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hat kind of computer is the mammalian brain? To improve upon simple rate-based artificial neural network
computational neuroscience research over the past decade focused on more biologically realistic spiking neuron models— OBSERVED FIRING PATTERN  [—" S R . , _ , )
but still ascribing, on the millisecond time scale, a digital overtone to brain processing. A more recent development has 0.05 T —_— v lock network L contains 100 integrate-&-fire neurons that receive input from 20 signal = potential when excited by K) — 0 extra spikes
been to explore the spectral properties of subthreshold membrane potentials, emphasizing an analog mode of computing. ' g backaround source cells S throuah different combinations of svnaptic weights: S P | , : | B
Together, by modeling the fine temporal structure of neural signals, these trends have revealed a great diversity of 0.045 (= I g bursting at various f g . d burst timi % P _ tg' ’ j\ﬁ,\;\f A (| gV pegred T f\’\[\/\\f ;%,\‘
collective spatiotemporal regimes: synchronization & phase locking, correlations & traveling waves, rhythms & chaos, etc. A R+ mix cells are_ ursting at various frequencies f'and burs |m|ng§ (phases) ¢; this - f / / N / / i %
Through recurrent (and plastic) synaptic connections, neural cells transiently interact as dynamical subnetworks that 0.04 ’ 1000 creates in L-cells complex subthreshold membrane potential landscapes e e
promise an immense richness of coding expression and computational power, combining the discrete and the continuous. o {V(t)}; -, ,» generally at a low or zero spiking frequency »ex. of strongly resonant L-cells — 6 extra spikes when stimulated by K
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What repertoire of dynamical regimes (“phase diagrams”) can such subnetworks sustain? In the classical feedforward view e ; v" key K is a random train of spikes; when L is stimulated by K the firing rates of i f‘%ﬂ{ \JWT\/ W o J] \P/ ¢ / I J o e ' X \\/;
: , - sustained Asynchronous , ; : : /‘ 7 /f‘ Sl /“‘ /4 e 7 /ﬁ = 4P
subnetworks (layers, cell assemblies) are initially mostly silent and have to be literally activated by an input or a “lower” - 0.03 Irregular Firing A+S mix. | Tl the L's cells mc’_’?ase more or I,ess dependln,g on the match between the o / / ] f/ / /
area. Our work subscribes to a new paradigm, in which subnetworks already possess viable and complex endogenous S e 1=y spectral composition of the cells’ potentials Vs and the temporal structure of X R T L T N T
activity modes that are only perturbed through coupling with an input or other subnetworks. Using spiking neuronal S = | AT e V\\ 7 N \Wﬁ S \pj S
simulations, we describe here progress to-date towards building cohesive “analog-digital perturbation” principles that can & 0m 100 H ~F / / / / / / / \ / /
underlie biological attention, pattern recognition, short- and long-term memory, and motor responsiveness to natural ‘ 3 o } ! - R
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> We describe the performance and sensitivity of dynamically igniting-and-quenching Recurrent Asynchronous Irregular ‘ . E -l J/ L / / /
Networks (RAINs). We explore the regimes and phase transitions of RAINs under conditions of calibrated voltage- 0.01 My, is ! A O g | : :
sensitive ionic membrane channels, synaptic facilitation and depression, and Hebbian spike-timing dependent plasticity it ! A0 WMHWMWL “t %ja :—:,w‘\/\,\ﬁ IS / i {,W\f/ oM M, f \A’\“\\f\f\ﬁ/ Y VNJI
(STDP). Specifically, we demonstrate the spontaneous emergence of alternating sub-100ms states of subthreshold 0.005 Dried (<900 ms) i Bt i R e | = / : / | ﬁ | / | | ‘ f | / ‘ .
