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Introduction  

The brain can be thought of as a collective ensemble ranging in the spatial domain from 
microscopic elements (molecules, receptors, ionic channels, synapses) to macroscopic entities 
(layers, nuclei, cortical areas, neural networks) (Figure 1). The same multi-scale analysis can be 
replicated in the temporal domain, when decomposing brain activity in a multitude of dynamic 
processes with time constants ranging from microseconds (molecule transconformation, channel 
opening) to years (postnatal cell replacement, for example in the bird song system; long-term 
memories, for example in vertebrate hippocampus). A tantalising challenge to the field of system 
and computational neuroscience is to bind in a coherent way these different hierarchies of 
organisation on the basis of experimentally defined descriptors, each of which is endowed with a 
specific spatio-temporal domain and measurement precision.  

An issue central to the theme of complexity in biological systems concerns the inferences that can 
be made from one level of integration to the next, along reductionist top-down (from macroscopic 
to microscopic) or synthetic bottom-up (from microscopic to macroscopic) axes. The question 
addressed by combining computational and system neuroscience tools is `to what extent can 
properties specific to one level of organisation be predicted by those demonstrated at lower levels 
of organisation?', or, in other words, is the `whole' the sum of the `parts'? This question applies 
not only at the structural level but also at the functional level. In the latter case, one wants to 
assess to what extent can the global systemic behaviour (e.g. network dynamics) be reproduced 
on the basis of knowledge of the `intrinsic reactivity' of the elements (ion channels, neurons) and 
the `extrinsic' relational links established between them (synapses)? Any failure of the 
linear/additive synthetic approach opens the Pandora's Box of complexity.  

As underlined by Tomaso Poggio in a famous essay [2], one of the main reasons explaining the 
conceptual distance between brain theoreticians and biologists is the relative ignorance of the 
nature and properties of the biophysical substrate that implements the elementary stages of neural 
information processing. The classical vision of the neuron and its integrative function as a 
summating unit, with multiple input lines, static synaptic gains, a postsynaptic threshold and a 
single `all-or-none' spiking output reflects our incapacity to recognise the necessity of non-linear 
operations on graduated, analogue input signals. Theoreticians dealing with McCulloch-Pitts [3] 
assemblies were initially tempted to use only additions and subtractions, while the neuronal 
machinery of the brain is obviously capable of non-linear input-output relationships, such as 
temporal integration and division of excitation by inhibition, and thus of more elaborate 
computations. The existence of distributed local non-linearities in the process of assembly making 
is a first indication of the complexity of living networks.  
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Figure 1: Schematic levels of spatial integration in the nervous system. The spatial scale at 
which anatomical organizations can be identified varies over many orders of magnitude. Icons 
to the right represent structures at distinct levels in a bottom-up fashion: (bottom) a chemical 
synapse, (middle-bottom) a network model of how thalamic afferent cells could be connected 
to simple cells in visual cortex, (middle-top) maps of orientation preference and ocular 
dominance in a primary visual area; (top) the subset of visual areas forming visual cortex and 
their interconnections (adapted from ref. [1]). 

 
An additional difficulty in crossing bridges between different organisational levels is the lack of 
systematic methods for reducing complexity. The problem here is to define methods and rationales 
for separating informationless or `noisy' variability from structural diversity capable of providing 
distinct biophysical substrates for different functions. This chapter will present a review of the 
structural and functional complexity of neurons and networks, with an emphasis on the vertebrate 
brain and more specifically neocortex. We will also point out major unsolved issues that limit a 
bottom-up synthetic approach, such as the lack of separability between intrinsic excitability of 
neurons and extrinsic modulation by synaptic activity.  

A third problem is whether current knowledge of brain processes is advanced enough to allow the 
derivation of function from structure. The classical engineering approach, the so-called black-box 
system approach, relies only on the study of input-output relationships and inference of transfer 
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functions. The link with biological `hardware' is not guaranteed and proceeds mostly from analogy 
(e.g. lateral inhibition and Mexican hat profile of sensory receptive fields). A fallacious strategy 
followed by many cortical physiologists for the last 50 years has been to map operational 
engineering models onto the biological structure and ignore the `hidden' structural complexity. By 
doing so, one may transpose wrongly at a more `microscopic' level the additive/linear nature of 
the global computation realized at a more integrated level [4], without realizing that non-linear 
interactions between non-linear elements can subserve a global linear transform [5,6,7]. For 
instance, the functional study of sensory perception in the brain shows numerous abuses of 
mapping ad-hoc serial linear-non-linear (L-NL) engineering models onto biological recurrent 
networks, whose topological architecture is composed mostly of non-linear reverberating loops.  

Interacting partners  

As has been clear since Golgi and Cajal, the principal components of the vertebrate brain are 
neurons. Neurons are a particular class of cells, endowed with excitable membranes and 
specialised compartments (soma, dendrite and axon in the vertebrate brain, soma and neuropile in 
the invertebrate brain), and secreting neurotransmitter molecules across synapses. The action 
potential they emit and which propagates along axons controls neurotransmission and as such is 
considered as the major `signal' source in the network. However, supporting glial cells, to which 
one attributes a dominant importance in metabolic maintenance, also play a role in the slower 
dynamics of the brain [8]. In contrast to neurons, glia do not transmit spikes although they are 
heavily involved in the capture, transport, diffusion and clearance of ions and transmitters. 
Electrically, the graded potential of glia reflects the local extracellular potassium concentration 
modulated by the spiking behaviour of neighbouring cells. For the sake of simplicity, the putative 
role of glia in signal processing and synaptic communication will be ignored in the rest of the 
chapter, although strong evidence points to its importance in regulating network plasticity [9]. 
Note also that not all neural-based computations are expressed at the spiking level. In some 
neuron types (e.g. olfactory bulb granule cells) different regions of the dendritic arbour function 
relatively independently, so that sub-neuronal structures could be also considered as the relevant 
interacting partners (see below) [10].  

As alluded to in the Introduction, the prevailing view in understanding network function is to use a 
Lego-type approach, and reproduce the collective behaviour of neural ensembles by combining 
elementary bricks. This is usually done by progressing in a bottom-up and hierarchical fashion 
across various scales of spatial integration, from ion channel, conductance, membrane 
compartments to the full network range [1]. Two hidden assumptions, whose validity will be 
disputed in this chapter, should be stated clearly: 1) to a certain degree, one is expecting that the 
`whole' assembly behaviour can be simulated by `adding' together the different `parts' (synapses 
and neurons); 2) intrinsic excitability properties of neurons, i.e. their electrical reactivity to 
intracellularly injected electrical currents, are separable from the modulation of neuronal 
integrative properties by the activity-driven synaptic inputs of the other partner-neurons in the 
network studied.  

According to these views, and keeping in mind their limitations, the intrinsic properties of 
individual neurons studied in isolation can be thought of as cellular `building blocks' that 
contribute to how a specific neuron will respond to a given synaptic input. Such a reductionist 
approach has often been attempted in simplified preparations such as in vitro slices maintained in 
artificial cerebro-spinal fluid (ACSF) [11,12] or cultures [13]. Until recently, such reference 
networks were studied in the absence of external drive and devoid at rest of spontaneous or 
ongoing activity, mostly because of the massive deafferentation in the slicing process and the ionic 
concentrations chosen for the ACSF. If the network was found to be spontaneously active, the 
influence of the rest of the network was further suppressed by pharmacological blockade of 
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synaptic transmission. In the case of paucineuronal nets, such as invertebrate sensorimotor 
ganglia composed of Giant cells with invariant morphology, the size of the network may become so 
reduced that the total blockade of the afferent connectivity to any given cell can be obtained by 
injecting fluorescent compound in the other somata and then photoinactivating all the putative 
synaptic partners. Early experiments in the molluscan invertebrate revealed that isolated neurons 
could generate oscillatory bursts of action potentials and it soon became clear that individual 
neurons from all species display a large variety of intrinsic membrane potential patterns such as 
bursting, plateaux, post-inhibitory rebound, and spike-frequency adaptation [14].  

