct, real-time 
control of various artificial devices. Brain–machine interfaces have also added 
greatly to our knowledge of the fundamental physiological principles governing 
the operation of large neural ensembles. Further understanding of these principles 
is likely to have a key role in the future development of neuroprosthetics for 
restoring mobility in severely paralysed patients.

…in addition to offering hope 
for a potential future therapy 
for the rehabilitation of severely 
paralysed patients, BMIs can 
be extremely useful platforms 
to test various ideas for how 
populations of neurons encode 
information in behaving animals.
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During the past 25 years, the intro-
duction of various new electrophysio-
logical33,36–38,41,43,65–70,95–99 and imaging 
methods100–111 has allowed neurophysiol-
ogists to measure the concurrent activity 
of progressively larger samples of single 
neurons in behaving animals. Interestingly, 
the emergence of multi-electrode record-
ings as a new electrophysiological paradigm 

occurred in parallel with the development 
of BMIs. As researchers started to implant 
more than one micro-electrode in the brain, 
it was proposed that single-neuron record-
ings from the motor cortex might one day 
provide the source of signals to drive artifi-
cial devices designed to restore mobility in 
paralysed patients112. However, almost two 
decades went by before the first experiments 

were conducted to test the hypothesis54 that 
highly distributed populations of broadly 
tuned neurons can sustain the continuous 
production of motor behaviours in  
real-time1,11–13,113.

FIGURE 1a shows a basic BMI paradigm8 
in which the kinematic and dynamic param-
eters of upper- or lower-limb movements are 
predicted (or extracted) in real time from 
neuronal ensemble activity recorded by 
micro-electrode brain implants. In this con-
text, the term prediction refers to the use of 
combined electrical neural ensemble activ-
ity to estimate time-varying kinematic and 
dynamic motor parameters a few hundred 
milliseconds (typically 100–1,000 ms) in 
the future. Multiple computational models 
are used to simultaneously extract various 
motor parameters (such as arm position and 
velocity, or hand gripping force) in real time 
from the extracellular activity of frontal and 
parietal cortical neurons. Computational 
models are first trained to predict motor 
parameters from the modulations of neuro-
nal ensemble activity while animals perform 
motor tasks (typically reaching or grasping 
movements) with their own limbs. As the 
result of this training, the models generate a 
‘transform function’ that matches neuronal 
activity patterns to particular movements. 
Next, the mode of operation is switched to 
‘brain control’, in which the time-varying 
outputs of the computational models con-
trol the movements of an artificial device 
(such as a computer cursor or robot limbs) 
to reproduce the subject’s voluntary motor 
intentions6.

A somewhat different approach for 
model training implemented in invasive 
BMIs in monkeys12 and non-invasive BMIs 
in humans12,114 is based on a supervised 
adaptive algorithm that does not require 
subjects to perform limb movements, but 
rather adapts the model parameters so 
that the model output approximates ideal 
trajectories.

principles of neural ensemble physiology
The advent of BMI research has advanced 
the field of multi-electrode recordings. Here 
we propose a series of principles of neural 
ensemble physiology (TABLE 1) that have been 
derived from, or validated by, BMI stud-
ies1,6,7,11–13,42,115–119. ultimately, these principles 
may be used in the development of new  
neuroprosthetic devices (BOX 1).

The distributed-coding principle. Multi-
electrode studies in New World13,117,118 
and old World monkeys1,42, rats and 
mice86,120–122 consistently support the idea 

Figure 1 | Principles of a brain–machine interface. a | A schematic of a brain–machine interface 
(BMi) for reaching and grasping. Motor commands are extracted from cortical sensorimotor areas 
using multi-electrode implants that record neuronal discharges in large ensembles of cortical cells. 
signal-processing algorithms convert neuronal spikes into the commands to a robotic manipulator. 
Wireless telemetry can be used to link the BMi to the manipulator. the subject receives visual and 
somatosensory feedback from the actuator, possibly through the microstimulation of cortical sensory 
areas. b | Neuronal dropping curves for the prediction of arm movements in rhesus macaques1 calcu-
lated for the ensembles recorded in different cortical areas: the dorsal premotor cortex (PMd), the 
primary motor cortex (M1), the primary somatosensory cortex (s1), the supplementary motor area 
(sMA) and the posterior parietal cortex (PP). Neuronal dropping curves describe the accuracy (R2) of 
a BMi’s performance as a function of the size of the neuronal ensemble used to generate predictions. 
the best predictions were generated by the M1. Prediction accuracy improved with the increase of 
neuronal ensemble size. c | Predictions of hand gripping force calculated from the activity of the same 
cortical areas as in part a. image in part a is modified, with permission, from REF. 8  (2001) Macmillan 
Publishers Ltd. All rights reserved. images in parts b and c are reproduced from REF. 1.
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that information about single motor param-
eters is processed within multiple cortical 
areas. BMI studies1,42 have also revealed that 
real-time predictions of motor parameters 
can be obtained from multiple frontal and 
parietal cortical areas. This widespread rep-
resentation of motor parameters defines the 
distributed-coding principle73,84–86.

