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• Long-term memory:

persistent changes of synapses.



Persistent activity in delayed response tasks

• Ventral stream and PFC:

identity of stimuli (WHAT?)

• Dorsal stream and PFC:

spatial location of stimuli (WHERE?)



‘Object’ working memory and persistent activity (IT)

• Fuster and Jervey 1981 • Miyashita and Chang 1988



Interpretation in terms of attractor dynamics

Experimental data consistent with a system with

• One ‘background’ network state, with all neurons firing at low rates;

• ‘Memory’ network states, with a small fraction of neurons (specific to each memory state) active

at higher rates.

Background state

Memory state A Memory state B
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Mechanisms of persistent activity?

1. Single cell : persistent activity due to non-linear dy-

namics of voltage-dependent channels

2. Local network : persistent activity due to local exci-

tatory connectivity

3. Systems : persistent activity due to long-

range connections between cortical areas or

between cortical and subcortical areas



Local network: Minimal model

E

J

Iext

Recurrent excitation → Bistability

τ
dr

dt
= −r + Φ(Iext + Jr)

where Iext is an external input, and Φ
is the transfer function (e.g.sigmoidal).

Provided Iext is low enough:

• J < J1: one low activity state;

• J1 < J < J2: bistability

• J > J2: one high activity state



Networks with many attractors: the Hopfield model

• N binary neurons (Si(t) = ±1);

• Neuron dynamics:

Si(t + 1) = sign

(∑
j

JijSj(t)

)
• p ‘memory states’ ξµ

i

• ‘Hebbian’ synaptic matrix storing memories

Jij =
∑

µ

ξµ
i ξµ

j

• Energy function

E(S) = −
1

2

N∑
i,j=1

JijSiSj

• Tools of statistical mechanics apply

• Attractor states close to stored memories if p < pmax ∼ N

Inputs externes
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Summary of properties of Hopfield and related models

• Hopfield model (1982 -± 1 neurons, dense coding, analog synapses)

– Capacity (max number of memories)∼ 0.14N

(Amit et al 1985)

– Trade-off between number of attractors and size of attractor basins

– Very robust to random dilution

(capacity of order C = number of synapses per neuron)

(Sompolinsky 1986, Derrida et al 1987)
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Summary of properties of Hopfield and related models

• Hopfield model (1982 -± 1 neurons, dense coding, analog synapses)

– Capacity (max number of memories)∼ 0.14N

(Amit et al 1985)

– Trade-off between number of attractors and size of attractor basins

– Very robust to random dilution

(capacity of order C = number of synapses per neuron)

(Sompolinsky 1986, Derrida et al 1987)

• Tsodyks-Feigelman model (1988 - 0,1 neurons, arbitrary coding level f =

Prob(ξµ
i = 1), analog synapses)

– Capacity (max number of memories)∼ C/f ln(f);

– Quiescent state (‘no recognition’) stable.

• Willshaw model (1969 - 0,1 neurons, sparse coding, discrete synapses)

– Works well only for sparse coding, f ∼ ln N/N where capacity is

close to optimal!

• Theoretical capacity limit (max over all possible matrices Jij ):

2C memories (dense coding),∼ C/f ln(f) memories (sparse coding)

(Gardner 1988)



Learning

• In the presence of a continuous stream of incoming stimuli:

problem of memory black-out in Hopfield-type models
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• Models with analog synapses

– Add bounds to synaptic weights (Parisi 1986)
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– Add bounds to synaptic weights (Parisi 1986)
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• Models with binary synapses (low/high efficacy states),

and stochastic transitions between states (Amit and Fusi

1994, Fusi et al 2005).

Very poor performance, unless:

– Balance between LTP and LTD-like transitions, AND

sparse coding;

– Hidden states are added (e.g. cascade model)
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What do we learn from networks of binary neurons?

• A network can work as an associative memory in a robust way and quasi-optimal

manner (stored information of order 1 bit per synapse)

– with a diluted binary synaptic matrix;

– and stochastic learning;

• But only when some conditions are fulfilled

– sparse coding;

– balance between ‘LTP’ and ‘LTD’

• These models are too simple to be compared with experiments;

• ⇒ More realistic networks (network of spiking neurons)



Local cortical network model

• Local network (∼ 1mm3, 105neurons),

80% exc, 20% inh;

• Connection probability∼ 10%;

• Neurons: integrate-and-fire neurons;



Local cortical network model

• Local network (∼ 1mm3, 105neurons),

80% exc, 20% inh;

• Connection probability∼ 10%;

• Neurons: integrate-and-fire neurons;

A

B

B
A

• Each stimulus activates a small fraction

of cells (∼ 1%)

• Both potentiation and depression of

synapses by Hebbian mechanisms (by

a factor∼ 2)

Amit and Brunel 1997



Phase diagram of unstructured network

Brunel 2000
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Emergence of persistent activity following learning
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Brunel 2000



Switching the network back to the spontaneous state
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Pair-association experiments and prospective activity
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Pair-association experiments and prospective activity

Sakai and Miyashita 1991; Naya et al 1996, 2001, 2003

Erickson and Desimone 1999 (perirhinal cortex); Rainer and Miller (prefrontal cortex).



How synaptic matrix is structured during the

pair-association task
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Network states after pair-association learning
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Network states after pair-association learning
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Transitions between states during delay period and
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Summary - learning of associations and prospective

activity

• Prospective activity due to strengthening of connections between two populations

coding for associated stimuli

• Prospective activity must appear after retrospective activity (only way to link two stimuli

that are separated in time) (see Erickson and Desimone, 1999)

• Similar mechanisms might underlie semantic priming phenomena



Persistent activity in delayed response tasks

• Ventral stream and PFC:

identity of stimuli (WHAT?)

• Dorsal stream and PFC:

spatial location of stimuli (WHERE?)



Persistent activity in delayed oculomotor task



Persistent activity in delayed oculomotor task

Funahashi et al 1989
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Network models for spatial working memory

Ring model (with Gaussian footprint and integrate-and-fire neurons)

Compte et al 2000
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increases linearly with time

• Good agreement with experimental

data at short times (in both monkey and
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Drift of memorized position with time

• Variance of error in memorized position

increases linearly with time

• Good agreement with experimental

data at short times (in both monkey and

human)

White et al 1994



The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small

number of discrete attractors
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The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small
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Solutions:

• Bistability at the neuronal/dendritic level (Koulakov et al 2002)

• Homeostasis mechanisms (Renart et al 2003)



Conclusions

• Attractor network dynamics explain salient features of persistent activity in several

areas of the cerebral cortex

• In this framework, learning corresponds to creation of an attractor, forgetting to the

disappearance of an attractor

• Persistent activity allows to:

– Bridge the temporal gap between stimulus and behavioral response;

– Bridge the temporal gap between temporally separated stimuli, necessary to learn

contextual information;

• Attractor networks have also been proposed to account for a variety of other

neurophysiological phenomena

– Decision-making — one attractor corresponding to each possible decision

– Dynamics of spontaneous activity in sensory cortices — evidence for the system

wandering through different attractors corresponding to representations of the

external world (e.g.‘orientation states’ in V1)



A few open problems

• Relative contributions of single neuron/network mechanisms for persistent activity?

• Mechanisms/roles for temporal structure in persistent activity?

• Mechanisms for maintenance of several objects in short-term (working memory)?