Interestingly, although the importance of intrinsic properties for circuit dynamics has been 
accepted by the entire community of small (mostly invertebrate) circuit researchers for almost 
twenty-five years, until relatively recently most workers studying large cell assemblies in the 
vertebrate brain, both experimentalists and theoreticians, have continued to assume that circuit 
dynamics depend exclusively on synaptic connectivity and synaptic strength. This view has 
changed in the last five years, mainly for two reasons: 1) patch recording techniques are no longer 
restricted to the soma and now allow recording simultaneously from several points distributed 
along the dendritic structure in the same neuron. More and more recordings from central neurons 
have shown the prevalence of complex voltage- and time-dependent firing properties which must 
shape, to a certain extent, circuit function; 2) digital computer simulation power has increased 
tremendously and allows simulation in real-time of the kinetics of the spatial distribution of voltage 
change and calcium influx across the entire neurite. The neuron is no longer considered as a point-
like integrator receiving multiple input lines and emitting a thresholded binary output [3], but as a 
complex tridimensional spatio-temporal integrator [15]. Consequently, the complex morphology of 
central neurons must be taken into account to fully understand their integrative properties.  

Classic theoretical work on integration in passive cables [16,17,18,19] has shown the strong 
filtering exerted by passive dendritic structures. In particular, synaptic inputs are differentially 
attenuated or distorted according to their position on the dendrite. Recent dendritic recordings 
have revealed that, as proposed 30 years ago [20], dendrites are not simple passive structures, 
but contain a myriad of ion channel types [21,22,23,24,25]. Dendrites can have regenerative 
properties [26,27,28,29] and initiate Na+ or Ca2+ spikes, propagating towards or away from the 
soma [21,25] (Figure 2). The presence of dendritic ion channels may also contribute to the 
renormalisation of synaptic inputs [30,31,32,33], correcting for dendritic filtering, or may produce 
more subtle effects such as establishing coincidence detection [34,35]. The emergence of efficient 
techniques for 3D morphological reconstruction of single neurons, combined with sophisticated 
numerical tools for simulating cable equations in such structures [36,37,38] has revolutionised this 
area as such tools now become standard [36,37,39]. Computational studies are now able to 
incorporate measurements from in vitro and in vivo studies [40,41,42] and infer the function of 
dendritic trees under such vivo-like conditions. One of the main findings is that the dendritic tree 
may function in fundamentally different modes of integration in these states (see below), and 
consequently that the network might perform qualitatively different operations during in vivo-like 
states [42].  

Even considering only neocortex, a huge variety of neuronal types can be discriminated based 
solely on the diversity of morphology and of the intrinsic properties of cortical neurons [43,44]. 
The most commonly established correlation between morphology and excitability revealed by 
current injection is `regular-spiking'. Neurons with this property display responses with a 
prominent spike-frequency adaptation (regular increase in interval between successive spikes). 
These neurons correspond mostly to a spiny pyramidal cell morphology. Other neuron types 
include different variants of bursting cells, such as the `intrinsically-bursting' cells of layer V, the 
`fast rhythmic bursting' or `chattering', and the `low-threshold spiking' cells. The latter types 
correspond to either excitatory (pyramidal) cells or various types of interneurons [45].  
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Figure 2: Snapshots of the distribution of membrane potential in a cat cortical (layer VI) 
pyramidal neuron during simulated in vivo activity. The colors indicate the membrane potential 
(from violet, -80 mV, to yellow, -25 mV; see scale). Time runs from left to right, then top to 
bottom (steps of 0.5 ms, except first frame which was taken 4 ms earlier). The simulation 
shows a dendritic action potential which propagates forward to the soma and evokes a 
backpropagating action potential in all other dendrites. These forward-propagating action 
potentials may play an important role in the integrative properties of pyramidal neurons during 
in vivo like states (modified from [42], with permission). 

 
More recent, extensive studies show that structural diversity of cortical neurons is not limited to 
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the stereogeometry of axons and dendrites or to the multiple excitability patterns that a step of 
depolarising current produces in the recorded cell, but extends also to neurochemical markers 
(calcium-binding proteins, neuropeptides, neuro-transmitters or their synthesis enzymes), synaptic 
dynamics (connectivity and its plasticity, decay time constants of EPSPs and IPSPs), as well as to a 
specific repertoire of expressed proteins (e.g., ion channels, receptors). The genomic expression 
identity profile can be revealed in the patch-recorded cell by harvesting the cytoplasmic content at 
the end of the recording session and by applying off-line multiplex RT-PCR. Although initial cortical 
cell classifications concerned mostly excitatory cells (which represent 80% of the whole 
population), more refined attempts have been made in the case of inhibitory interneurons (the 
remaining  20%), and in this latter case a consensus in taxonomy has almost been reached 
[46,47]. Recent attempts correlating firing properties with protein expression corroborate the 
existence of clear-cut GABAergic interneuron subtypes [48,49]. Present data also suggest the 
existence of molecular determinants underlying oscillatory and synchronous network activity and 
lead to the conclusion that different types of interneurons may subserve distinct functions, for 
example by participating in the generation of oscillatory activity in different frequency bands 
[50,51]. These examples illustrate striking high-order correlations between the morphologies of 
the axon and dendrites, firing patterns, spike and AHP characteristics, EPSP and IPSPs kinetics, 
synaptic dynamics, coupling through gap junctions to neurons of the same class, and the 
expression of distinct protein markers. It is very probable, as was demonstrated for interneurons in 
the spinal cord by Jessell and colleagues [52], that different classes of neocortical interneurons 
differentiate under the control of different promoters and play specific roles in the building-up of 
circuits. In general, if one assumes the existence of repeated modules with some degree of 
structural invariance, it appears absolutely essential to come to terms with neuronal diversity in 
order to understand the function of so-called canonical circuits (review in [53].  

There are however several caveats with this descriptive approach of structural diversity. The 
number of neurons in an anatomical cortical column [54] or functional hypercolumn [55] is roughly 
on the order of the number of classes based on anatomical, electrophysiological, and genomic 
criteria, implying that to a certain extent some neurons may be the sole exemplars of their class. 
Furthermore, the multiplex RT-PCR technique has its own experimental limitations. The first is 
quantitative and concerns the existence of high probabilities of false negatives. The second is that 
mRNA measurement in the slice looks like a static `photograph' made after a massive disturbance 
of activity imposed by the slicing process itself, which may have already resulted in spurious 
activity-dependent regulation of gene expression. A third, fundamental issue is that in principle 
one should not limit oneself to cytoplasmic mRNA harvesting. The search should be extended to 
the proteome and membrane-bound proteins in order to establish the cell-by-cell distribution of 
receptors and ions. In other words, it is likely that multiplex RT-PCR will not give access to the 
`molecular shape' of the neuron (Changeux, personal communication).  

Modes of interaction  

Synaptic transmission  

The dominant mode of interaction between neurons in the brain for fast information processing is 
via synapses. Of these, the most important type are chemical synapses, in which a presynaptic 
depolarisation of the cell membrane triggers the release of chemical neurotransmitters, which 
diffuse across a small gap and bind to receptor proteins embedded in the membrane of the 
postsynaptic neuron. This leads to the opening of ion channels, which may lead to depolarisation 
or hyperpolarisation of the postsynaptic cell membrane, or to shunting of other currents entering 
the cell. Besides chemical synapses, electrical synapses (gap junctions), which provide direct 
contact (in the Angström range) between cell membranes and allow current to flow between the 
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cells through a purely resistive link (with almost zero time-constant), play an important role in 
many brain regions. In neocortex, electrical synapses are involved in synchronisation of neuronal 
activity of specific classes of inhibitory interneurons [56,57,58].  

There is a great diversity of chemical synapse types, with different neurotransmitters and many 
different types of receptor proteins, each of which may also have subtypes, with different subtypes 
expressed in different neuron types. In the central nervous system, the principal neurotransmitters 
involved in fast information transmission are glutamate, associated with excitatory synapses (those 
producing a depolarisation of the postsynaptic membrane), and γ-amino butyric acid (GABA), 
associated with inhibitory synapses (those that generally produce a hyperpolarisation of the 
postsynaptic membrane).  

Synaptic receptor proteins may either be ionotropic (the binding site is on an ion channel protein 
and causes the opening of the channel - also known as ligand-gated ion channels) or metabotropic 
(the binding triggers an intracellular signal cascade which leads indirectly to ion channel opening). 
Ionotropic receptors tend to operate with a more rapid time course. Ionotropic receptors that bind 
glutamate include α-amino-3-hydroxy- 5-methyl-4-isoxazolepropionic acid (AMPA) and kainate 
receptors, which have a rapid time course of opening/closing (sub-millisecond rise time and decay 
time constants below 10 ms), and N-methyl-D-aspartic acid (NMDA) receptors, which are both 
ligand-gated and voltage-gated, and have a slower time course (decay time constants from a few 
tens to a few hundreds of milliseconds). There is only one type of ionotropic receptor that binds 
GABA, the GABAA receptor, which has a rapid time course.  

