Models of memory

Nicolas Brunel

Laboratory of Neurophysics and Physiology

Laboratoire de Neurophysique et Physiologie UMR 8119 CNRS - Université René Descartes 45 rue des Saints Pères 75270 Paris cedex 06, France Tel. (33) 1 42 86 21 38 Fax (33) 1 49 27 90 62

Mechanisms of memory

Mechanisms of memory

 Short-term (working) memory: persistent activation of neurons;

Mechanisms of memory

 Short-term (working) memory: persistent activation of neurons;

• Long-term memory:

persistent changes of synapses.

Persistent activity in delayed response tasks

- Ventral stream and PFC: identity of stimuli (WHAT?)
- Dorsal stream and PFC: spatial location of stimuli (WHERE?)

'Object' working memory and persistent activity (IT)

• Fuster and Jervey 1981

Time (sec)

27

18 Spikes

0

27

18 Spikes

0

• Miyashita and Chang 1988

Interpretation in terms of attractor dynamics

Experimental data consistent with a system with

- One 'background' network state, with all neurons firing at low rates;
- 'Memory' network states, with a small fraction of neurons (specific to each memory state) active at higher rates.

Mechanisms of persistent activity?

1. Single cell: persistent activity due to non-linear dynamics of voltage-dependent channels

Mechanisms of persistent activity?

1. Single cell: persistent activity due to non-linear dynamics of voltage-dependent channels

2. Local network: persistent activity due to local excitatory connectivity

Mechanisms of persistent activity?

1. Single cell: persistent activity due to non-linear dynamics of voltage-dependent channels

2. Local network: persistent activity due to local excitatory connectivity

3. Systems: persistent activity due to longrange connections between cortical areas or between cortical and subcortical areas

Local network: Minimal model

Recurrent excitation \rightarrow Bistability

$$\tau \frac{dr}{dt} = -r + \Phi (I_{ext} + Jr)$$

where I_{ext} is an external input, and Φ is the transfer function (e.g.sigmoidal). Provided I_{ext} is low enough:

- $J < J_1$: one low activity state;
- $J_1 < J < J_2$: bistability
- $J > J_2$: one high activity state

- N binary neurons ($S_i(t) = \pm 1$);
- Neuron dynamics:

$$S_i(t+1) = \mathrm{sign}\left(\sum_j J_{ij}S_j(t)\right)$$

- p 'memory states' ξ_i^μ
- 'Hebbian' synaptic matrix storing memories

$$J_{ij} = \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$E(S) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} S_i S_j$$

- Tools of statistical mechanics apply
- Attractor states close to stored memories if $p < p_{max} \sim N$

- N binary neurons ($S_i(t) = \pm 1$);
- Neuron dynamics:

$$S_i(t+1) = \mathrm{sign}\left(\sum_j J_{ij}S_j(t)\right)$$

- p 'memory states' ξ_i^μ
- 'Hebbian' synaptic matrix storing memories

$$J_{ij} = \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$E(S) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} S_i S_j$$

- Tools of statistical mechanics apply
- Attractor states close to stored memories if $p < p_{max} \sim N$

- N binary neurons ($S_i(t) = \pm 1$);
- Neuron dynamics:

$$S_i(t+1) = \mathrm{sign}\left(\sum_j J_{ij}S_j(t)\right)$$

- p 'memory states' ξ^{μ}_i
- 'Hebbian' synaptic matrix storing memories

$$J_{ij} = \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$E(S) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} S_i S_j$$

- Tools of statistical mechanics apply
- Attractor states close to stored memories if $p < p_{max} \sim N$

- N binary neurons ($S_i(t) = \pm 1$);
- Neuron dynamics:

$$S_i(t+1) = \mathrm{sign}\left(\sum_j J_{ij}S_j(t)\right)$$

- p 'memory states' ξ^{μ}_i
- 'Hebbian' synaptic matrix storing memories

$$J_{ij} = \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$E(S) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} S_i S_j$$

- Tools of statistical mechanics apply
- Attractor states close to stored memories if $p < p_{max} \sim N$

- N binary neurons ($S_i(t) = \pm 1$);
- Neuron dynamics:

$$S_i(t+1) = \mathrm{sign}\left(\sum_j J_{ij}S_j(t)\right)$$

- p 'memory states' ξ^{μ}_i
- 'Hebbian' synaptic matrix storing memories

$$J_{ij} = \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu}$$

$$E(S) = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} S_i S_j$$

- Tools of statistical mechanics apply
- Attractor states close to stored memories if $p < p_{max} \sim N$

