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Persistent activity in delayed response tasks

e Ventral stream and PFC:

identity of stimuli (WHAT?)

e Dorsal stream and PFC:

AT 2PN spatial location of stimuli (WHERE?)

2% Spatial focation Object (what
(where) @ et )



‘Object’ working memory and persistent activity (IT)

e Fuster and Jervey 1981 e Miyashita and Chang 1988

s Delay M a d |mP 8"
: : @
= = ‘ ‘ ' delay | | | - [
[T I wy ¥ | - - .
LU SO DR LN A M N RN LN 110101 ML LRE N 18 w:v _| — ﬁ— ‘ H [ ‘ |
(T AR A T e T g T g PO T TR T BT B T AT T T sam——— [ [ T 1 h L. |J ”ﬁl 1! |
—_ - miiam mat - — ==L I‘ H ﬂﬂ “«HUFJ ; H”l |
27 = = cho—— | | | | — u‘ 'J i ‘fﬁ‘ih:q‘l‘
Green T - % Ll g .l' I
° 18 ’ i
2 ;
x
§ | |
9 Il| ‘ 7 it 1
L difi? bt il "”Ju‘ s
0 - T
-16 -10 -5 0 s 10 15 20 25 30 L
1s
S Delay M
[TTRERTETTE NS RRE TR T T T TUM TR U BT AR M ST AT
ALILRN O 1O ) SN NN I AN 1 WAULE 100 W
L LN O 0 0 I 1 ) O SN L R LN
AL D I A1 R A NS SRR 0110 W11 0 L
il i 11 ————LLL L B |
(I NS T TS Ty 1 WA T TTRIEI T TN ] 11 i
AL 100 0 N 0 O I LN A U111 MIMD {1 MR \ iy 10 ‘
. LI UL L1800 10 A B LB L1111 ‘ L: ' .‘, .‘.: " .""".."E ‘ e ( LL
Red R g ™ e Yl " i ‘ .' |
» 18 ) v 1 H Mo i L’. ! ol e e | U“
g LR ok I we il g
& o =t | r L— o ijl'_"! f‘[1.0 o 1
= P imp-s

0 + - T T T T T 1
-1 -10 -5 [+] 5 10 15 20 25 30
Time (sec)



Interpretation in terms of attractor dynamics

Experimental data consistent with a system with
® One ‘background’ network state, with all neurons firing at low rates;

e ‘Memory’ network states, with a small fraction of neurons (specific to each memory state) active

at higher rates.
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Mechanisms of persistent activity?

1. Single cell : persistent activity due to non-linear dy-

namics of voltage-dependent channels
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Mechanisms of persistent activity?

1. Single cell : persistent activity due to non-linear dy-

namics of voltage-dependent channels

2. Local network : persistent activity due to local exci-

tatory connectivity

3. Systems : persistent activity due to long-
range connections between cortical areas or

between cortical and subcortical areas
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Local network: Minimal model

J
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Recurrent excitation — Bistability
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where I..; is an external input, and ®
is the transfer function (e.g.sigmoidal).

Provided /.. is low enough:
e J < Ji: one low activity state;
o Ji < J < Jy: bistability

e J > J5: one high activity state
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Networks with many attractors: the Hopfield model

e N binary neurons (S; (t) = £1);

e Neuron dynamics:

S;(t+ 1) = sign ZJ,L-ij (t) J J J J -
J ’

® p ‘memory states’ §f ® & O
e

‘Hebbian’ synaptic matrix storing memories ® ®

Jij = foﬁf
w

e @
e e

e
O

e Energy function

N
1
B(S) =~ > JiSiSs

i,7=1

® Tools of statistical mechanics apply

e Attractor states close to stored memories if p < Pmaz ~ N
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N binary neurons (S; (t) = £1);
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Energy landscape and memories

e Each memory is a network con-
figuration that is an attractor of

network dynamics
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Summary of properties of Hopfield and related models

e Hopfield model (1982 - = 1 neurons, dense coding, analog synapses)

— Capacity (max number of memories) ~ 0.14 N
(Amit et al 1985)

— Trade-off between number of attractors and size of attractor basins 101 N
B RN 14
— Very robust to random dilution 06} \\\ |
~
(capacity of order C' = number of synapses per neuron) 02“ \\\ 2
. — \ -4

(Sompolinsky 1986, Derrida et al 1987) Y
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e Tsodyks-Feigelman model (1988 - 0,1 neurons, arbitrary coding level f =
Prob(f? = 1), analog synapses)
— Capacity (max number of memories) ~ C'/ f In(f);

— Quiescent state (‘no recognition’) stable.
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e Hopfield model (1982 - = 1 neurons, dense coding, analog synapses)

— Capacity (max number of memories) ~ 0.14 N
(Amit et al 1985)

— Trade-off between number of attractors and size of attractor basins 101 N
N 14
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e Tsodyks-Feigelman model (1988 - 0,1 neurons, arbitrary coding level f =
Prob(f? = 1), analog synapses)
— Capacity (max number of memories) ~ C'/ f In(f);

— Quiescent state (‘no recognition’) stable.

o Willshaw model (1969 - 0,1 neurons, sparse coding, discrete synapses)

— Works well only for sparse coding, f ~ In N/N where capacity is

close to optimal!