The exact effect that the opening of a synaptic ion channel has on the postsynaptic membrane 
potential depends on the value of the membrane potential during the opening and on the reversal 
potential of the channel, which in turn depends on the permeability of the channel to different ion 
species and on the concentrations of the ions on either side of the membrane. The reversal 
potential of glutamatergic receptor channels is around 0 mV, which means that activation of such 
receptors almost always leads to an inward flow of current and depolarisation of the cell 
membrane (the exception is near the peak of the action potential when the membrane potential 
exceeds 0 mV). The reversal potential of GABAA channels is near -70 mV, which is near the resting 
membrane potential of the cell, and above the reversal potential for potassium ion-gated channels. 
This means that if the cell is strongly hyperpolarised by a potassium current, then opening of a 
GABAA channel leads to depolarisation of the cell, an excitatory effect. If the membrane potential is 
near the GABAA reversal potential, the main effect of the channel is an electrical shunt, increasing 
the total conductance of the membrane and clamping the membrane potential to the GABAA 
reversal potential. Thus, starting from this resting condition, when inhibition is applied alone, no 
change in the resting potential will be seen, hence the denomination of `silent' inhibition. In the 
case where excitation occurs concomitantly with inhibition, the excitatory evoked depolarisation 
will be reduced in amplitude and shortened in time-course, hence the term `divisive or shunting 
inhibition'. Although disputed for a long time (e.g., ref. [59]), there is now clear evidence for the 
existence and the role of shunting inhibition in shaping cortical functional selectivity in vivo [5,7].  

Until recently it was thought that all synapses of a neuron release only one type of 
neurotransmitter (Dale's Law [60]), although there is now evidence to the contrary. Neurons are 
usually described as `excitatory' or `inhibitory' depending on the effects of the neurotransmitter 
they principally release. The almost-fixed association which is usually made between the synaptic 
type and the electrical `sign' of the synaptic effect (i.e. depolarisation vs hyperpolarisation) is to 
be interpreted with care. As pointed out above, the functional effect will depend on the resting 
state of the neuron and of the degree of invariance of the reversal potentials of ions whose 
transport through the membrane is responsible for the voltage change. For instance, in developing 
networks in the neonate, inhibitory GABAA synapses become depolarising, due to a much more 
positive chloride reversal potential than in adult neurons, and have in fact a positive effect in 
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driving spiking activity [61]. Furthermore, in the invertebrate, synaptic gain can be occasionally 
reversed in sign by appropriate conditioning events [62]. Another important feature worth noting 
is the large proportion of anatomically-identified synaptic contacts which are functionally silent in 
the resting condition, and can become expressed functionally once the neuron becomes strongly 
engaged by depolarising input and activation of specific subtype of receptors [63,64]. This effect is 
most preeminent in the immature vertebrate brain.  

The interaction types discussed above are those which are most generally considered when 
discussing fast information processing in neuronal networks. Besides these, however, there are 
other possible fast interactions, e.g., between neurons mediated by current flow through the 
extracellular space (ephaptic interactions) that may be of importance in certain structures or 
circuits, and very many slower interactions: mediated via glia or through diffusion of signalling 
molecules (e.g. nitric oxide, hormones).  

Synaptic dynamics and plasticity  

The conductance change associated with synaptic transmission is generally characterised by its 
rise time, decay time constant, and peak amplitude. However, one should not consider that 
synaptic transmission is reduced to a simple static multiplicative factor. The efficacy or `gain' in 
transmission at a given synapse should in fact be seen as a dynamic variable, which is regulated 
by its past synaptic activity (homosynaptic plasticity) and the global state of network dynamics 
(heterosynaptic plasticity and network-driven homoeostasis).  

At many synapse types, these descriptive parameters have their own dynamics on a time scale of 
tens of milliseconds, determined by the pattern history of presynaptic spikes. In addition to the 
genomic, electrical and morphological diversity that we reviewed earlier (see Section 2), the 
synaptic interactions between different neuronal types also display various short-term plasticity 
mechanisms, such as facilitation or depression, which result from the modulation to various 
degrees of conductance amplitude, the size of the available pool of neurotransmitter and its 
release probability [65,66,67,45]. On longer time scales, from minutes upwards, the efficacy of 
synapses (probability of transmitter release in response to a presynaptic action potential and size 
of postsynaptic conductance change) may be changed by activity-dependent and/or by 
homoeostatic processes (reviews in refs. [68,69]).  

The most classical forms of synaptic plasticity found in neocortex are induced by convergence of 
synchronous activation sources acting at the pre and/or postsynaptic levels (review in ref. [70]: 
Long-term potentiation (LTP) [71,72,73] and depression (LTD) [74,75,76,77] are found both in 
hippocampus and neocortex. Although it was initially assumed that synchrony between presynaptic 
activity and postsynaptic depolarisation was the key event in plasticity induction, more diverse and 
reversible forms of associative plasticity have been reported and result from various patterns of 
time-locked associations between presynaptic input and the postsynaptic spike [78,69]. For 
instance, spike-timing-dependent plasticity (STDP), initially demonstrated in vitro in hippocampus 
[79] but immediately forgotten (!), was rediscovered in neocortical slices from young animals and 
in hippocampal organotypic cultures. The synaptic change rule differs from the classical 
correlation-based postulate, since the sign of the change of synaptic strength depends critically on 
the temporal order between pre- and post-synaptic spikes. More specifically, in cortical and 
hippocampal excitatory synapses, when the presynaptic event precedes the postsynaptic event by 
less than 50 ms, synaptic strength is augmented, whereas the reverse temporal order leads to a 
reduction in synaptic strength [35,80,81]. Reverse-sign STDP rules have also been found, in 
cerebellum-like structures in the electric fish [82]. However, the impact of multiple correlations and 
spontaneous activity in the pre- and post-synaptic cells, the existence of STDP in vivo and its 
applicability in the intact brain are still debated, which motivates building computational models.  
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The obvious consequence of the diversity that may exist in associative synaptic plasticity rules is 
that 1) not all synapses follow a unique rule and 2) the same network can use multiple forms of 
adaptation for different purposes, through each one of these different plasticity algorithms. For 
instance, LTP is considered as a major substrate of associative memory formation [83]. In spite of 
the fact that its implication in behavioural learning remains disputed, this rule obeys the general 
principle that `neurons that fire together, wire together' and has been considered as responsible 
for functional epigenesis in sensory neocortex [84,85,86]. Microcircuits that incorporate spike-
timing dependent plasticity (STDP) rules account most accurately for the emergence of causal 
chains within neuronal assemblies and best support phase sequence learning [87] or multimodal 
coordinate transformation [88]. Other circuits which incorporate a mirrored form of STDP may be 
used for enhancing novel information and filtering out expected changes in sensory environment 
due to motor exploration. Hypothetically, these different plasticity algorithms could coexist 
together in the same network and operate in a synergistic fashion, for instance by acting on 
different synaptic types and cell targets on different time scales.  

In addition to these dominant forms of plasticity, other processes are designed to stabilise the 
integrative function of the cell within a reference working range. Five forms of `homoeostasis' are 
generally recognised [89]. The simplest form regulates the efficacy of transmission around a mean 
synaptic gain or between two boundary values. When evaluated on a longer time scale, the fast 
input-dependent regulation of synaptic transmission, described earlier, results in maintaining 
average synaptic efficacy approximately constant in the face of rapid changes in the probability of 
transmitter release [90]. Furthermore, the probability of inducing potentiation, depression or 
depotentiation depends on the previous stimulation history of the network (`metaplasticity' in ref. 
[91]) and on the initial efficacy state of the synapse. A second form of homoeostasis, predicted in 
many models of learning, acts more globally, at the neuronal level [92]. It assumes that the sum 
(or sum of squares) of all the synaptic weights of synapses impinging on the cell remains constant. 
A third form of homoeostasis limits the anatomical divergence of growing axons and corresponds 
to the conservation of the sum of the synaptic weights of all contacts made in the network by the 
same parent axon [93]. The fourth form of homoeostasis concerns the capacity of a cell to 
maintain a similar output (e.g., its firing level) in spite of strong alterations in the activity pattern 
of the network [94,95] (review in ref. [89,96]). This last regulatory process involves activity-
dependent tuning of postsynaptic sensitivity. Examples so far come from the regulation of intrinsic 
conductances. A last form of homoeostasis concerns possible changes in the site of impulse 
initiation and the direction of impulse propagation in the dendrite [97].  