The analysis of neuron-dropping curves 
(NDCs) illustrates this principle well. NDCs 
depict a BMI’s prediction accuracy as a func-
tion of the number of neurons recorded 
simultaneously during a given experimental 
session. NDCs are computed by first meas-
uring the entire neuronal population’s per-
formance and then repeating the calculation 
after randomly chosen individual neurons 
are removed (dropped) from the original 
sample. In essence, NDCs measure the size 
of neuronal ensembles needed for a given 
BMI algorithm to achieve a certain level  
of performance. FIGURE 1b,c shows a series of  
NDCs that describe the contribution made 
by populations of neurons, located in dif-
ferent cortical areas, to the simultaneous 
prediction of multiple time-varying motor 
parameters during operation of a BMI by 
a rhesus monkey. This figure shows how 
the predictions of two such parameters — 
hand position (FIG. 1b) and gripping force123 
(FIG. 1c) — vary as a function of the size of 
the recorded neuronal population1.

A widely distributed representation of 
each motor parameter does not necessarily 
mean that equally sized neuronal samples 
obtained from each of these cortical areas 
should yield similar levels of predictions1 
(FIG. 1b,c). For instance, in the example shown 
in FIG. 1, the prediction of hand position was, 
on average, better when randomly sampled 
populations of M1 neurons were used than 

when similar samples of posterior parietal 
cortex (PP) neurons were used. Moreover, 
the difference in prediction performance 
was much smaller between these two corti-
cal areas when gripping force was used as the 
predicted parameter. However, NDC extrap-
olation to larger samples13 indicates that, if a 
sufficiently large sample of PP neurons could 
be obtained, neural ensembles from the PP 
could eventually accurately predict both 
hand position and gripping force. Although 
the representation of motor parameters is 
distributed in the cortex, cortical areas none-
theless show a clear degree of specializa-
tion (but not in an absolute or strict sense). 
Additionally, modulations in neuronal  
activity in different cortical areas that seem 
to be similar (for example, increases in 
activity during rightward movements) may 
underlie different functions in the corti-
cal motor programme transmitted to the 
spinal cord.

The observation of distributed repre-
sentations of motor parameters obtained 
in BMI studies corresponds well with the 
proposition from previous neurophysiologi-
cal research that brain areas represent infor-
mation in a holographic manner, and that 
searching for explicit coding (of force, limb 
displacement or behavioural context) may 
be futile124.

The single-neuron insufficiency principle.  
BMI studies have also revealed that, no mat-
ter how well tuned a cell is to the behavioural 
task in question, the firing rate of individual 
neurons usually carries only a limited 
amount of information about a given  
motor parameter1,13,42. Moreover, the  
contribution of individual neurons to 
the encoding of a given motor parameter 

tends to vary significantly from minute to 
minute125. Reliably predicting a motor vari-
able, and achieving accurate and consistent 
operation of a BMI for long periods of time, 
therefore requires simultaneous recording 
from many neurons, and combining their 
collective ensemble firing118. Incidentally, the 
same single-neuron limitations have been 
observed in the rat somatosensory126–128 and 
gustatory systems86,129,130, and in the cortico-
striatal system of wild-type and transgenic 
mice121. We have called this principle the 
single-neuron insufficiency principle.

The insufficiency of single-neuron firing 
to precisely reproduce a given behavioural 
output has long been appreciated in studies 
in which averaging of neuronal activity over 
many trials was required to quantify a given 
neuron’s behavioural function131,132. This 
analytical strategy is typically used when 
animals have attained a highly stereotyped 
behavioural performance, after being over-
trained in a given task. Despite this caveat, 
single neurons have often been attributed 
very specific functions, and their inherent 
noisiness — clearly verified when single tri-
als are analysed independently — has been 
disregarded132. In such studies, peri-event 
time histograms and directional tuning 
curves have emphasized a consistent rela-
tionship between the modulations of the 
firing rate of a single cell and behavioural 
parameters. As the attention of neurophysio-
logical investigations started to shift towards 
ensemble recordings, neuronal variability, 
as opposed to consistency, came into focus, 
and neurophysiologists started to realize that 
modulations in neuronal firing are usually 
highly transient and plastic86,133–137. This led 
researchers to question the classic assertion 
that behavioural parameters are encoded 
only by the modulation of the firing rate of 
individual cells, and to the realization that 
the precise timing and correlations of neu-
ral ensemble firing should be taken more 
seriously65–67,138. usually, in BMIs based on 
recordings from large neuronal popula-
tions, single-neuron noisiness is removed by 
ensemble averaging. In other words, as the 
population recorded becomes larger, vari-
ability in single-neuron firing declines in 
importance.

