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« A typical example of the problems of
neurogeometry is given by well known
Gestalt phenomena such as Kanizsa illusory
contours.

The visual system (V1 with some feedback
from V2) constructs very long range and
sharp virtual contours.

» Neurogeometry concerns the neural
implementation of the geometric
structures of visual perception.

» They are very different from the Euclidean
3D structure of the objective external
space which is the ouput of very
sophisticated cognitive constructions.

» Kanizsa subjective contours manifest a deep
neurophysiological phenomenon.

Here is a result of Catherine Tallon-Baudry in
« Oscillatory gamma activity in humans and its
role in object representation » (Trendsin
Cognitive Science, 3, 4, 1999).

Subjects are presented with coherent stimuli
(illusory and real triangles) « leading toa
coherent percept through a bottom-up feature
binding process ».

« Many non trivial mathematical structures have
been introduced recently to explain this neural
implementation of natural low level vision.

I will focus on two of them:
— Receptive fields of neural cells and wavelet
analysis.

— Differential (contact, symplectic, and sub-
Riemannian) geometry and the functional
architecture of area V1.

They can even be curved.

With the neon effect, virtual contours are
boundaries for the diffusion of color inside
them.

» « Time—frequency power of the EEG at
electrode Cz (overall average of 8 subjects), in
response to the illusory triangle (top) and to
the no-triangle stimulus (bottom ».

* « Two successive bursts of oscillatory
activities were observed.
— Afirst burst at about 100 ms and 40 Hz. It showed
no difference between stimulus types.

— A second burst around 280 ms and 30-60 Hz. It is
most prominent in response to coherent stimuli. »
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* Many phenomena are striking. E.g. the
change of strategy between a “diffusion of
curvature” strategy and a “piecewise linear”
strategy where the whole curvature is
concentrated in a singular point.

Bistability: the illusory contour is either a
circle or a square.

« The example of Ehrenstein illusion: | * The explanation of such phenomena is
difficult because they are long range w.r.t.
the size of individual neurons.

They result from a local to global integration
processing.

We have therefore to understand

— 1. the local detection of local features,

— 2. Their integration into global morphologies.
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» Receptive fields (in the narrow sense of
« minimal discharge field », see Y. Frégnac).
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» Receptive profiles (linear approximation).




* How do the RPs operate on the visual signal
(linear approximation)?

* Let I(x,y) be the visual signal (x,y are visual
coordinates on the retina).

e Let @(x-X,,y-y,) be the RP of a neuron N
whose receptive field is defined on a domain D
of the retina centered on (X,Y)-

Good approximation
by a Laplacian of
Gaussian AG

* N acts on the signal | as a filter :

1p(%0:Y0) = [1(X,Y)p(X =0,y —Yo)ebx'dly’
D

* A field of such neurons act therefore by
convolution on the signal

lp(xy)= I' (X Y)e(X =%y - y)dxdy = (1* p)(xy)
D

Zero-crossing (D. Marr).
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* There is a lot of technical discussions
concerning the exact form of RP.

Richard Young. « The Gaussian Derivative
model for spatio-temporal vision », Spatial
Vision, 14, 3-4, 2001, 261-319.

— « The initial stage of processing of receptive fields
in the visual cortex approximates a ‘derivative
analyzer’ that is capable of estimating the local
spatial and temporal directional derivatives of the
intensity profile in the visual environment. »

How ?

But from the classical formula
DG = D(I*G),

for G a Gaussian and D a differential operator,
the convolution of the signal | with a DG-
shaped RF amounts to apply D to the
smoothing I+G of the signal | at the scale
defined by G.

Hence a multiscale differential geometry
which is a wavelet analysis.

Signals |
Fourier transform (analysis).
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Inverse transform (synthesis).

Isometry.

Geometrical information is delocalized.




« Gabor transform (analysis). » Multiscale wavelet transform (analysis). * Direct wavelet transform :

G flw, u) ” / F=)glx — w)e=%dz = (f(z) |gu.ulx)) » Mother wavelet and scaling :
VT Jr
« Inverse transform (synthesis).
/ Gf(w, u)glz — u)e™* dudu + Typical example : AG
* Isometry.

* Geometrical information is localized, but only
at one scale.