Interdependency between intrinsic excitability and extrinsic 
synaptic factors  

Knowledge of the intrinsic conductance repertoire of the cell under study and of the biophysical 
conditions of expression (voltage-dependency, activity priming) is generally used to reinterpret the 
role of intrinsic properties in the functional context of the full network. For example, in many 
rhythmic central pattern generating circuits, the timing of the neurons within a circuit is often 
governed by the intrinsic post-inhibitory rebound properties of the neurons in the circuit [98]. 
Similarly, it is clear that neurons with strong plateau properties can turn a rapid synaptic input into 
more sustained firing, thus changing the timing of discharge between the presynaptic neuron and 
follower neuron [99,100]. One of the first suggestions that the intrinsic properties of individual 
cortical neurons might be crucial for understanding network behaviour comes from the early work 
of Bremer [101,102] who suggested that the rhythmic activity seen in the electroencephalogram 
(EEG) might result from the interactions among neurons that display an intrinsic propensity to 
oscillate, as is now thought to be the case [103,104]. Bremer further suggested that the cortex 
should not be viewed as a system passively driven by its inputs, but rather as a system having 
spontaneous, intrinsic activity which is modulated by sensory inputs [101], a theme which has 
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been explored in detail [105,106]. A striking illustration of this last point in mammalian neocortex 
is the discovery of the implication of intrinsic high frequency oscillatory properties of cortical 
neurons in the functional binding of their activity during the transient time course of a percept 
[107]. Such intrinsic oscillatory potential had in fact been observed in vitro much earlier [108], but 
totally ignored until in vivo studies suggested they could be the hallmark of a specific class of cells, 
chattering type, involved in the genesis of gamma band activity during sensory processing [109].  

At a more microscopic level, active properties intrinsic to the neuronal membrane, such as 
dendritic action potentials, may play a central role in synaptic plasticity because they provide the 
strong depolarisation necessary to establish coincidence of pre- and post-synaptic activity required 
for inducing synaptic changes [35,72]. Interestingly, this coincidence can be established by local 
dendritic spikes, without participation of the soma, which opens the possibility for local dendritic 
computations - or associations - to occur without participation of the cell body [68,110]. These 
problems are heavily investigated today. In addition, the efficacy of a synaptic input depends on 
the conductance state of the neuron and its dendrites, and therefore will depend on the level of 
network activity. The responsiveness to a given input has been shown, both experimentally and 
theoretically, to strongly depend on background inputs (reviewed in ref. [42]). This `contextual' 
dependence of integrative properties is of primary importance to understand cellular operations. 
The impact of such dependence at the network level still remains a subject largely 
uncharacterised, both theoretically and experimentally.  

Evidence that network-driven activity may even control the intrinsic repertoire of conductances of 
any given neuron comes from the field of invertebrates [111,112,113]. This process can be 
thought of as an extreme case of contextual control resulting from the non-synaptic diffusion of 
neuromodulators or hormones in the network, and its implication in the reorganisation of cortical 
network dynamics has not yet been addressed. Pioneering work in the invertebrate motor ganglia, 
in particular in the stomatogastric ganglion of the lobster, showed that the repertoire of intrinsic 
conductances could in fact change dramatically in the presence of neuromodulatory signals 
secreted by specific cells in the afferent sensory network [114]. The activity of such cells was 
found to be a determinant in triggering the expression of active conductances in cells which are 
part of a central motor program generator assembly. The turning on and off of neuromodulation 
was found to reorganise the dynamics of the full network in distinct functional assemblies 
associated with different motor behaviours [115,112] (see Figure 3).  

These data support the hypothesis of the existence of `orchestra leader'-like neurons, whose 
activity conditions and formats merging and segmentation across functional assemblies. Their 
identification, or even evidence of their existence, in larger networks such as mammalian 
neocortex is still lacking, but there is already ample evidence that modulatory signals linked with 
various amines and acetylcholine change the repertoire of expressed conductances. Like central 
pattern generators, thalamic circuits are subject to neuromodulatory influences [116]. In this case, 
neuromodulators such as acetylcholine, norepinephrine or serotonin affect intrinsic currents and 
switch the circuit from an oscillatory mode to a `relay mode' in which oscillations are abolished 
[117]. These neuromodulators are present in activated states, promoting the relay of sensory 
information by the thalamus, while their diminished levels during slow-wave sleep promote the 
participation of the thalamus in the genesis of large-scale synchronised oscillations in the entire 
thalamocortical system. Some aspects of these mechanisms, in particular the type of processing of 
sensory information that thalamic neurons perform, are still unclear and subject to current 
investigation [118]. We conclude from this brief review that, to a certain extent, both in 
invertebrate ganglia as in vertebrate brain, the separability of intrinsic and extrinsic factors in the 
control of cellular excitability is doomed to fail. Thus, the `whole' cannot be the sum of the `parts'.  
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Figure 3: Reconfiguration of network dynamics under the influence of orchestra-leader cells 
(called PS here). The same network is functionally reorganized in independent assemblies 
depending of the activity state of neuromodulating cells (PS) (upper row). These assemblies 
are characterized by specific excitability patterns expressed by each of the composing cells 
and specific phase relationships between them (middle row). The functional role of each 
assembly during the swallowing stomatogastric cycle is depicted in each cartoon below. A, 
When PS is silent, the oesophageal, gastric, and pyloric networks (top) generate independent 
rhythmic output patterns (middle) involved in regionally specific and separate behavioural 
tasks (bottom). B, When PS is rhythmically active, it drives opening of the oesophageal valve 
(bottom), and by breaking down preexisting networks and using certain neurons, it constructs 
a single novel network (top) that generates a coordinated motor pattern (middle) appropriate 
for swallowing behaviour. C, When PS is again silent, the oesophageal valve closes (bottom) 
and motor units immediately resume their original network activity while units (i.e., gastric and 
pyloric) controlling regions more caudal to the sphincter continue to generate a single pattern 
before resuming their separate activities (adapted from ref. [112]). 

Computational modelling  

We give here only a brief overview of computational modelling of neuronal networks. More 
complete treatments may be found in, for example, refs [38], [119] and [120].  

Modelling cells and synaptic interactions  

We will consider here only that class of neuron models in which the action potential is explicitly 
represented (spiking models), and neglect traditional neural network-type models and mean-field 
models which represent only the time-averaged mean activity of neurons or populations. The class 
of spiking models may be further subdivided into biophysically-realistic models and simplified 
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models (integrate-and-fire, spike response models).  

The concept of the integrate-and-fire model dates back to Lapicque [121]. In its standard form, 
the model represents a purely passive membrane with no non-linear properties until the 
membrane potential reaches a fixed spike threshold, at which point the potential is reset to some 
sub-threshold value. To match the model behaviour more closely to that of real neurons, sub-
threshold non-linearities (e.g. quadratic [122], exponential [123]), a second state variable 
[124,125], and approximations of the effects of background synaptic activity [126] have variously 
been added. Integrate-and-fire-type neurons are usually point models, although multi-
compartment models have also been used (e.g., ref. [127]).  

Biophysically realistic models build on the work of Hodgkin and Huxley, who developed a 
mathematical description of the kinetics of sodium and potassium channels [128] which is still the 
basis of almost all ion channel models used today, and of Rall, who introduced compartmental 
modelling of spatially-extended structures such as dendrites[15].  

The level of detail in modelling synaptic interactions covers a large range, from a step change in 
the postsynaptic potential to modelling of biochemical pathways, quantised neurotransmitter 
release and uptake, and post-synaptic binding and channel kinetics. The most commonly used 
representation is that a presynaptic action potential causes a postsynaptic conductance change 
with a fixed time course.  