A recent study139 documented significant 
single-neuron tuning stability over recording 
sessions that lasted several hours while mon-
keys performed a reaching task. Although 
this result initially seemed to contradict 
the earlier claim that there is single-neuron 
discharge variability125, these two points 
of view proved to be consistent. The study 
demonstrating tuning stability focused on 

table 1 | principles of neural ensemble physiology

Principle explanation

Distributed coding the representation of any behavioural parameter is distributed 
across many brain areas

single-neuron insufficiency single neurons are limited in encoding a given parameter

Multitasking A single neuron is informative of several behavioural parameters

Mass effect principle A certain number of neurons in a population is needed for their 
information capacity to stabilize at a sufficiently high value

Degeneracy principle the same behaviour can be produced by different neuronal 
assemblies

Plasticity Neural ensemble function is crucially dependent on the capacity 
to plastically adapt to new behavioural tasks

conservation of firing the overall firing rates of an ensemble stay constant during the 
learning of a task

context principle the sensory responses of neural ensembles change according to 
the context of the stimulus
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mean firing characteristics, obtained by 
averaging hundreds of behavioural trials, to 
extract the preferred movement direction of 
single neurons. However, this study clearly 
showed that the firing rate of a single M1 
neuron varied significantly from trial to trial 
(15–35 spikes per second). only by averag-
ing many trials were those authors able to 
obtain smooth directional tuning curves. 
The earlier study125 examined a large popula-
tion of individual neurons and focused on 
shorter behavioural epochs, during which 
they observed considerable variability. The 
difference between these studies therefore 
resides mainly in the temporal scale and the 
analytical procedure used to estimate short-
term versus long-term changes in neuronal 
tuning properties.

In any neuronal population sample there 
are cells that are better tuned to a given 
motor parameter of interest. Such neurons 
are usually called task-related cells140,141. 
However, even these cells show significant 
variability in their discharges and need to be 
combined to produce accurate predictions of 
motor parameters142.

Although single cells are generally insuffi-
cient for obtaining accurate BMI predictions, 
the performance of a single-cell BMI has been 
shown to improve with training94. Indeed, in 

our own studies using large neural ensem-
bles to drive BMIs, we observed that both 
the firing patterns of individual cells and the 
correlation between cells underwent plastic 
changes that improved BMI accuracy1,42,119.

The neuronal multitasking principle. BMI 
experiments also indicate that individual 
neurons, located in each of the corti-
cal areas sampled, can participate in the 
encoding of more than one parameter at 
a given moment in time1. In other words, 
although individual cortical neurons might 
be better tuned to a given motor parameter, 
they can still contribute simultaneously 
to multiple, transient functional neural 
assemblies and therefore encode several 
motor parameters at once78. Here we name 
this the multitasking principle.

The multitasking principle, described 
here for BMI studies, is similar to the multi-
modal interactions observed previously in 
sensory and associational cortical areas143–152. 
However, as most of the BMI literature  
deals with the motor system, we prefer to 
use the term ‘multitasking’. In our notation, 
a multitasking BMI controls several motor 
parameters simultaneously, for example 
several degrees of freedom of a multi-joint 
actuator.

BMI experiments in which monkeys used 
cortical activity to control the reaching and 
grasping movements of a robotic manipula-
tor revealed that the firing of single cortical 
neurons was typically correlated to several 
motor variables, such as the manipulator 
position coordinates and its gripping force1. 
Recent experiments that aimed to use the 
combined activity of primate cortical neu-
rons to reproduce patterns of bipedal loco-
motion153 revealed that the firing of single 
neurons could contribute to the prediction 
of several motor variables related to leg 
movements154–156, including the timing  
of movement onset, as previously observed 
for hand movements116.

The neuronal mass principle. Further analy-
sis of the NDCs shown in FIG. 1b,c shows 
that parametric reductions in the size of 
the neuronal population initially produce a 
minor reduction in overall prediction per-
formance for each motor parameter in each 
of the sampled cortical areas1,13,42. However, 
below a certain critical population size the 
accuracy of the predictions starts to fall 
more rapidly and, at a certain level (fewer 
than ~10–20 neurons), becomes poor1,13. 
This suggests that BMIs based on recording 
the activity of just a few neurons are likely 
to perform poorly. According to the single-
neuron insufficiency principle, predictive 
performance should increase continuously 
as a function of the growth in neural ensem-
ble size. However, NDCs revealed that when 
the number of neurons used went above a 
certain population size (tens of neurons), the 
amount of predictive information obtained 
tended to remain virtually constant, regard-
less of the identity of the individual neurons 
sampled. This result is attributable to a sig-
nificant decrease in the variance of NDCs 
for sufficiently large neuronal samples116.