® Theoretical capacity limit (max over all possible matrices Jij): bt

2C memories (dense coding), ~ C'/ f In( f) memories (sparse coding) . :
(Gardner 1988)
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® In the presence of a continuous stream of incoming stimuli:

Synaptic weight

problem of memory black-out in Hopfield-type models

e ‘Palimpsest’ models: old patterns are progressively erased _200’ L L L L i
Time (pattern number)
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Time (pattern number)

by more recently seen patterns.

e Models with analog synapses

— Add bounds to synaptic weights (Parisi 1986)

Synaptic weight
S = N W B W,
T

— Exponential decay of old memories (Mézard et al 1986)

e Models with binary synapses (low/high efficacy states),
and stochastic transitions between states (Amit and Fusi
1994, Fusi et al 2005).

Very poor performance, unless:

o [T T T TR,

0 40 60 80 100
Time (pattern number)

— Balance between LTP and LTD-like transitions, AND

Synaptic weight Synaptic weight

0 20 40 60 80 100
Time (pattern number)

sparse coding;

— Hidden states are added (e.g. cascade model)



What do we learn from networks of binary neurons?

® A network can work as an associative memory in a robust way and quasi-optimal

manner (stored information of order 1 bit per synapse)
— with a diluted binary synaptic matrix;

— and stochastic learning;

e But only when some conditions are fulfilled
— sparse coding;

— balance between ‘LTP’ and ‘LTD’
e These models are too simple to be compared with experiments;

e —> More realistic networks (network of spiking neurons)



| ocal cortical network model
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e Local network (~ 1mm?3, 105neurons),

80% exc, 20% inh;

e Connection probability ~ 10%;

e Neurons: integrate-and-fire neurons;



| ocal cortical network model
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ATy
|

e Local network (~ 1mm?3, 105neurons),
80% exc, 20% inh;

e Connection probability ~ 10%;

e Neurons: integrate-and-fire neurons;

slivys
A
|

e Each stimulus activates a small fraction

of cells (~ 1%)

e Both potentiation and depression of
synapses by Hebbian mechanisms (by

a factor ~ 2)
Amit and Brunel 1997



Phase diagram of unstructured network
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Emergence of persistent activity following learning
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Emergence of persistent activity following learning
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Switching the network back to the spontaneous state
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Switching the network back to the spontaneous state
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Pair-association experiments and prospective activity
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Pair-association experiments and prospective activity




Pair-association experiments and prospective activity

Spikes s—1

Sakai and Miyashita 1991; Naya et al 1996, 2001, 2003

Erickson and Desimone 1999 (perirhinal cortex); Rainer and Miller (prefrontal cortex).



How synaptic matrix is structured during the

pair-association task
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How synaptic matrix is structured during the

pair-association task
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Network states after pair-association learning
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Network states after pair-association learning
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Transitions between states during delay period and

prospective activity
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Transitions between states during delay period and

prospective activity
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Summary - learning of associations and prospective
activity
e Prospective activity due to strengthening of connections between two populations
coding for associated stimuli

® Prospective activity must appear after retrospective activity (only way to link two stimuli

that are separated in time) (see Erickson and Desimone, 1999)

e Similar mechanisms might underlie semantic priming phenomena



Persistent activity in delayed response tasks

e Ventral stream and PFC:

identity of stimuli (WHAT?)

e Dorsal stream and PFC:

AT 2PN spatial location of stimuli (WHERE?)

2% Spatial focation Object (what
(where) @ et )



Persistent activity in delayed oculomotor task

Oculomotor Delayed-Response
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Persistent activity in delayed oculomotor task

Oculomotor Delayed-Response
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Network models for spatial working memory

Ring model (with Gaussian footprint and integrate-and-fire neurons)
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Network models for spatial working memory

Ring model (with Gaussian footprint and integrate-and-fire neurons)
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Network models for spatial working memory

Ring model (with Gaussian footprint and integrate-and-fire neurons)
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Drift of memorized position with time




Drift of memorized position with time
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Drift of memorized position with time

o 1024 e-cells 2048 e-cells 4096 c-cells
< I = _ - . T—
o0 = — = — - ==

Neuron label
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(n=15)

e Variance of error in memorized position

increases linearly with time

e Good agreement with experimental

data at short times (in both monkey and
human)



Drift of memorized position with time
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The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small

number of discrete attractors
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The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small
number of discrete attractors
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Solutions:

e Bistability at the neuronal/dendritic level (Koulakov et al 2002)



The fine tuning problem and how to solve it

In presence of disorder/heterogeneities, a continuous attractor breaks down in a small
number of discrete attractors
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Solutions:

e Bistability at the neuronal/dendritic level (Koulakov et al 2002)

e Homeostasis mechanisms (Renart et al 2003)



Conclusions

e Attractor network dynamics explain salient features of persistent activity in several

areas of the cerebral cortex

e In this framework, learning corresponds to creation of an attractor, forgetting to the
disappearance of an attractor

e Persistent activity allows to:
— Bridge the temporal gap between stimulus and behavioral response;
— Bridge the temporal gap between temporally separated stimuli, necessary to learn

contextual information;

e Attractor networks have also been proposed to account for a variety of other
neurophysiological phenomena
— Decision-making — one attractor corresponding to each possible decision

— Dynamics of spontaneous activity in sensory cortices — evidence for the system
wandering through different attractors corresponding to representations of the

external world (e.g.‘orientation states’ in V1)



A few open problems

e Relative contributions of single neuron/network mechanisms for persistent activity?
e Mechanisms/roles for temporal structure in persistent activity?

e Mechanisms for maintenance of several objects in short-term (working memory)?