Modelling networks  

Traditionally, neural networks are viewed as being composed of simple neuronal units 
interconnected in large and specifically structured networks, hence forming complicated systems. 
Mathematical tools borrowed from statistics and physics provide in many cases an effective, 
possibly stochastic or probabilistic, description of the dynamics of these complicated systems. 
Classical examples date back to Anderson, Cooper and Hopfield (review in ref. [129]), who showed 
that such networks can be described by a formalism analogous to spin-glasses (Ising models), or 
the mean-field description of networks of interconnected oscillators and linear neurons. However, 
an unfortunate common aspect of this approach is also that when departing from idealised model 
systems by endowing single neuronal units with more realistic, non-linear dynamic behaviours, the 
availability of mathematical tools which allow an exact or even a statistical description ceases 
quickly.  

Looked at carefully, it is exactly this now experimentally evidenced non-linearity in the dynamical 
behaviour of neuronal units which might, or does, in fact constitute the crucial ingredient for the 
immense computational power of the biological neuronal circuitry. Starting from the simplest 
description of neurons as threshold or integrate-and-fire units, in the past decades much 
experimental and theoretical work was done in filling up these neurons with a plethora of 
biophysical and functional properties giving rise to the wealth of observed dynamic behaviours. 
The level of detail is already now sufficient to provides a theoretical picture of single neuron 
dynamics which comes very close to its biological original, but with the caveat that at the same 
time also the border towards complex systems is passed. The latter renders many exact and 
statistical mathematical tools useless, and linearisations or approximate numerical descriptions 
remain the only way to access a vanishingly small regime of possible dynamic behaviours.  

Similar to the statistical description of networks composed of many, but simply- behaving, 
components, systems with only few, but highly non-linear, components can be accessed with 
mathematical tools borrowed from chaos theory (e.g., refs [130,131]). Indeed, such systems can 
be viewed as low-dimensional deterministic chaotic systems. Corresponding measures and 
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notations were successfully applied to characterise the behaviour observed in isolated neuronal 
systems such as bursting [132] or spontaneously discharging neurons in the mammalian cortex 
(for a recent review see ref. [133]).  

However, in order to approach a real understanding of the brain or macroscopic functional sub-
structures of it as complex systems, it is not sufficient to restrict to small isolated units. Instead, 
the dynamic aspect of neural behaviour has to be exported to whole networks comprised of such 
units. A first attempt in this direction was the characterisation of the large-scale dynamic 
behaviour of the brain in the context of chaotic systems using experimental data from available 
electroencephalographic (EEG) studies and new distributed imaging techniques such as functional 
magnetic resonance imaging (fMRI). Indeed, studies dating back two decades indicate the 
presence of low-dimensional chaos in human EEG data [134]. Although still subject to dispute, this 
suggestion found much support afterwards (e.g., ref. [135,136]).  

In the absence of useful analytical tools for studying large, biophysically-detailed neuronal 
networks, numerical simulation is the most widely used tool. Large scale models of specific cortical 
or sub-cortical regions [137,138,139,140] have given insights into the functioning of these regions. 
A more general approach aims to understand the behaviour of generic cortical circuits, comparing 
numerical results with available analytical predictions where possible (e.g., ref. [141]).  

Complexity in structural and functional network 
topology  

Diversity of structural network topology  

As noted above, there are at least dozens, and possibly hundreds, of distinct cell types in 
neocortex. The connectivity between cell types, however, is far from random. A broadly similar 
distribution of neuron types and similar local connectivity is found throughout neocortex, although 
there are regional variations and specialisations. Neocortex is divided into six layers on the basis of 
histological studies; some layers are further sub-divided. Most cell types, defined narrowly, have 
cell bodies that are only found in a single layer, and have dendrites and axons that have a layer-
specific pattern of ramification. The layered structure of cerebral cortex has also motivated the 
introduction of microcircuits (review in ref. [142]). This is based on the high specificity of 
intracortical inter-layer connections [143], and the fact that thalamic inputs end preferentially in 
layers I, IV and VI and systematically avoid other layers [144,145]. Long-range intracortical 
connections are made quasi-exclusively by layer II-III cells [146], and cortico-thalamic input 
originates exclusively from layer VI and the lower part of layer V. This highly specific arrangement 
has motivated the conceptual introduction of cortical microcircuits [147,148,149], although there is 
no clear `cortical module' but rather a continuum with clear connectivity templates [150,151] 
(review in [53]).  

In parallel with this modular decomposition based primarily on anatomical descriptions of the 
circuit, similar arrangements have been validated on a functional basis. One way to identify 
primary functional modules is to follow, step by step, the vertically dominant integration flow of 
activity evoked by thalamic input (see Figure 4, third top left drawing). EPSP/IPSP sequences show 
stereotyped behaviour as a function of layer in cortex [149] (but see ref. [152]). At a more 
integrated level, numerous studies of sensory evoked responses using single unit 
electrophysiological recordings, since the pioneering work of Mountcastle [153,154] in 
somatosensory cortex and Hubel and Wiesel [155] in visual cortical areas, have emphasised the 
invariance of receptive fields along vertical electrode penetrations (orthogonal to the layer planes). 
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In visual cortex, this `columnar' arrangement holds not only in terms of spatial location of the 
receptive fields in the visual field, defined primarily by the thalamic afferent input, but also in 
terms of orientation preference, a property profoundly influenced by intracortical recurrency.  

These pioneering studies led to the specific proposal of functional columns of different scales. The 
macrocolumn is defined as a complex processing and distributing unit that links a number of inputs 
to a number of outputs via overlapping internal processing chains (minicolumns) [156]. One 
should note, however, that the definition of the functional column initially applied only to the 
input/output circuit formed by serial excitatory links from layer IV (input layer) to layer VI (one of 
the output layers). The laminar relay description (IV→II-III→V→VI) within the column is based on 
the assumption that axons are connected to neurons whose somata are located in the layer to 
which the axon projects [157]. Since these initial studies, other definitions of columnar entities 
have been given, in which all coexist within the same network, giving a crystalline organisational 
architecture whose elementary motif depends on the computation under study (review in ref. 
[53]). These different views are summarised in Figure 4.  

If one extends the search for modules to the scale of the whole cortex, it is clear that different 
areas are specialised for different computations, each with a different role in sensory perception, 
generation of motor commands, memory, or other areas of cognition. The basis of this functional 
diversification may in part reflect differences in individual neuron properties or in the distributions 
of neuron types, but is presumably mainly due to differences in connectivity, although very little is 
known about any such connectivity-computation correlations. Although there is strong evidence 
that the morphological lay-out of these dedicated networks operates under strong genetic 
constraints, there is also ample evidence for a shaping of cortical circuit anatomy by activity. The 
most remarkable illustrations can be found in the developing thalamocortical pathway, during a 
`critical' period during which sensory experience shapes to a certain extent cortical organisation 
[160]. In an imaginative experiment performed in the developing ferret, the group of Mriganka Sur 
was able to turn an auditory cortical area (A1) into a new visual area by 1) depriving, early in 
development, the auditory thalamus (which feeds the primary auditory cortex) from its normal 
input, and 2) substituting this input for rerouted visual afferents [161,162]. Without going into the 
details of such a complex and artificial operation, this rewiring of afferent pathways resulted in two 
major restructurings. The first, expressed at the functional level, was the genesis of visual 
receptive fields in an `auditory' cortex, showing all the attributes of a normal visual cortical area: a 
large proportion of the rewired A1 cells were found to be orientation selective, and the orientation 
network visualised with optical imaging techniques showed the progressive shift in orientation 
preference and the existence of pinwheel singularities that is characteristic of the normal topology 
of the V1 visual network. The second, seen at the structural level, was a rewiring of intracortical 
long-distance `horizontal' connectivity according to a pattern normally seen only in the V1 area. 
Thus, the imposition of a drastic change in sensory activation and patterns of afferent activation 
(in sensory thalamus at an early stage of development) induced a structural reorganisation in the 
rewired A1 area, resulting in a binding-architecture anatomy indistinguishable from that found in a 
normal V1 visual cortical area. We conclude from this example that sensory cortical circuits are 
capable of profound activity-dependent reorganisation, in such a way as to realize a computational 
`fit' with the statistical nature of the information to be processed.  
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Figure 4: Different levels of integration are schematised from left to right and top to 
bottom: a) The cortical pyramidal cell and its membrane compartments represents an 
elementary site of synaptic convergence; b) Bundles of axons of pyramidal cells form radial 
microcolumns; c) One of the best studied input/output circuit characterises the serial 
processing of layer IV afferents by first-order targets, the stellate cells in layer 4, which, after 
a series of successive relays in layer II-III and layer V, terminate on layer VI neurons who 
send their axons out of the functional column [158]; d) The canonical microcircuit exemplifies 
the high level of recurrency of excitatory local connections whereas the inhibitory interneurons 
control the gating of the avalanche of excitatory amplification [149]; e) The concept of meta-
column, introduced by Somers et al. [159], corresponds to the network influence carried via 
long-distance horizontal connections in the supragranular layers (see inset), that needs to be 
added to the column to predict its context-dependent behaviour; f) This last schema 
summarises the hypothesis of selection of computational circuits (red volume) by the 
neuromodulatory action of ACh fibres running in layer I; g) Inverted contrast picture of two 
biocytin-labelled layer II/III pyramidal cells connected by horizontal axons (Frégnac and 
Friedlander, unpublished). (taken from ref. [53], with permission) 
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Complexity of structural network topology  

Turning now from specificities, and differences between cortical areas, we now consider the 
commonalities between brain regions and the regularity in cortical structure, to ask what we can 
learn from a more theoretical view of cortical connectivity and topology, and to what degree 
cortical networks resemble other complex networks found in physics, biology and sociology.  