(i.e., analog) correlation-decorrelation, suggesting a natural mechanism of intrinsic clocking. — 3. RAIN NETWORKS > Dead (no ignition) - oL . L L —~ M o220 )
> We also study “lock and key” properties of RAIN activation, i.e., a model of pattern recognition and nondiscrete e :
memory storage based on a dynamics of coherence induction triggered by input stimuli (the “keys”). Here, learning a 0 0.1 02 03 0.4 0.5 SJ
pattern (a “lock”) means tuning synaptic efficacies to a point of maximal postsynaptic response. — 4. LOCK & KEY G_inhib
> Finally, we discuss the importance of embodied social robotics to “teach” intelligent behavior to RAIN brains, and  firi i . e I : :
speculate on the instantiation of RAIN brains in compact analog VLSI architectures. — 5. ROBOT SENTRY GeXC Vs G'"h fll"ll‘lg pha,s,e dlagr,am : , 50,ce," RAIN pattern arriving AT I .Sa?me.StlmuIatlon,
Based on a combination of firing statistics, four consistent domains are timing of ideal LOCK pattern : peemmsn] - arriving just 10 ms later
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. . i — —— T e 10N SUOU Y oy 1R N R Y DR | P S [upper panel] A 400-ms pattern [between dashed lines] of firing was recorded from a 4000-cell RAIN network; an identically timed pattern of pulses was used to
Digital-temporal vs. analog-temporal coding N I :;" ) " N activate 50 cells 5 ms before (left) versus 5 ms after (right) the spike timing which would otherwise have occurred. Significantly more synchronous & mean firing
there is more to neural signals than spikes (action potentials) — look at the whole membrane potential : I Y [ s I N e Mdepression of global synaptic weight distribution during deep sleep is observed on the left,
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(> ,VJVL ‘ ks & t A,H a2 9 - - - sl 18 [lower panel] Subthreshold EIGENVALUE distribution shows enhanced complexity [between dashed lines] with LOCK & KEY timing (left), with rebound low
Dﬂﬁjﬂ M 20 /m/ “ \\' |2° ki Effect of potassium channels on RAIN domain avenl complexity beginning about 1650 ms (650 ms after end of external stimulation [arrow]).
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. t ( of back d activi /f | t*" dynamics of the RAIN network (upper row: increasing K, channels in Sleep emulation
gifﬁrggsarrzzzl.v ﬁ]iasgrcislitirgoﬁfe;ulai%ugtg %%’ewz‘;t";’;i'l ﬂ:‘::;ccao:fﬁargzmo ® i, s A excitatory cells; middle row: increasing K, in excitatory cells; lower row: Cyclic depression with active Hebbian synapses results in gradual depression of all Subthreshold Comple)(lty, BEFORE & AFT
critical influence on the neurons' responsiveness —» this suggests anew .55 sin(1.7(2mf) + 25 sin(12.2(2n)) + increasing Ky in inhibitory cells only). synaptic weights (c/w renormalization of Tononi & Cirelli, Sleep Med Rev 2006). ) == e s e B =
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2_ M ESOCI Rcu ITS Poisson Network £~ Redistribution of synaptic weights among 4000 neurons. A small generator
under Hebb £~ , : . . N
. . . . network of 100 neurons fires either with Poisson or RAIN patterns (at identical
M ircuits: the missing link between neural n nd Al <ol & | \ . STDP (50's)
esocircuits: the missing petween neural nets and Ll O macrolevel: | 3 . mean frequencies). This generator network connects with 0.1 probability to a R =
v at the macroscopic level: Al = symbols, syntax, production rules Artificial = | — . : : _ £ 4
logical systems define high-level symbols that can be composed in a generative way: Intelligence 3 4000-cell network, of either [upper] disconnected discrete cells forced to fire in a g gg
EHl f I.LI
however, they are lacking a “microstructure” needed to explain the fuzzy complexity of 2 Poisson pattern, or [lower] a fully interconnected RAIN. +Hebb is favored slightly 100
perceptfon’ Categ_or'zat'on’ motor control, leaming o g under our STDP settings. Note that all weights shift rapidly from the mean (0.50
v’ at the microscopic level: neural networks = neurons, synapses, activation rules mesolevel. , , : , . )
Complex RAIN to RAIN +/- 0.25) toward the maximum under Poisson stimulation conditions [top right],

in neurally inspired dynamical systems, network nodes are activated by association;
however, they are lacking a “macrostructure” needed to explain the systematic
compositionality of language, reasoning, cognition

— need for a “mesoscopic” level, populated with spatiotemporal patterns (STPs)
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whereas synaptic weights redistribute asymptotically to intermediate lower or Spontaneously alternating RAIN subthreshold correlation structure & coherence due to transient perturbation
4 seconds of a 4000-cell RAIN network, before (upper) and after (lower panel) injection of only 10 cells with a spiking spectral (10 frequency) representation of 2
words (in the 200-700 ms window). Note irregular, spontaneous 25-100 ms alternations of complexity, and effect of sound during and after injection. Black line

higher values under RAIN conditions. Black pixels represented unconnected

microlevel: Cmini
STPs are complex dynamic cell assemblies supported by ordered connectiviy, for ex: E2F Neura e i s Synapses; minimal change occurs beyond 50 seconds. separates absolute eigenvalues above and below a value of 1.