« Extraction of singularities :

flx) ‘__! / / W f(s, u)ip,(x — u)dsdu
¥ JR* JR




Frontal Lobe = Parietal

Lateral \ . Lobes
Geniculate o Occipital

{ \ | Lateral
Y N
A\ ﬁ o geniculate|
\

o \ nucleus !
Optic radiation || =

SERSSEY S 5 4

w = )

N ‘Primary Primary |

visual visual | cortex (ITC) Cerebellum
cortex cortex
CORTEX V1
1 Level curves of the receptive profiles of some
i’: L simple cells of V1 can be modeled
[eosrraneinsE s ez et e |

4B

— by second order derivatives of Gaussians,
4ac

— by Gabor wavelets

(real part).

* The interest of Gabor wavelets is that they

*» We have seen how the RPs act upon the
minimize uncertainty relations and are well

transduced optical signal I(X,y).

adapted to harmonic analysis.
Lp(6y) = [10¢,y)p(X = xy = y)dxdy = (1* p)(x.y)
D

¢ The interest of Gaussian derivatives is that
they explain how the brain can do differential
geometry in a scale-space.




» Hypercolumns (Hubel and Wiesel).
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« This functional architecture implements what
is called in differential geometry the
. R x P — R with base R, fiber P, and total
space V=R xP.

|

The simple cells of V1 detect a preferential
orientation (static or dynamic :moving
gratings).

They measure, at a certain scale, pairs (a, p)
of a spatial (retinal) position a and of a local
orientation p at a.

Pairs (a, p) are contact elements.

« Fibration formalizes Hubel ’s concept of
“engrafting” “secundary” variables (orientation,
ocular dominance, color, direction of
movement, etc.) on the basic retinal variables

(xy)

— « What the cortex does is map not just two but
many variables on its two-dimensional surface. It
does so by selecting as the basic parameters the
two variables that specify the visual field
coordinates (...), and on this map it engrafts other
variables, such as orientation and eye preference,
by finer subdivisions. » (Hubel 1988, p. 131)
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« The hypercolumns associate retinotopically to
each position a of the retina R a full exemplar
P, of the space P of orientations p at a.

» How such cells with a prefered orientation can
perform tasks such as contour
integration in V1 ?



* The fibration @ : RxP —R is of dimension 3
but is implemented in neural layers W of
dimension 2.

* One does the summation of the images of
V1 '’s activity for the different gratings and
constructs differential maps (differences
between orthogonal gratings).

* The low frequency noise is eliminated.

* The maps are normalized (by dividing the
deviation relative to the mean value at each
pixel by the global mean deviation).

ateral

* Recent experiments have shown that the
hypercolumns are geometrically organized in
pinwheels.

The cortical layer is reticulated by a network of
singular points which are the centers of the
pinwheels.

Locally, around these singular points all the
orientations are represented by the rays of a
"wheel" and the local wheels are glued
together in a global structure.

Ristral

* The method (Bonhdoffer & Grinvald, ~ 1990) of in
vivo optical imaging based on activity-dependent
intrinsic signals allows to acquire images of the
activity of the superficial cortical layers.

Gratings with high contrast are presented many
times (20-80) with e.g. a width of 6.25° for the dark
strips and of 1.25° for the light ones, a velocity of
22.5°/s, different (8) orientations.

A window is opened above V1 and the cortex is
illuminated with orange light.

e In the following picture the orientations are
coded by colors and iso-orientation lines are
therefore coded by monocolor lines.

William Bosking, Ying Zhang, Brett Schofield,
David Fitzpatrick (Dpt of Neurobiology, Duke)
1997, « Orientation Selectivity and the
Arrangement of Horizontal Connections in
Tree Shrew Striate Cortex », J.of
Neuroscience, 17, 6, 2112-2127.
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« There are 3 classes of points :
— regular points where the orientation field is locally
trivial;
— singular points at the center of the pinwheels;
— saddle-points localized near the centers of the cells
of the network.

Two adjacent singular points are of opposed
chirality (CW and CCW).

It is like a field in W generated by topological
charges with « field lines » connecting charges
of opposite sign.

« In the following picture due to Shmuel (cat's
area 17), the orientations are coded by colors
but are also represented by white segments.

We observe very well the two types of generic
singularities of 1D foliations in the plane.

They arise from the fact that, in general, the
direction 6in V1 of a ray of a pinwheel is not
the orientation p, associated to it in the visual
field.