In other words, once a certain critical 
neuronal mass had been achieved, differ-
ent, and sufficiently large, random samples 
of single neurons from a given cortical area 
(from different layers or different subregions) 
tended to yield similar levels of predictive 
information about a given motor param-
eter1,42. These results led us to propose the 
neuronal mass effect principle, which states 
that to achieve a sufficiently accurate and 
stable prediction of a given motor parameter, 
a neural ensemble has to recruit a crucial 
number of neurons at each moment in time. 
The neuronal mass needed to achieve stabil-
ity depends on several factors, including the 
presence of highly tuned neurons in the pop-
ulation116,142. If these are missing, predictions 
gradually improve with neuronal sample size, 

 Box 1 | From ensemble principles to neuroprosthetic development

Ultimately, we expect that the identification of principles of neural ensemble physiology will guide 
the development of a generation of cortical neuroprosthetic devices that can restore full-body 
mobility in patients suffering from devastating levels of paralysis, due either to traumatic or 
degenerative lesions of the nervous system. We believe that such devices should incorporate 
several key design features. First, brain-derived signals should be obtained from multi-electrode 
arrays implanted in the upper- and lower-limb representations of the cortex, preferably in multiple 
cortical areas. Custom-designed microchips (also known as neurochips), chronically implanted in 
the skull, would be used for neural signal-processing tasks. To significantly reduce the risk of 
infection and damage to the cortex, multi-channel wireless technology would transmit neural 
signals to a small, wearable processing unit. Such a unit would run multiple real-time 
computational models designed to optimize the real-time prediction of motor parameters. 
Time-varying, kinematic and dynamic digital motor signals would be used to continuously control 
actuators distributed across the joints of a wearable, whole-body, robotic exoskeleton. High-order 
brain-derived motor commands would then interact with the controllers of local actuators and 
sensors distributed across the exoskeleton. Such interplay between brain-derived and robotic 
control signals, known as shared brain–machine control192, would assure both voluntary control 
and stability of bipedal walking of a patient supported by the exoskeleton.

Touch, position, stretch and force sensors, distributed throughout the exoskeleton, would 
generate a continuous stream of artificial touch and proprioceptive feedback signals to inform  
the patient’s brain of the neuroprosthetic performance. Such signals would be delivered by 
multichannel cortical microstimulation directly into the patient’s somatosensory areas. Our 
prediction is that, after a few weeks, such a continuous stream of somatosensory feedback  
signals, combined with vision, would allow patients to incorporate, through a process of  
experience-dependent cortical plasticity, the whole exoskeleton as an extension of their body.

These developments are likely to converge into the first reliable, safe and clinically useful cortical 
neuroprosthetic. To accelerate this process and make this milestone a clinical reality, a worldwide 
team of neurophysiologists, computer scientists, engineers, roboticists, neurologists and 
neurosurgeons has been assembled to launch the Walk Again Project, a non-profit, global 
initiative aimed at building the first cortical neuroprosthetic capable of restoring full-body 
mobility in severely paralysed patients.
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and the noise in the combined population 
activity is proportional to the square root of 
the number of neurons. The critical neuronal 
mass is also highly dependent on neuronal 
correlations, which limit the information that 
the population can contain157,158. Correlation 
makes neuronal encoding redundant. As a 
consequence, beyond a certain size the infor-
mation represented by a neuronal population 
increases only marginally with the addition 
of new cells.

The minimal size of a neuronal sample 
needed to effectively control a BMI has 
become a controversial issue (for contrast-
ing opinions, compare REFS 7,11,12 with 
REFS 1,6,9,13,42,116). on the basis of dem-
onstrations that involved stereotypical and 
relatively simple upper-limb movements, 
several groups have argued that BMIs 
intended to restore upper-limb mobility 
could operate using small neuronal samples 
(<30 neurons)7,11,12,159. Despite this emphasis 
on the role of small neuronal samples, and 
results showing improvement in accuracy of 
small-sample BMIs with training94, practical 
BMIs might not perform sufficiently well 
using signals from only a few neurons, for 
various reasons. For instance, it is unclear 
from the studies that used this approach 
whether small-sample BMIs can sustain the 
same level of performance over long periods 
of time11,12,160. Current recording techniques 
may not allow the sampling of high numbers 
of highly tuned neurons, or provide the  
kind of stability needed for such small-
sample BMIs to remain effective for 
many months, let alone for many years. 
Additionally, small-sample BMIs may not 
be able to generalize their function to cope 
with newer or more complex behavioural 
tasks153. We therefore feel that it is likely that 
such an increase in behavioural demand 
will be met by only large neuronal popula-
tions. Evidence obtained in our laboratory 
indicates that this is precisely the case for 
BMIs aimed at reproducing both upper- and 
lower-limb movements1,153.