synfire chains, polychronous groups, cortical columns, analog locks & keys, etc. ALK Networks PREsyn Cell Index PREsyn Cell Index
New neural dynamics: perturbation by coupling
(a) old “input/output” paradigm — a lower area literally activates a higher area, initially silent
(b) new “perturbation” paradigm — subnetworks already possess endogenous modes of activity, 5 " RO B OT s E N T RY
which are only influenced or modified by coupling interactions Cluster-robot loop Overview of the brain architecture Robot’s visual input  Visual cortex (VC) Association area (AS) Motor cortex (MC) Robot’s behavioral output
o original attempt to implement a complete information processing loop between a  simplified model brain: comprises interconnected auditory/visual, associative and ~ coarse Gabor filters the “key” the RAIN “lock” decision by winner-take-all raster of spikes
] ! neural network simulator and a robot, in real time motor cortical areas, possibly modulated by prefrontal cortex and subcortical transduced into /W Key ? Lock / MC transduced into
(c) Robot, e.g., Sony AIBO or Breazeal's Mobile/Dexterous/Social (MDS) as a structures ga?l’z;of e “Q \ E; . | Stefgggg;ﬂ
(a) sentry or industrial assistant interacts with humans via sensors and actuators cortical area modeling: spiking neural networks in various dynamical regimes: P | i ljlﬂjltL_——’_"‘oo. ’ /o g‘\, dance
Digital or analog coherence induction through coupling (a) NeoCortical Simulator (NCS) runs on a computer cluster (a); it contains the ~ coherence induction, winner-take-all, persistent activity (bistability), etc., under , TG i o o OO T bow
a subnetwork L has mixed endogenous modes of activity, digital spikes (left) or analog potentials (right): brain architecture for decision-making and learning Hebbian synaptic redistribution sl N %ﬂl}u ; ?C: slzzrge | A oresent hand i;}r%
by stim:ulating L, ?nother network K induces coherence into (but does not create) L’s modes : ii) NeoCortiSimuIator (NCS) (b) *“Brainstem” laptop (c) AIBO robot planned functional systems: multimodal processing, Working memory, and . II|I=I|I"I|I|III \ \_“’C:’: ':::_=_=_=:: -f_!;:.?l e roll back
| LI L e — LA LI f B i | A — ?f‘,} executive behavior, with attentional and reward signals from subcortical networks TN ‘o . : it down
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; S T HETENN - — — =il " approach: develop different areas independently as modules, then combine them WTINTI o o L0 O
M e | “ . T TN behavioral decision motorslnals o7 % = toobtain a global stimulus-response learning TR —o QS’/ |
J-I—"-I—LI:-I-E-“-I—”JL W N JJ—'—L”—!—tLuLU“-J‘ biologically realistic brain model pre-, posiprocessing and relay sensing and acting ~— N——— (22;'@