When the ray spins around the singular point
with an angle ¢, the associated orientation
rotates with an angle ¢ /2. Two diametrally
opposed rays correspond to orthogonal
orientations.

There are two cases.

If the orientation p, associated with the ray of
angle 0 is p, = o — 6/2, the two orientations will
be the same for

pp=0a—612=06
that is for 6 = 20/3.

As o is defined modulo =, there are three
solutions : triple point.

« If the orientation p, associated with the ray of
angle 0is p,= a + 6/2(with p,= ), the two
orientations will be the same for

pp=a+62=0
that is for 6 = 20

* As o is defined modulo &, there is only one
solution : end point.




« Even if it is quite rich, such a “vertical”
retinotopic structure is not sufficient.

To implement a , the visual
system must be able to two
retinotopically neighboring fibers P, et P, over
two neighboring points a and b.

This is a problem of . It has
been solved at the empirical level by the
discovery of “horizontal” cortico-cortical
connections.

Vertical connections : Horizontal connections :
a=b a=b
p=q pP=9

* Moreover cortico-cortical connections connect
neurons coding pairs (a,p) and (b,p) such that
p is the orientation of the axis ab (William
Bosking).

— « The system of long-range horizontal connections
can be summarized as preferentially linking
neurons with co-oriented, co-axially aligned
receptive fields ».

ortico-cortical connections are  slow
(= 0.2m/s) and weak.

* They connect neurons of approximatively the
same orientation in neighboring
hypercolumns.

This means that the system is able to know,
for b near a, if the orientation g at b is the
same as the orientation p at a.

¢ The next slide shows how biocytin injected

locally in a zone of specific orientation (green-
blue) diffuses via horizontal cortico-cortical
connections. The key fact is the following :

— the short range diffusion is isotropic, but

— the long range diffusion is on the contrary highly
anisotropic and restricted to zones of the same
orientation (the same color) as the initial one.

e The retino-geniculo-cortical "vertical"

connections give an internal meaning for the
relations between (a,p) and (a,q) (different
orientations p and g at the same point a) .

» The "horizontal" cortico-cortical connec-tions

give an internal meaning for the relations
between (a,p) and (b,p) (same orientation p at
different points a and b).

These results mean essentially that what
geometers call the contact structure of the
fibration

n:RxP—>R

is neurally implemented.




« We work in the fibration n: V=R xP >R
with base space R and fiber P = set of
orientations p.

« Over every point a = (x, y) of R, the fiber is the
set P, = P of the orientations p at a.

* A local coordinate system for V is therefore
given by triplets (x, y, p).

— « geometrical features become multilocal objects, i.e. in
order to compute boundary curvature the processor would
have to look at different positions simultaneously,
whereas in the case of jets it could establish a format that
provides the information by addressing a single location.
Routines accessing a single location may aptly be called
points processors, those accessing multiple locations
array processors. The difference is crucial in the sense
that point processors need no geometrical expertise at all,
whereas array processors do (e.g. they have to know the
environment or neighbours of a given location). »

« The fibration m is an idealized model of the
functional architecture of V1.

« Mathematically, it can be interpreted as the
fibration R x P! (P! = projective line), or as the
fibraton R x S! (S! = unit circle), or as the
space of 1-jets of curves C in R.

« If a(s) = (x(s), y(s)) is a parametrization of C, we
have

Pa =Y(s) /X (s) =dy/dx
and therefore
IECIONIE)]
= (X(s), Y(s), y'(s) / X (s)) -

« If we can choose s = X, in terms of visual
coordinates x and y, the equation of I" writes

xy,p) =Xy Yy ).

* To every curve C in R is associated a curve T’
in V. But the converse is false.

e Let I' = (a(s), p(s)) be a (parametrized) curve
in V. The projection a(s) of I is a curve C in R.
But T is the lifting of C I/ p(s) = y’(s) / X'(s).

« If C is curve in R (a contour), it can be lifted to V.

The lifting T is the map
j:C—>V=RxP

wich associates to every point a of C the pair

(a, p,) where p, is the tangent of C at a.

* T'represents C as the enveloppe of its tangents.

« Jan Koenderink (1987) strongly emphazised
the importance of the concept of jet.

» Without jets, it is impossible to understand
how the visual system could extract geometric
features such as the tangent or the curvature
of a curve.