The neural degeneracy principle. BMI stud-
ies also revealed that a single motor output 
is often associated with distinct spatiotem-
poral patterns of neural ensemble firing 
on the millisecond scale118,161–164. Following 
the nomenclature introduced by Reeke and 
Edelman165, this principle, which states that 
identical behavioural outputs can be pro-
duced by distinct functional and transient 
neural ensembles, has been named the 
degeneracy principle.

Neural degeneracy is similar to neural 
redundancy in that different combinations 

of single neurons belonging to a neural circuit 
can produce different spatiotemporal fir-
ing patterns that end up encoding the same 
motor outputs166. Degenerate coding has 
been demonstrated in several neural circuits, 
including the pyloric network of the lobster, 
the song control system of the zebra finch and 
the order-encoding system of the locust164, 
where it serves to represent low-dimensional 
information by a high-dimensional neural 
network in a fault-tolerant way.

BMIs based on neuronal ensemble 
recordings solve a similar problem: they map 
the activity of several hundred neurons  
onto the lower number of degrees of 
freedom of an artificial actuator. In these 
experiments, we have observed that similar 
movements, produced either by the animal’s 
arm or by an artificial actuator, can result 
from distinct spatiotemporal patterns of 
neuronal population activity125. Therefore, 
if a sufficiently large population of neurons 
is recorded simultaneously, movements 
induced by a BMI can be reliably produced in 
each behavioural trial. Similarly, we observed 
that stereotypical steps in bipedally walking 
monkeys were associated with different pat-
terns of motor cortex activations153. It follows 
from these considerations that the basic pro-
portion between the recorded ensemble size 
and the number of controlled degrees of free-
dom should be preserved for BMI applica-
tions that require the production of complex 
motor behaviours in artificial actuators.

The plasticity principle. Experience-
dependent plasticity in cortical neural 
ensembles167,168 is essential for primates to 
learn to operate a BMI. As mentioned above, 
the strength of a single-neuron correla-
tion to a given motor parameter is typically 
imprecise, varying as a function of time, 
internal state and learning, as well as the 
animal’s expectation of the task outcome 
and reward118,125,169. Several studies have 
now documented the occurrence of corti-
cal plasticity as animals learn to operate a 
BMI1,12,42. This phenomenon is character-
ized by changes in the tuning properties of 
individual neurons12,42 and physiological 
adaptations at the level of neural ensembles, 
which include changes in firing covariance 
and spike timing1. Such changes in neuronal 
properties are undoubtedly related to basic 
plasticity mechanisms, such as changes in 
the strength of synaptic connections and 
gene expression. However, in BMI experi-
ments such basic mechanisms are difficult 
to isolate from the population effects. For 
example, increases in the firing activity of 
a given neuron can result from multiple 

factors, such as changes in synaptic strength, 
increases in excitatory inputs or release of 
inhibition. Combinations of such factors 
manifest themselves as changes in neuronal 
tuning (the correlation of cell firing with a 
given motor parameter). In BMI studies, 
similar measurements of neuronal tuning 
are provided by the weights that prediction 
models assign to different neurons142 and 
time-dependent correlations of neuronal 
rates with kinematic parameters42.

As a rule, neuronal tuning tends to be 
modified and refined as a result of operant 
conditioning93,94,161,170–179. In BMI studies, 
cortical plasticity manifests itself in a series 
of physiological adaptations. For instance, 
during the transition from manual to brain 
control of a BMI1,42 (when animals ceased 
to use their own limbs and started to con-
trol an actuator using their cortical activ-
ity directly), a significant portion of the 
recorded neurons, which were distributed 
across multiple cortical areas, progressively 
acquired tuning properties related to the 
kinematic properties of the robotic device 
used (FIG. 2). As a result, a fraction of these 
cortical neurons showed tuning to the 
kinematic properties of both the animal’s 
biological arms and the robotic arm (FIG. 2a). 
Conversely, a subset of the recorded cortical 
neurons ceased to fire, or to show velocity 
or direction tuning, when animals stopped 
producing arm movements and controlled 
a robotic device without any overt motor 
behaviour1,42 (FIG. 2b). Perhaps more surpris-
ingly, a fraction of the recorded cortical 
neurons showed clear velocity and direction 
tuning that was related to the movements 
of the robotic prosthesis but not to the 
displacement of the animal’s own arms1,42 
(FIG. 2c). Such tuning developed and became 
sharper during the period in which monkeys 
learned to operate the BMI without execu-
tion of overt body movements (brain control 
mode). The emergence of such tuning may 
explain why monkeys were able to control 
both robotic arms and legs using BMIs 
without generating corresponding body 
movements.

Besides changes in single-neuron tuning 
properties, a significant increase in firing 
covariance between pairs of neurons, located 
within and between multiple cortical areas, 
has also been observed when animals started 
operating a BMI without moving their own 
limbs1 (FIG. 2d). As animals shifted back and 
forth between using their own limbs or the 
artificial actuator controlled by the BMI to 
solve a particular motor task, functional 
coupling between pairs of cortical neurons 
adapted dynamically. Interestingly, this 
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increase in neuronal pair covariance was 
observed not only within a given cortical 
area, but also between neurons located in 
distinct cortical fields1.