In general, it is true to say that although an increasing amount is known about the connectivity of 
local circuits in cortex, at least in a statistical sense (the probabilities of connection between pairs 
of nearby neurons of given types), and the general strengths of connectivity between different 
cortical areas [163], much less is known about medium-to-long range connections in cortex, 
although much experimental work has been done to reveal anatomical connectivity patterns in a 
variety of brain networks [164]. The term anatomical connectivity refers here to the set of physical 
or structural, i.e. synaptic, connections which link all neuronal units comprising the network [142]. 
Among the most notable early studies in this direction is the quantitative neuroanatomical work of 
the group around Braitenberg [165], which analysed cortical tissues of mice with respect to 
principal connectivity patterns and connection probabilities. Based on the idea of a rather 
homogeneous distribution of excitatory neurons, these investigations revealed a high short-range 
intra-cortical connection probability, which decays exponentially with a decay length of a few 
hundred micrometres, as well as a more sparse, patchy, long-range cortico-cortical connectivity. 
Interestingly, although each given neuron connects to tens of thousands of other neurons in their 
near vicinity, the probability that more than one contact is made with another neuron at the same 
time was found to be vanishingly small. These results suggest that the cortical network is 
comprised of interconnected, rather local, processing units or cortical microcircuits, containing a 
few hundred thousands of densely connected neurons.  

More recently, extensive anatomical studies revealed comparative aspects of neocortical circuitry in 
different species, ranging from mice over giraffes [166] to humans, with respect to the number 
(density) of neurons and their synaptic terminals as well as to patterns of neuronal 
interconnectivity. The reported results highlight a vast variability in density within the neuronal 
populations that constitute cortical microcircuits across cortical areas and in different species. 
Viewed in the light of results obtained in earlier studies, these findings suggest that this variability 
in the topological structure goes hand in hand with functional differences in the specific cortical 
circuits, and is the result of evolutionary adaptation of circuits in different species to particular 
functions (review in [53]).  

Structural network topology and the `small-world' analogy  

Given the limitations of the classical approaches noted above - studying either large, regular 
networks of simple units or small networks with complex units - in understanding the behaviour 
and the emergence of behaviour in large, complex networks, we now ask whether the anatomical 
studies briefly reviewed above provide support for a view of the cortex as a small-world, scale-free 
system such as has been linked in other fields with self-organisation and emergent properties of 
complex systems. Szentágothai's module concept shows at least that the cortex consists of 
integrative units densely packed with neurons and linked with each other by long-range 
connections. Together with Braitenberg's statistical investigations of the long-range anatomical 
connectivity, this suggests indeed the existence of a cortical network topology with properties 
similar to those found in small-world networks, namely high clustering due to modules and small 
connectivity length due to long-range connections. Concrete support in this direction, although not 
explicitly linked to the small-world phenomenon, follows from numerous neuroanatomical studies 
of large-scale cortico-cortical pathways in different mammalian species. Most notable here are the 
investigations of Angelucci, Kennedy, Lund, Rakic, White, and many others in the cerebral cortex, 



Yves Frégnac et al  Complexity in Neural Networks 
  

 
-  p. 17  - 

in particular the macaque and cat visual cortex, as well as experimental studies of the group 
around Scannell in the cat cortico-cortical and cortico-thalamic system [167,168], and in the rat 
hippocampus by Burns and Young [169]. All these anatomical investigations provided maps of 
large-scale pathways in the investigated brain areas and graphically confirmed earlier findings 
which show a highly hierarchically organised structure with `streams' and `systems' with 
connections which mostly link to nearest neighbours [170]. Moreover, these densely intra-
connected systems reflect functionally specialised sets of cortical areas, suggesting once more that 
function and structure are closely linked at the system level [171].  

However, these early studies did not go far beyond drawing of large-scale connectivity maps of 
neuronal populations. Only recently were these maps of network pathways re-examined with 
specific graph-theoretical tools [172] in order to find a decisive answer to the question whether 
the brain network, or at least parts of it, shares properties of scale-free, small-world networks 
otherwise so commonly found in nature. For this purpose, anatomical maps are represented as 
directed graphs [170,173] in which vertices, or nodes, describe neuronal units (neurons, 
population of neurons, brain areas) and (directed) edges describe connections (synaptic or 
`streams') between these units. With this, the average path length and cluster index can be 
calculated and compared with that typical for random, lattice or small-world networks. As 
mentioned above, two criteria must be fulfilled for the latter [174]. First, the average path length 
should be small and comparable with that of random networks. Second, the cluster index should 
be larger than that of highly ordered networks, such as lattice networks.  

Recently, Sporns and Zwi investigated the large-scale cortical connectivity maps obtained from 
previous neuroanatomical studies in the macaque and cat cortex [175]. They found indeed that in 
all cases the cortical connectivity patterns had properties of small-world networks. Pairs of 
neuronal units are linked together by short paths, as in random networks, despite the spatial 
extent and rather sparse connectivity of the network. Moreover, neighbouring neuronal units 
shared many more interconnections than typical for random networks, resulting in a 
correspondingly high cluster index (see Fig. 5). However, and this must be viewed as a rather 
surprising result, in this study no clear evidence was found for scale-free degree distributions in 
the large-scale connection maps. In fact, the investigated networks exhibit a rather homogeneous 
degree distribution. This, indeed, could be a major setback in the argumentation outlined above 
which could potentially prove that brain networks indeed form complex systems. Even more 
crucial, does this mean that the brain, or its substructures, obey rules which deviate from that 
seen in so much abundance in other natural and social systems? In fact, experiments done in 
sensory systems of various species long before the investigations of topological connectivity 
patterns in mammalian cortices indicate differently. Specifically, studies of functional, rather than 
structural, aspects of sensory coding do provide strong evidence for a power-law, i.e. a scale-free, 
behaviour.  

Functional network topology and the `scale-free' analogy  

Investigations showing power-law behaviour in neuronal systems date back to the early second 
half of the last century. For example, Landgren [176] investigated the response of cat carotid sinus 
baroreceptor units during constant intrasinusal pressure stimuli and found a power-law scaling in 
the impulse frequency as a function of time. Similar findings were reported in the transient 
response (impulse frequency) as a function of time as well as the impulse frequency modulation 
(sensitivity) as a function of the forcing frequency in cockroach mechanoreceptors [177], the 
decay of the response impulse frequency of a slowly adapting stretch receptor following step 
stretches and the peak impulse frequency as a function of the velocity of stretching in the stretch 
receptor of crayfish [178], or the gain as a function of the light modulation frequency in the lateral 
eye of the limulus [179]. More recently, an investigation of Teich and colleagues [180] showed 
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that the discharge statistics of cat retinal ganglion cells and lateral-geniculate nucleus cells show 
long-duration power-law correlations.  

 
Figure 5: Topological connectivity pattern in biological neural systems. Top: Large-scale 
connectivity matrices of the macaque visual cortex, the macaque cortex and the cat cortex. In 
the latter case, the density-based connectivity is shown. Bottom: Average path length (left) 
and cluster index (right) deduced from the large-scale connectivity matrices of cortico-cortical 
pathways. Results from the macaque visual cortex, the macaque cortex and the cat cortex are 
shown, along with the average path length and cluster index for corresponding random and 
lattice networks. The arrows indicate that the small average path length observed in the 
biological systems is closer to that seen in random networks, whereas the cluster index in 
biological systems is closer to that of corresponding lattice networks. Figures and data 
modified from ref. [175]. 