In differential geometry, this condition is called
a Frobenius . It says that
to be a coherent curve in V, I’ must be an

of the
fibration 7.

10



 Itis easy to show that this is equivalent to the
fact that t is in the kernel of the 1-form

o = dy — pdx
o= 0 means simply p = dy / dx.

« But this kernel is in fact a plane called the
of V at (a, p).

* The integrability condition for a curve T in V
says that
. Itisin
this sense that T" is an integral curve of the
contact structure of V.

* The integrable curves are everywhere tangent
to the field of contact planes.

The vertical component p” of the tangent
vector is then the curvature :

D=y = pi=y”

The Frobenius integrability condition is a
geometrical formulation of the Gestalt law of
“good continuation” (J-M. Morel, Y. Frégnac,
S. Mallat) .

Its empirical counterpart has been studied
psychophysically by David Field, Anthony
Hayes and Robert Hess and explained via the
concept of association field.

Geometrically, the integrability condition
means the following. Let (we suppose x is the
basic variable)

t=0 vy, p;i1,y,p)
be a tangent vector to V at the point
(& p) =Y, p).
Ify” = p we have

t=(y,p;1,p,p)

* Let (a;, p;) be a set of segments embedded in
a background of distractors. The segments
generate a perceptively salient curve (pop-out)
iff the p; are tangent to the curve C
interpolating between the a;.

11



« This is due to the fact that the activation of a —« Elements are associated according to joint
simple cell detecting a pair (a, p) preactivates, constraints of position and orientation. »
via the horizontal cortico-cortical connections,
cells (b, g) with b roughly aligned with a in the
direction p and q close to p.

— « The orientation of the elements is locked to the
orientation of the path; a smooth curve passing
through the long axis can be drawn between any
two successive elements. »

» This is a psychophysical formulation of the
integrability condition.

* We use curved Kanizsa contours where the
sides of the internal angles of the pacmen
are not aligned.

* The pop-out of the global curve generated by
the (a;, p;) is a typical translocal phenomenon
resulting from a binding induced by the co-

actiaton » One considers metrics g, defined only on the
planes of K and only curves I in V which are

* The contact structure K_defines sub-
Riemannian metrics on V.

* Binding is a wave of activation along I 1
horizontal connections which synchronizes the integral curves of K,

cells (Singer, Gray, Konig). » We apply sub-Riemannian geometry to the

analysis of Kanizsa illusory contours.

* Shimon Uliman (1976) introduced the key idea + Horn (1983) introduced the curves of least

of variational models.

« A network with the local property of trying to keep
the contours “ as straight as possible ” can produce
curves possessing the global property of
minimizing total curvature. »

energy.

David Mumford (1992, for amodal contours)
used elastica: « Elastica and Computer
Vision », Algebraic Geometry and
Applications, Springer.

Elastica are curves minimizing the integral of
the square of the curvature x, i.e. the energy

E = (ax+B)2ds

12



« For natural vision, we have developped a
slightly different variational model using the
sub-Riemannian geometry associated to the
contact structure.

We have to solve constrained Euler-Lagrange
equations for satisfying the condition of
minimal length.

It is a typical problem of sub-Riemannian
geometry.

Many very recent works on this problem.

The natural framework is that of sub-
Riemannian geometry on Lie groups.

» But it is more natural to work with angles in
the fibration  : V= Rx P— R with P=S'and
with the contact form

o =—sin(8)dx + cos(6)dy

< Two pacmen of respective centers a and b

with a specific aperture angle define two
elements (a, p) and (b, g) of V.

* A K-contour interpolating between (a, p) and

(b, q) is
— 1. acurve C from a to b in R with tangent p at a
and tangent g at b;

— 2. a curve minimizing an "energy" (variational
problem).

* The contact structure on V is left-invariant for
a group structure which is isomorphic to the
isenberg group :

v ror
Ty plir y.p)

« Ift = (& n, 7) are the tangent vectors of
the Lie algebra of V has the Lie bracket

* The contact planes are spanned by

X1 = cos(0)d, + sin(0) I,

. —cos (0) 0,

» We lift the problem in V. We must find in V a

curve T interpolating between (a, p) and (b, q)
in V, wich is at the same time:

— 1. "as straight as possible”, that is "geodesic" ;
— 2. an integral curve of the contact structure.
In general T will not be a straight line because

it will have to satisfy the Frobenius integrability
condition.