The observation of such a broad rep-
ertoire of functional cortical adaptations 

during the operation of BMIs supports 
many far-reaching conclusions. First, they 
suggest that old World monkeys may be 
capable of ‘motor imagery’180–183: to imagine, 
in great detail, a series of complex motor 
sequences without necessarily producing 

body movements to execute such motor 
plans. Second, they imply that, at its limit, 
cortical plasticity may allow artificial tools 
to be incorporated as part of the multiple 
functional representations of the body that 
exist in the mammalian brain. If this proves 

Figure 2 | Neuronal activity during a reaching task. the task illustrated 
was performed by a rhesus macaque that controlled a robotic actuator 
using a hand control or through a brain–machine interface (BMi; brain con-
trol). During BMi operation, the monkey either continued to move the pole 
with the hand (brain control with hand movements) or stopped moving its 
hand (brain control without hand movements). a | Activity of a primary 
motor cortex (M1) neuron during both pole and brain control. colour-coded 
diagrams represent neuronal tuning to movement velocity (that is, the aver-
age neuronal rate as a function of hand or robot velocity), calculated at dif-
ferent lags (–400 ms to +500 ms) with respect to the time of velocity 
measurement. the diagrams labelled ‘Hand’ represent neuronal tuning to 
hand movements, and the diagrams labelled ‘Robot’ represent tuning  
to robot movements. During brain control without hand movements, this 
neuron became less tuned to hand movements (row of colour diagrams 

labelled ‘Brain control with hand movements: hand’). tuning to robot move-
ments was maximal during brain control without hand movements (row 
labelled ‘Brain control without hand movements: robot’). b | An M1 neuron 
modulated only when the monkey moved its hand. c | An M1 neuron that 
was not modulated during hand movements, but became tuned to the robot 
movements during brain control without hand movements. d | Analysis of 
pairwise correlations in firing between the neurons in the recorded ensem-
ble, using data from REF. 1. correlations increased during brain control, 
especially brain control without hand movements. the highest correlations 
were between the neurons recorded in the same cortical area. M1ips,  
primary motor cortex, hemisphere ipsilateral to the working hand; PMd, 
dorsal premotor cortex; s1, primary somatosensory cortex; sMA, supple-
mentary motor area. images in parts a–c are modified, with permission, from 
REF. 42  (2005) society for Neuroscience.
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to be true, we would predict that continu-
ous use of a BMI should induce subjects to 
perceive artificial prosthetic devices, such 
as prosthetic arms and legs, controlled by 
a BMI as part of their own bodies. Such a 
prediction opens the intriguing possibility 
that the representation of self does not nec-
essarily end at the limit of the body surface, 
but can be extended to incorporate artificial 
tools under the control of the subject’s brain. 
BMI research further stretches this puzzling 
idea by demonstrating that, once brain activ-
ity is recorded and decoded efficiently in real 
time, its capacity to control artificial devices 
can undergo considerable modification in 
terms of temporal, spatial, kinematic and 
kinetic characteristics, termed scaling1,12. 
In other words, not only can a BMI enact 
voluntary motor outputs faster than the sub-
ject’s biological apparatus (temporal scaling), 
but it can also accomplish motor tasks at a 
distance from the subject’s own body (spatial 
scaling), by controlling an actuator that is 
either considerably smaller (for example, a 
nano-tool) or considerably larger (for exam-
ple, a crane) than the subject’s own biological 
appendices.

Recently, another powerful way to induce 
cortical plasticity has been introduced 

to BMI research: multichannel, cortical 
microstimulation115,184. FIGURE 3 shows some 
of the findings obtained when chronic 
multichannel microstimulation of the 
primary somatosensory cortex was used 
to instruct owl monkeys on how to locate 
food rewards. During several months of 
microstimulation sessions, these monkeys 
progressively learned to detect the pres-
ence or absence of microstimulation, and 
to discriminate different temporal patterns 
of microstimulation pulses that indicated 
food location115. Moreover, the animals also 
learned new behavioural contingencies 
after changes were made in the direction 
of arm reach instructed by microstimula-
tion. Interestingly, monkeys required less 
time to master a new set of rules as train-
ing progressed and new task contingencies 
were introduced, which allowed them more 
practice in handling microstimulation cues 
(FIG. 3b,c). So after being exposed to an origi-
nal basic rule, monkeys learned a reversed 
task much more rapidly and, subsequently, 
more elaborate contingencies as well115. 
Although the basic mechanism involved in 
such ‘rule generalization’ was not uncovered, 
these results confirm the hypothesis that 
functional plasticity of cortical tissue can 