 Each memory is a network configuration that is an attractor of network dynamics

 Each memory is a network configuration that is an attractor of network dynamics

 Each memory is a network configuration that is an attractor of network dynamics

 Changes in synaptic efficacies due to learning lead to modifications of these attractors (creation, movement, destruction)

 Each memory is a network configuration that is an attractor of network dynamics

 Changes in synaptic efficacies due to learning lead to modifications of these attractors (creation, movement, destruction)

- Hopfield model (1982 \pm 1 neurons, dense coding, analog synapses)
 - Capacity (max number of memories) $\sim 0.14N$ (Amit et al 1985)
 - Trade-off between number of attractors and size of attractor basins
 - Very robust to random dilution (capacity of order C = number of synapses per neuron) (Sompolinsky 1986, Derrida et al 1987)

- Hopfield model (1982 \pm 1 neurons, dense coding, analog synapses)
 - Capacity (max number of memories) $\sim 0.14N$ (Amit et al 1985)
 - Trade-off between number of attractors and size of attractor basins
 - Very robust to random dilution (capacity of order C = number of synapses per neuron) (Sompolinsky 1986, Derrida et al 1987)
- Tsodyks-Feigelman model (1988 0,1 neurons, arbitrary coding level $f = Prob(\xi_i^{\mu} = 1)$, analog synapses)
 - Capacity (max number of memories) $\sim C/f\ln(f)$;
 - Quiescent state ('no recognition') stable.

- Hopfield model (1982 \pm 1 neurons, dense coding, analog synapses)
 - Capacity (max number of memories) $\sim 0.14N$ (Amit et al 1985)
 - Trade-off between number of attractors and size of attractor basins
 - Very robust to random dilution (capacity of order C = number of synapses per neuron) (Sompolinsky 1986, Derrida et al 1987)
- Tsodyks-Feigelman model (1988 0,1 neurons, arbitrary coding level $f = \operatorname{Prob}(\xi_i^\mu = 1)$, analog synapses)
 - Capacity (max number of memories) $\sim C/f\ln(f)$;
 - Quiescent state ('no recognition') stable.
- Willshaw model (1969 0,1 neurons, sparse coding, discrete synapses)
 - Works well only for sparse coding, $f \sim \ln N/N$ where capacity is close to optimal!

- Hopfield model (1982 \pm 1 neurons, dense coding, analog synapses)
 - Capacity (max number of memories) $\sim 0.14N$ (Amit et al 1985)
 - Trade-off between number of attractors and size of attractor basins
 - Very robust to random dilution (capacity of order C = number of synapses per neuron) (Sompolinsky 1986, Derrida et al 1987)
- Tsodyks-Feigelman model (1988 0,1 neurons, arbitrary coding level $f = \text{Prob}(\xi_i^\mu = 1)$, analog synapses)
 - Capacity (max number of memories) $\sim C/f\ln(f)$;
 - Quiescent state ('no recognition') stable.
- Willshaw model (1969 0,1 neurons, sparse coding, discrete synapses)
 - Works well only for sparse coding, $f \sim \ln N/N$ where capacity is close to optimal!
- Theoretical capacity limit (max over all possible matrices J_{ij}): 2C memories (dense coding), $\sim C/f \ln(f)$ memories (sparse coding) (Gardner 1988)

• In the presence of a continuous stream of incoming stimuli: problem of memory black-out in Hopfield-type models

- In the presence of a continuous stream of incoming stimuli: problem of memory black-out in Hopfield-type models
- 'Palimpsest' models: old patterns are progressively erased by more recently seen patterns.

- In the presence of a continuous stream of incoming stimuli: problem of memory black-out in Hopfield-type models
- 'Palimpsest' models: old patterns are progressively erased by more recently seen patterns.
- Models with analog synapses
 - Add bounds to synaptic weights (Parisi 1986)
 - Exponential decay of old memories (Mézard et al 1986)

- In the presence of a continuous stream of incoming stimuli: problem of memory black-out in Hopfield-type models
- 'Palimpsest' models: old patterns are progressively erased by more recently seen patterns.
- Models with analog synapses
 - Add bounds to synaptic weights (Parisi 1986)
 - Exponential decay of old memories (Mézard et al 1986)
- Models with binary synapses (low/high efficacy states), and stochastic transitions between states (Amit and Fusi 1994, Fusi et al 2005).