It is "geodesic” only in the class of integral
curves of the contact structure.

« Itis generated by

i I o). ¢ i ( !
- -l )ty = — = (0,0, 1)
!“.}” (L p,0), 1 ap L )

(spanning the contact plane)

* We have

[t1,t2]) = ta = =2 = (0,-1,0)

iy

(the other brackets = 0).

« V becomes a Lie group isomorphic to the

Euclidean group (semi-direct product)

ry + xocos(0y) — yasin(y)
y1 + xasin(6y) 4+ y2cos (6y)
0, + 0,

13



* Inverse :
reos (@) — ysin (@), xsin(0) — ycos (0),

* Left invariance

translates into +

{cos (8) D, +sin (0) O, X\, —sin (#) &, + cos (8) 0,

¢ The contact 1-form is
o = —sin(B)dx + cos(6)dy
and the metric makes {X;, X,, X3}
in(9)d,

sin () 0, — cos (0) O,

an orthonormal basis.

* To get the Hamiltonian for geodesics they
maximize h(p, q) relatively to the controls u,
and u,. This yields

uy (pog) = (p, X1(q)} = p, cos (#) + p, sin (#)
wa (pog) = (p. Xalq)) = pe

* Hence the Hamiltonian on T*V

1 > y > >
H(p.q) = = (uf + u3) = 5 ((prcos (0) + p,sin (0))” + ,.;,)

translates into the contact form w .

» Agrachev, Sachkov and Moiseev work in the
fibration V = Rx S* where the Legendrian lifts
are solutions of the control system :

¢ They start defined on
the tangent bundle TV

(g cos (6 (g sin (0

« Hamilton equations in the cotangent bundle
T*V are therefore :

t py cos (0) sin (0

pysin® (8) + ps cos (8) sin (0

and the sub-Riemannian geodesics are the
projections of the integral curves on V.

» For the Heisenberg group there are explicit
formulas for geodesics due to R. Beals, B.
Gaveau, P. Greiner, A.M. Vershik, V.Y.
Gershkovich.

For the Euclidean group, after our work with
Giovanna Citti and Alessandro Sarti, Andrei
Agrachev and his group at the SISSA (Yuri
Sachkov, Ugo Boscain, Igor Moiseev) solved
the problem.

» They take the Legendre transform defined on
the cotangent bundle T*V

L | Y
hip,q) = {p.q) 54

P = (pz.py.pa) € T;V

e Then

hip,q) = {p,ur X1(q) + u2Xa(q)) -

* p.and p, are constant. Write

Py, Py) = pexp(iB) . Then

. 1, .
Po ;/r sin (2 (¢ 7))

and H yields the first integral :
pPeos® (0 —8)+ps=c

and the ODE for 6 (c, p and j are cst.) :

p?cos? (0 — 3)




For 3 =0 (rotation invariance), the equations
become :

with first integral

i = peos? (@)
1 = peos (#)sin (#) = Lpsin (20)
0 = Pa )
Po = §p°sin(26)
Forp=1, ¢ =nl2—-6,and u=2¢p=n—-26,
we get a pendulum equation

ji = —sin(p)

F elliptic integral of the first kind of module k * We get fort

Faf, k) = /.‘ < ! i
oW1 ksin®(0)

E elliptic integral of the second kind

B,k = [* /1 - ksin*(6)d6

am Jacobi amplitude, inverse of F :y = am(u, k)
iff u=F(y, K),

Jacobi functions sn(u) = sin(y), cos(
y), dn(u) = (1-ksin?(y))¥2 .

¢ For c <1 (modulus 1/c > 1), the pendulum

oscillates between two extremal values  — i

o @nd + ¢, where with ¢, =

O(t) = Arccos (y/cam(t,c))

x(t) =t — E(am(t,c).c)

y(t) \t—tt’llll_l'lfl)

D'apri

v riemanniennes §

A Agrachev)

the system can be integrated via elliptic
functions.

» For ¢(0) =0 (6(0) = n/2), and ¢ > 1 (modulus 1/c
< 1), the pendulum makes complete turns.

~ 1
p(t) :nn(l\ :',—_) + km
— 1
a(t) = ct — JcE (,‘(IJ.—)
P
- ~ 1
ylt) = e ((hl (I\‘n',—) -1
c
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