be induced by intracortical microstimula-
tion184. This raises the question of whether 
chronic cortical microstimulation can trig-
ger a process of functional adaptation that 
leads to the emergence of realistic perceptual 
experiences. Although there is no defini-
tive answer to this question, it is interesting 
to note that people who were exposed to 
chronic patterned cutaneous stimulation, as 
an artificial replacement strategy for vision, 
learned to use such artificial sensory input 
to guide their movements and reported the 
development of qualitatively new percep-
tions185,186. Confirmation of new perceptual 
experiences after prolonged training with 
microstimulation would certainly be of con-
siderable relevance for the design of future 
neuroprosthetic devices that aim to restore 
upper- and lower-limb mobility in severely 
paralysed patients.

With that long-term vision in mind, 
we have recently started to develop a new 
paradigm, named brain–machine–brain 
interface (FIG. 4), that will enable us to test 
whether monkeys can use neural ensemble 
activity to control the movements of artifi-
cial devices guided by instructions delivered 
directly to their somatosensory cortices by 
multichannel microstimulation.

Figure 3 | Discrimination of spatiotemporal microstimulation patterns 
by owl monkeys. Microstimulation trains were delivered to the primary 
somatosensory cortex through chronically implanted multi-electrode 
arrays. the monkeys responded to microstimulation or its absence by select-
ing the target of reaching movements. top panels illustrate microstimula-
tion patterns; bottom panels show discrimination accuracy as the function 
of training day. a | A basic task in which the monkeys detected the presence 
or absence of microstimulation. the monkeys learned the task in 1 month. 

b | Discrimination of temporal patterns of microstimulation. the monkeys 
learned the task in 1 week. c | A spatiotemporal discrimination task during 
which waves of microstimulation were delivered through the electrode 
arrays. the monkeys learned the task in 3 days, and could then discriminate 
spatiotemporal patterns of cortical microstimulation. Moreover, after pro-
longed training with microstimulation they learned to interpret new micro-
stimulation patterns faster. Figure is reproduced, with permission, from  
REF. 115  (2007) society for Neuroscience.
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The conservation of firing principle. Despite 
documenting clear and widespread changes 
in the single-neuron firing rate related to 
plastic modifications in neuronal velocity 
and duration tuning, and increases in firing 
covariance between pairs of cortical neu-
rons, we have also observed that the global 
firing rate (total number of spikes) of the 
cortical neural ensembles recorded in our 
experiments usually remained unchanged 
as animals learned to operate a BMI1. This 
principle of neural ensemble firing conserva-
tion has also been observed in various other 
studies — including experiments conducted 
in New World monkeys, rats and mice — 
involving distinct cortical areas and various 
motor and sensory tasks95,120–122,187–190. These 
studies indicate that maintaining the total 

number of spikes for a range of behaviours 
could be a pervasive, homeostatis-like  
mechanism of cortical ensembles.

The context principle. Multi-electrode 
recordings in freely behaving animals have 
also opened new ways to examine a funda-
mental question in classic neurophysiology: 
how neurons respond to sensory stimuli that 
are applied passively or acquired actively by 
subjects. A study in behaving rats trained to 
perform a tactile discrimination task using 
only their facial whiskers addressed this 
issue directly169. This study revealed that 
neuronal modulations evoked by passively 
versus actively acquired tactile stimulation 
were strikingly different in their magnitude, 
adaptation rate and percentage of excitatory 

versus inhibitory sensory evoked responses 
in the primary somatosensory cortex (FIG. 5). 
A similar result has since been described in 
the rat primary gustatory cortex191 and in the 
auditory cortex of marmosets39.

Such marked neurophysiological differ-
ences indicate that the context in which ani-
mals sample their surrounding environment 
can radically alter the way cortical neural 
ensembles respond to incoming sensory 
information. Therefore, we named this  
principle the context principle.

Conclusions
The principles of neural ensemble physiol-
ogy described above were either derived 
from, or confirmed by, a decade of BMI 
experiments. This demonstrates that, in 

Figure 4 | The concept of a brain–machine–brain (BMBi) interface with 
artificial sensory feedback. in one possible implementation, depending on 
the presence or absence of microstimulation the monkeys perform brain–
machine interface (BMi)-controlled reaching movements in different directions 
(right or left). initially the monkeys acquire visual targets using a screen cursor 
moved by a hand-held joystick, and the directional instruction is delivered by 
mechanical vibration of the joystick handle. Manual control is then replaced 
by BMi control of cursor movements, and vibration is replaced by cortical 
microstimulation. a | examples of possible sites of cortical implantation.  