 

In most of these cases, the power-law behaviour was linked to how sensory information is coded, 
i.e. to a specific functional aspect of sensory processing. These findings suggest the possibility that 
the presence of specific scaling-laws might be true for functional networks in higher brain areas, 
such as the cortex, where the investigation of topological connectivity patterns did not reveal such 
a structural signature. With the availability of recording techniques which cover spatially separated 
brain regions, such as distributed multielectrode EEG recordings or fMRI, as well as new 
mathematical analysis methods, which allow the effective activity in such spatially extended 
systems to be screened and characterised [181], the experimental and theoretical basis now exists 
to address this possibility. Among the first clear indications that, indeed, the functional dynamics in 
macroscopic brain networks might be governed by power-laws was the work of Jung and 
collaborators [182]. In their study of spiral chemical waves mediated by the network noise in 
cultured networks of glial cells, they found that these waves could cover a few centimetres and 
persist for many seconds. In turn, a power-law distribution of wave sizes was reported along with 
the argumentation that the processes which create these waves do not exhibit a preference for a 
specific spatial or temporal scale, i.e. are scale-free.  
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Recently, similar results were reported in experimental investigations of the propagation of 
spontaneous activity in mature organotypic cultures and acute slices of the rat cortex [183]. By 
continuously recording spontaneous local field potentials using a multielectrode array, Beggs and 
Plenz showed that these waves of activity are similar to avalanches, a phenomenon well-known to 
exhibit power-law amplitude distributions. Indeed, the propagation of these `neuronal avalanches' 
in terms of size and lifetime obeyed a power law [184]. Moreover, their spatio-temporal patterns 
were stable and significantly repeatable for hours of recordings [183]. The authors suggested that 
these avalanches may constitute a novel mode of activity in cortical networks which differs 
profoundly from those known for a long time, such as oscillatory or synchronised network states.  

The presence of scale-free or avalanche dynamics is, however, unclear for association cortex. In a 
recent analysis (C. Bedard, H Kroger and A. Destexhe, submitted), we found no evidence for 
avalanche or scale-free dynamics in neuronal activity from parietal cortex of awake cats, but rather 
that the dynamics shows exponential scaling, as if neuronal discharges were described by Poisson 
stochastic processes. This corroborates the work of Softky & Koch showing that the statistics of 
neuronal discharges in another type of association cortex (area MT) is similar to Poisson 
processes. It still remains possible that the cortex switches from Poisson-like to scale-free 
dynamics as a function of its state of attention or arousal, but such a hypothesis has not been 
tested yet. Thus, there is presently no direct in vivo evidence for scale-free dynamics in association 
cortex, but the only evidence so far was obtained in primary sensory cortex or thalamus, 
suggesting that this type of dynamics may be mostly relevant to sensory pathways.  

At the level of functional interactions, direct evidence that the cortical network of functional 
interactions in vivo is not homogeneous but rather is segregated into mutually interacting 
functional assemblies comes from the work of Stephan and colleagues in the macaque cerebral 
cortex [185]. Functional connectivity refers here to deviations from statistical independence in the 
activity between spatially separated neuronal units, and measures their temporal correlation or 
spectral coherence [186]. Stephan et al. systematically collected and investigated data from many 
earlier studies on the spread of activity after strychnine-induced disinhibition and indeed found, 
using graph-theoretical tools, that the functional cortical network is closer to a small-world than to 
a random or lattice network (see Fig. 6). These findings are in good agreement with results 
obtained in investigations of the anatomical connectivity patterns in the mammalian cerebral 
cortex (see above), and demonstrate once more strong arguments for the close link between 
functional and structural connectivity. However, in the cited study, again no evidence for a scale-
free, but for a rather single-scaled degree distribution was found.  

Finally, using fMRI data, the network of functionally correlated, spatially separated brain sites in 
humans was investigated [187]. It was found that both the distribution of functional connections 
and the probability of finding a link as a function of distance between vertices closely followed a 
scale-free behaviour (see Fig. 6). In conjunction with the finding that the average path length 
between vertices in this fMRI network was very small and accompanied by a clustering coefficient 
which was much larger than that of equivalent random networks, these findings suggest that, 
indeed, the large-scale functional connectivity in the brain follows that typically seen in scale-free 
small-world networks.  
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Figure 6: Functional connectivity pattern in biological neural systems. Left: Matrix of 
functional connectivity in the macaque cortex deduced from the spread of activity between 
cortical areas as determined by strychnine neuronography (figure taken from ref. [185]). Right 
top: Average path length and cluster index deduced from the functional connectivity matrix in 
comparison with the values for a corresponding random network (data from ref. [185]). 
Whereas the average path length of the biological functional network was small as in a 
corresponding random network, the cluster index was markedly larger, suggesting a functional 
connectivity with small-world structure. Right bottom: Functional network (top) and degree-
distribution (bottom) extracted from functional magnetic resonance imaging data on the 
human cortex during a behavioural task. The degree-distribution shows a scale-free behaviour. 
Figure taken from preprint by Eguíluz et al, with permission.  

 

Complexity in network dynamics  

A possible role of `noise' in the functional dynamics of cortical 
networks  

One of the most striking differences between cerebral cortex and central pattern generating 
networks is that cortical neurons in vivo show a considerable degree of apparent randomness in 
their activity. The membrane potential of cortical neurons is subject to highly fluctuating activity 
(Fig. 7A), mostly of synaptic origin [188], consistent with the extremely dense connectivity in 
cortex [150,189,142]. An essential characteristic of this `synaptic noise' is that it sets the 
membrane in a `high-conductance state', which may impact considerably on the integrative 
properties of cortical neurons [42]. Computational models have predicted that in high-conductance 
states cortical neurons follow several `computational principles' [42]. First, their responsiveness is 
strongly modulated by synaptic noise, and in some cases it may boost the response to synaptic 
inputs[190] (Fig. 7B), similar to stochastic resonance phenomena [191]. Some of these predictions 
were confirmed experimentally using dynamic-clamp [192,193,194]. Second, complex interactions 
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between synaptic noise and dendritic ion channels may considerably reduce the dependence of the 
efficacy of synaptic inputs on their location in dendrites [195], resulting in a more `democratic' 
dendritic tree in which each synapse would have an approximately equal vote in firing an action 
potential in the axon (Fig. 7C). This scheme is, however, only valid for isolated inputs, and the 
integration of multiple inputs may reveal the existence of `dendritic subunits', as suggested by 
experiments [196] and models [197]. Third, high-conductance states sharpen temporal resolution, 
allowing cortical neurons to detect millisecond coincidences and therefore resolve precisely timed 
inputs [42,198]. However, how cortical neurons integrate thousands of inputs distributed in their 
dendrites still remains an open problem. Finally, an obvious consequence of synaptic noise is that 
cortical neurons display a high trial-to-trial variability in their responses [190], a feature often seen 
in vivo. Consequently the only measures that makes sense for a cortical neuron in vivo are 
probabilities, and indeed probabilities have been used for several decades to characterise 
responses recorded in cortex in vivo, under the form of `post-stimulus time histograms' [199]. 
There is also a whole family of computational models of cortical coding based on probabilistic 
models [200], some of which will be mentioned below.  

The property of noise-induced enhancement of responsiveness [190], or gain modulation by noise 
[193], suggests two possible views about the computational role of synaptic noise. It could be that 
the apparently stochastic membrane potential fluctuations result from the processing of a large 
number of `meaningful' signals. Assuming that these signals are weakly correlated, any given 
input sees the other inputs as `noise', and can be boosted by these other inputs. The neuron 
would therefore multiplex many such weakly correlated signals [201]. Alternatively, it may be that 
the cortical network produces self-generated stochastic activity in order to be in a regime of 
enhanced responsiveness where afferent inputs can be processed efficiently. Here, synaptic noise 
is viewed as the result of a particular network state where responsiveness is optimised, perhaps 
related to attentional mechanisms ([190,194], see discussion in ref. [53]).  