Very poor performance, unless:

- Balance between LTP and LTD-like transitions, AND sparse coding;
- Hidden states are added (e.g. cascade model)

What do we learn from networks of binary neurons?

- A network can work as an associative memory in a robust way and quasi-optimal manner (stored information of order 1 bit per synapse)
 - with a diluted binary synaptic matrix;
 - and stochastic learning;
- But only when some conditions are fulfilled
 - sparse coding;
 - balance between 'LTP' and 'LTD'
- These models are too simple to be compared with experiments;
- \Rightarrow More realistic networks (network of spiking neurons)

Local cortical network model

- Local network (\sim 1mm³, 10⁵neurons), 80% exc, 20% inh;
- Connection probability \sim 10%;
- Neurons: integrate-and-fire neurons;

Local cortical network model

- Local network ($\sim 1 \text{mm}^3$, 10^5neurons), 80% exc, 20% inh;
- Connection probability \sim 10%;
- Neurons: integrate-and-fire neurons;

- Each stimulus activates a small fraction of cells (\sim 1%)
- Both potentiation and depression of synapses by Hebbian mechanisms (by a factor \sim 2)

Amit and Brunel 1997

Phase diagram of unstructured network

Emergence of persistent activity following learning

Emergence of persistent activity following learning

Emergence of persistent activity following learning

Brunel 2000

Switching the network back to the spontaneous state

Switching the network back to the spontaneous state

Switching the network back to the spontaneous state

Pair-association experiments and prospective activity

Pair-association experiments and prospective activity

Pair-association experiments and prospective activity

Sakai and Miyashita 1991; Naya et al 1996, 2001, 2003

Erickson and Desimone 1999 (perirhinal cortex); Rainer and Miller (prefrontal cortex).

How synaptic matrix is structured during the pair-association task

How synaptic matrix is structured during the

pair-association task

Network states after pair-association learning

Network states after pair-association learning

Mongillo et al 2003

Transitions between states during delay period and prospective activity

Transitions between states during delay period and prospective activity

Summary - learning of associations and prospective activity

- Prospective activity due to strengthening of connections between two populations coding for associated stimuli
- Prospective activity must appear after retrospective activity (only way to link two stimuli that are separated in time) (see Erickson and Desimone, 1999)
- Similar mechanisms might underlie semantic priming phenomena

Persistent activity in delayed response tasks

- Ventral stream and PFC: identity of stimuli (WHAT?)
- Dorsal stream and PFC: spatial location of stimuli (WHERE?)

Persistent activity in delayed oculomotor task

Oculomotor Delayed-Response

Persistent activity in delayed oculomotor task

Oculomotor Delayed-Response

Funahashi et al 1989

Ring model (with Gaussian footprint and integrate-and-fire neurons)

Ring model (with Gaussian footprint and integrate-and-fire neurons)

Ring model (with Gaussian footprint and integrate-and-fire neurons)

 $2 \, \mathrm{s}$

Ring model (with Gaussian footprint and integrate-and-fire neurons)

Compte et al 2000

- Variance of error in memorized position increases linearly with time
- Good agreement with experimental data at short times (in both monkey and human)

- Variance of error in memorized position increases linearly with time
- Good agreement with experimental data at short times (in both monkey and human)

White et al 1994

The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small number of discrete attractors

The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small number of discrete attractors

Solutions:

• Bistability at the neuronal/dendritic level (Koulakov et al 2002)

The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small number of discrete attractors

Solutions:

- Bistability at the neuronal/dendritic level (Koulakov et al 2002)
- Homeostasis mechanisms (Renart et al 2003)

Conclusions

- Attractor network dynamics explain salient features of persistent activity in several areas of the cerebral cortex
- In this framework, learning corresponds to creation of an attractor, forgetting to the disappearance of an attractor
- Persistent activity allows to:
 - Bridge the temporal gap between stimulus and behavioral response;
 - Bridge the temporal gap between temporally separated stimuli, necessary to learn contextual information;
- Attractor networks have also been proposed to account for a variety of other neurophysiological phenomena
 - Decision-making one attractor corresponding to each possible decision
 - Dynamics of spontaneous activity in sensory cortices evidence for the system wandering through different attractors corresponding to representations of the external world (e.g. 'orientation states' in V1)

A few open problems

- Relative contributions of single neuron/network mechanisms for persistent activity?
- Mechanisms/roles for temporal structure in persistent activity?
- Mechanisms for maintenance of several objects in short-term (working memory)?