Multi-electrode arrays are placed in the dorsal premotor cortex (PMd), the 
primary motor cortex (M1) and the primary somatosensory cortex (s1). PMd 
and M1 arrays are used to extract motor commands, and the s1 is the site of 
microstimulation. b | examples of possible locations of s1 electrodes with 
respect to a somatotopic map determined using receptive field measurements. 
the multi-electrode array covers the representation of digits D2–D5 and of the 
hand pads. c | Receptive fields of the electrodes through which micro-
stimulation is delivered. d | Parameters of microstimulation train (top) and  
microstimulation pulses. e | schematic of the experiment, as described above.
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addition to offering hope for a potential 
future therapy for the rehabilitation of 
severely paralysed patients, BMIs can be 
extremely useful platforms to test various 
ideas for how populations of neurons encode 
information in behaving animals. Together 
with other methods, research on BMIs has 
contributed to the growing consensus that 
distributed neural ensembles, rather than the 
single neuron, constitute the true functional 
unit of the CNS responsible for the production 
of a wide behavioural repertoire.
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	Figure 1 | Principles of a brain–machine interface. a | A schematic of a brain–machine interface (BMI) for reaching and grasping. Motor commands are extracted from cortical sensorimotor areas using multi-electrode implants that record neuronal discharges in large ensembles of cortical cells. Signal-processing algorithms convert neuronal spikes into the commands to a robotic manipulator. Wireless telemetry can be used to link the BMI to the manipulator. The subject receives visual and somatosensory feedback from the actuator, possibly through the microstimulation of cortical sensory areas. b | Neuronal dropping curves for the prediction of arm movements in rhesus macaques1 calculated for the ensembles recorded in different cortical areas: the dorsal premotor cortex (PMd), the primary motor cortex (M1), the primary somatosensory cortex (S1), the supplementary motor area (SMA) and the posterior parietal cortex (PP). Neuronal dropping curves describe the accuracy (R2) of a BMI’s performance as a function of the size of the neuronal ensemble used to generate predictions. The best predictions were generated by the M1. Prediction accuracy improved with the increase of neuronal ensemble size. c | Predictions of hand gripping force calculated from the activity of the same cortical areas as in part a. Image in part a is modified, with permission, from REF. 8  (2001) Macmillan Publishers Ltd. All rights reserved. Images in parts b and c are reproduced from REF. 1.
	Table 1 | Principles of neural ensemble physiology
	Box 1 | From ensemble principles to neuroprosthetic development
	Figure 2 | Neuronal activity during a reaching task. The task illustrated was performed by a rhesus macaque that controlled a robotic actuator using a hand control or through a brain–machine interface (BMI; brain control). During BMI operation, the monkey either continued to move the pole with the hand (brain control with hand movements) or stopped moving its hand (brain control without hand movements). a | Activity of a primary motor cortex (M1) neuron during both pole and brain control. Colour-coded diagrams represent neuronal tuning to movement velocity (that is, the average neuronal rate as a function of hand or robot velocity), calculated at different lags (–400 ms to +500 ms) with respect to the time of velocity measurement. The diagrams labelled ‘Hand’ represent neuronal tuning to hand movements, and the diagrams labelled ‘Robot’ represent tuning to robot movements. During brain control without hand movements, this neuron became less tuned to hand movements (row of colour diagrams labelled ‘Brain control with hand movements: hand’). Tuning to robot movements was maximal during brain control without hand movements (row labelled ‘Brain control without hand movements: robot’). b | An M1 neuron modulated only when the monkey moved its hand. c | An M1 neuron that was not modulated during hand movements, but became tuned to the robot movements during brain control without hand movements. d | Analysis of pairwise correlations in firing between the neurons in the recorded ensemble, using data from REF. 1. Correlations increased during brain control, especially brain control without hand movements. The highest correlations were between the neurons recorded in the same cortical area. M1ips, primary motor cortex, hemisphere ipsilateral to the working hand; PMd, dorsal premotor cortex; S1, primary somatosensory cortex; SMA, supplementary motor area. Images in parts a–c are modified, with permission, from REF. 42  (2005) Society for Neuroscience.
	Figure 3 | Discrimination of spatiotemporal microstimulation patterns by owl monkeys. Microstimulation trains were delivered to the primary somatosensory cortex through chronically implanted multi-electrode arrays. The monkeys responded to microstimulation or its absence by selecting the target of reaching movements. Top panels illustrate microstimulation patterns; bottom panels show discrimination accuracy as the function of training day. a | A basic task in which the monkeys detected the presence or absence of microstimulation. The monkeys learned the task in 1 month. b | Discrimination of temporal patterns of microstimulation. The monkeys learned the task in 1 week. c | A spatiotemporal discrimination task during which waves of microstimulation were delivered through the electrode arrays. The monkeys learned the task in 3 days, and could then discriminate spatiotemporal patterns of cortical microstimulation. Moreover, after prolonged training with microstimulation they learned to interpret new microstimulation patterns faster. Figure is reproduced, with permission, from REF. 115  (2007) Society for Neuroscience.
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