Synapses et dynamique moléculaire

La synapse, une nanomachine stochastique

Molecules are starlings in the sky

Institut de Biologie de l'Ecole Normale Supérieure

Communication between neurons take place at synapses

Most synaptic receptors form microdomains stabilized by scaffolds

Spinal cord neuron

Betz et al. Since 1984

Excitatory Synapse

In fact, a network of molecular interactions, and some data on molecular localization

Excitatory Synapse

Constraints & cell biology

- Turnover of receptors (global and local)
- The number of receptors varies (development and plasticity)
- Most receptors are inserted and removed at non-synaptic loci

Singer-Nicholson the fluid mosaic model (1972) Diffusion result from a collective behavior of proteins and lipids

Singer-Nicholson the fluid mosaic model (1972) Diffusion result from a collective behavior of proteins and lipids

From Kusumi

Cultured hippocampal neurons (24 DIV)

Renner J Neurosci 2009

Membrane exploration & dynamics of GlyR-Qdots

Stable synapse and kinetics at equilibrium

Triller and Choquet *Neuron* 2008 Ehrensperger *Biophys. J* 2007

The synapse paradox: plasticity despite stability, stability despite plasticity

Compatibility between itinerant receptors and stable postsynaptic structure

Synaptic activity modify intracellular calcium & control GlyR lateral diffusion

9div spinal cord neurons loaded with Fluo4

Cultured spinal cord neurons

Activity regulates GABA_A γ 2R confinement at synapses

Hippocampal neurons 21 days IV

Bannai et al Neuron 2009

Correlation between Ca²⁺ and GABA_γ2R Mobility

Winthin synapses

Bannai et al Neuron 2009

Reactive Ca²⁺ tuning of excitation/inhibition

Diffusion parameters & "synaptic reactivity"

GABA receptor: anti-homeostatic reactivity

"Synaptic Reactivity" results form the diffusion in the PM Lateral diffusion is regulated by biological process

--> Rapid and reversible regulation of synaptic inhibiton

hippocampal neurons

The scale jump

and the second state of th

CNRS Bordeaux Daniel CHO

CHOQUET

BSI Riken Institute Wako ShiKatsuhroMIKOSHIBAHirokoBANNAIThomasLAUNEY

IBERS Institut de Biologie de L'Ecole Normale Supérieure

Andrea Damien Chistian Claude Hiroko Sabine DUMOULIN ALCOR SPECHT SCHWEIZER* BANNAI* LEVI*

CNRS-LKB Physic Dpt ENSMaximeDAHANMarie-VirginieEHRENSPERGER

ESPCI-Univ René Descartes ParisKenSEKIMOTO

Mathematic & Biology Dpt ENSDavidHOLCMAN

CNRS-LPS Physic Dpt ENS Rava A. DA SILVEIRA