These lines of evidence suggest that `noise' is one of the building blocks that need to be taken 
into account to understand cortical computations, in addition to the intrinsic and synaptic 
properties introduced earlier. In contrast to what is usually thought, the effect of `noise' may be 
not detrimental but possibly beneficial for near-threshold signalling and decision making. However, 
other theoretical frameworks, which are no longer limited to the classical Shannonian transmission 
of a signal source by a noisy channel, should also be considered. When studying the impact of 
`noise' no longer at the level of input/output operations performed by the single cell but at the 
level of assembly dynamics, network-driven `noise' reflects the activity of all unseen units and 
depends on the degree of redundancy/sparseness achieved by the population code. Under such 
dynamic regime, `noise' no longer acts as an additive or multiplicative constant at the cell level, 
but becomes embedded in the global dynamics of the system [202]. Recent work in visual cortex, 
based on the trial-by-trial reliability of the spike pattern as well as of the subthreshold membrane 
potential trajectory, indicates that `noise' covaries as a function of the global uncertainty provided 
by the sensory context ([203]; Baudot, Marre, Levy and Frégnac, to be submitted). The variability 
of the network dynamics can be derived from the respective dimensions of the sensory input 
information to be processed, i.e. its complexity and the intrinsic information capacity of the 
network.  
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Figure 7: Synaptic noise as a building block of neocortical circuit computations. A. 
Intracellular recordings in cat parietal cortex in vivo showing the sustained membrane 
potential fluctuations during activated states. B. Enhancement of responsiveness by synaptic 
noise. Computational models of pyramidal neurons simulated synaptic noise from the random 
release of thousands of glutamatergic and GABAergic synapses distributed in soma and 
dendrites. Left: the response to additional excitatory inputs leads to probabilistic responses 
(red line; 40 trials shown). Right panel: response curve of the neuron without noise (red), with 
noise (green) and with the equivalent leak conductance (blue). Synaptic noise changed the 
gain of neurons and enhanced the responsiveness to low-amplitude inputs (*). C. Equalisation 
of synaptic efficacies by synaptic noise. Synaptic inputs were simulated at different distances 
from the soma (left scheme). The response probability is shown as a function of input strength 
(Amplitude) and localisation with respect to soma (Path distance). Input efficacy was weakly 
dependent on the location of the input in dendrites. Modified from ref. [42].  
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Self-organisation and adaptive properties in network dynamics  

The concept of self-organisation dates back to the British psychiatrist and engineer W.R. Ashby 
[204], who became one of the founding fathers of systems theory and cybernetics in the late 
1940s [205]. Based on the work of Ashby and his successors, we can now formulate several 
principles that are linked to the dynamics of self-organisation. First, self-organising systems exhibit 
a balance between positive feedback, which leads to an acceleration of the development of the 
system, and negative feedback, which is required to stabilise the system. Second, self-organising 
systems show an adaptation to their environment. For that, the system needs a huge variety of 
stable states, i.e. the number of states must be large enough to allow the system to react to 
environmental perturbations yet remain stable. Third, the process of self-organisation is equivalent 
to an increase in coherence or synchrony which can span the whole system and is accompanied by 
a decrease of statistical entropy. Interestingly, this principle points, apparently, towards the well-
known thermodynamic paradox. However, according to Ashby, dynamic systems always tend to 
evolve to a specific attractor state, which can be viewed as a specific state of equilibrium which 
reduces the uncertainty about the system's state and, therefore, minimises the system's statistical 
entropy. This argumentation, indeed, circumvents the paradox. Fourth, in self-organising systems, 
only correlation or coherence patterns which can maintain themselves can result from the inherent 
dynamics and, therefore, continue to exist. This property is a manifestation of the concept of 
closure and self-sufficiency.  

It has been shown that many physical and chemical systems develop a hierarchical, structured, i.e. 
complex, architecture. Finally, this organisational closure turns a collection of interacting elements 
into an individual coherent whole, which has properties that arise out of its organisation and that 
cannot be reduced to the properties of its elements. This is the birthplace of emergent properties.  

In generalisation of this last point of organisational closure, self-organisation also means 
adaptation of system constituents, populations or sub-components to themselves. This leads, 
naturally, to the concept of self-regulation or self-control. This requires that, first, the system is 
able to produce a sufficient variety of actions to cope with possible perturbations (external and 
intrinsic) and, second, that the system selects the most adequate counter-action for a given 
perturbation. Here, variety keeps the system far from equilibrium, i.e. endows it with many 
possible attractor states, characteristic of chaotic systems. In contrast, selectivity pushes towards 
a sufficiently small number of attractor states in order to ensure stability, as is typical for 
deterministic systems. The coexistence, or union, of variety and selectivity leads to the idea that 
complex adaptive systems tend to reside on the edge of chaos [206,207], a regime between 
chaotic disorder and deterministic order. Moreover, the mechanism by which complex systems 
tend to maintain themselves on this critical edge is called self-organised criticality [208]. 
Interestingly, as has been shown to be the case in many natural and social contexts, the system's 
behaviour on this edge is typically governed by power laws. This closes the loop of argumentation, 
although with many remaining holes of explanation, for a connection between the definition of a 
system as being complex and the property of possessing a topological or functional small-world 
structure which follows a power-law distribution in some of its characteristic properties.  

Conclusion and perspectives: Complexity as a 
computational principle?  

An alternative to attempting to explain cortical function on the basis of canonical microcircuits is to 
exploit the phenomenal diversity of cortical structure and dynamics. Cortical neurons display a 
wide diversity of morphologies and intrinsic properties [45], and synaptic dynamics are highly 
variable and show properties from facilitating to depressing synapses [65]. The essential feature of 
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cortical anatomy may be precisely that there is no canonical pattern of functional connectivity, 
consistent with the considerable apparently-random component of cortical structural connectivity 
templates [150,151]. Taking these observations together, one may argue that the cortex is a 
circuit ever-adapting to the functional task that seems to maximise its own complexity, both in 
terms of recruitment of distributed elementary intrinsic properties at the single-cell level and in 
terms of relational topology at the network connectivity level. Along with this view, computational 
models are now emerging, in which the goal is to take advantage of the special information 
processing capabilities - and memory - of such complex systems. Such large-scale networks can 
transform temporal codes into spatial codes by self-organisation [209], and computing frameworks 
have been proposed which exploit the capacity of such complex networks to cope with complex 
input streams [210,211]. In these examples, information is stored in the ongoing activity of the 
network, in addition to in its synaptic weights.  

Progress in the study of complex systems may also be crucial for understanding cortical 
computations. We have mentioned above the idea that cortical wiring is given by the repetition of 
canonical microcircuits [53,147,148,149] which was contrasted with the idea that cortical wiring 
templates are highly variable [150,142,151]. We can go further and note that the nervous system 
is perfectly able to wire well ordered, almost crystalline structures, suggesting that the 
considerable variability and diversity found in neocortex is important for its computations. We may 
have to abandon the usual concept of `large networks of identical units' and replace it with the 
idea that the cortex consists of `large networks of diverse elements', guided by a continuum of 
properties, rather than of prototypical units or microcircuits.  

Advances in this field will depend on combined progress in molecular tagging, instrumentation 
(e.g. two-photon [212]) and in multiple-scale monitoring of brain activity. New methods are 
already available to link levels of integration and visualise the collective dynamics of large 
distributed ensembles of spiking elements. Such tools find a natural field of application in the 
delineation of parts of the brain, and more specifically of cortical areas, involved in specific 
cognitive functions and in the genesis or processing of mental representations [213]. However 
their present use and repeated abuse illustrate the fact that most advanced brain imaging 
techniques (calcium imaging with two-photon, PET, fMRI, BOLD, EEG-MEG) rely on explicative 
variables (metabolic, haemodynamic) which differ greatly from those used to decipher the neural 
code and information transfer at a more microscopic level (current source density, evoked 
potentials, spike counts). Increased efforts have to be made in establishing correlations and when 
possible transfer functions between variables collected at different levels of integration and scales 
of observation [214,215]. The ignorance, of minoration, of elementary sources of complexity in the 
living brain has already attributed specific locations to consciousness and we should not wait long 
for the pineal gland to be reinstated as the centre of mind/soul. It is only when the complexity of 
brain processes will be fully recognised that one may hope to go beyond the past errancy of 
phrenology and system behaviour linearisation.  

This review work has been supported by the European Union under the Bio-inspired 
Intelligent Information Systems Programme, project reference IST-2004-15879 (FACETS).  
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