Office of Naval Research "Computational Neuroscience, Sensory Augmentation" Arlington, VA, April 25-26, 2007

Large-Scale Biologically Realistic Models of **Cortical Mesocircuit Dynamics**

Philip H. Goodman¹ and René Doursat^{1,2}

¹Brain Computation Laboratory, School of Medicine, University of Nevada, Reno ²Institut des Systèmes Complexes, CNRS & Ecole Polytechnique, Paris, France

Contributors

Graduate Students

Brain models & Robotics Oscar Sessions Milind Zirpe Membrane Ion Channels Del Ray Jackson Sermsak Buntha <u>Cluster Optimization</u> John Kenyon

Post-Doc Quan Zou

Investigators & Collaborators

Fred Harris, Jr. Monica Nicolescu Phil Goodman

AIBO

René Doursat Henry Markram Jim King

April 25, 2007

Large-Scale Cortical Mesocircuit Dynamics

1. Scope of Work

- 2. Neurodynamics & Mesocircuit Theory
- 3. RAIN Concepts & Progress to Date

4. Future Directions

1. Scope of Work

Assumptions:

- The **brain** is an analog system (with some digital-like features)
- The **brain** obeys classical, non-quantum physics, operating in biological time
- The **brain** can be reverse-engineered

Obstacles to understanding relevant brain processing:

- No consensus on algorithmic basis of cognition, memory, or consciousness
- Biological brain models have an extreme no. of unconstrained parameters
- Extracting biological parameters from behaving brains is very difficult
- Emulating genetic/developmental neural cell biology doesn't "explain" it

Hypotheses:

- Phenomenologically-detailed brain mesocircuit models (to be described) could bridge this gap in our understanding (and give rise to novel hybrid analog-digital "AI")
- Robots based on mesocircuit theory and through social interaction can provide strong behavioral constraints on the cortical modeling (and result in immediate applications)

1. Scope of Work

Simulation Software and Cluster Development

- ✓ 200-CPU cluster (Xeon/Opteron), Myrinet, 2 TB memory
- ✓ NCS software written in C/C++ with MPI architecture

 ✓ 100 columns x 10,000 cells = 1 million multicompartmental neurons, massively interconnected through 1 billion synapses

Large-Scale Cortical Mesocircuit Dynamics

1. Scope of Work

2. Neurodynamics & Mesocircuit Theory

3. RAIN Concepts & Progress to Date

4. Future Directions

> <u>AI</u>: symbols, syntax \rightarrow production rules

- Iogical systems define high-level symbols that can be composed together in a generative way
- → they are lacking a "microstructure" needed to explain the fuzzy complexity of perception, categorization, motor control, learning

> <u>Neural networks</u>: neurons, links \rightarrow activation rules

- ✓ in neurally inspired *dynamical systems*, the *nodes* of a network *activate* each other by association
- → they are lacking a "macrostructure" needed to explain the systematic compositionality of language, reasoning, cognition

Missing link: "mesoscopic" level of description

cognitive phenomena emerge as *complex systems* from the underlying neurodynamics, via intermediary *spatiotemporal patterns*

April 25, 2007

Laws of neurodynamics: from rate to temporal coding

From digital to analog temporal coding

 \checkmark more than discrete spikes \rightarrow continuous *membrane potential*

- ✓ neurons receive a great amount of *background activity* from close or remote cortical areas
- ✓ this activity is *irregular but somewhat rhythmic* and has
 a critical influence on the
 neurons' *responsiveness*

→ this suggests a new form of *analog binding*, instead of spike synchrony

M. Bohte, 2003

April 25, 2007

Cognitive Neurodynamics

- Springer journal: "CN is a trend to study cognition from a dynamic view that has emerged as a result of the rapid developments taking place in nonlinear dynamics and cognitive science."
 - focus on the spatiotemporal dynamics of neural activity in describing brain function
 - contemporary theoretical neurobiology that integrates recent and rapid advances in nonlinear dynamics, complex systems and statistical physics
 - often contrasted with computational and modular approaches of cognitive neuroscience

Cognitive Neurodynamics... and beyond

- ✓ CN also distinguishes three levels of organization (W. Freeman):
 - microscopic multiple spike activity (MSA)
 - "mesoscopic" local field potentials (LFP), electrocorticograms (ECoG)
 - macroscopic electroencephalograms (EEG)
- ✓ however, in the CN view, upper levels are generally based on *neural fields*:
 - continuum approximation of discrete neural activity by spatial and temporal integration of lower levels → loss of spatial and temporal resolution
- → in our view, the mesoscopic level of description should retain the fine details of spiking (and subthreshold) patterns: what truly matters are the spatiotemporal **"shapes"** of mesoscopic objects

> Mesoscopic entities are spatiotemporal patterns (STPs)

- large-scale, localized dynamic cell assemblies that display complex, *reproducible* digital-analog regimes of neuronal activity
- these regimes of activity are supported by specific, ordered patterns of recurrent synaptic connectivity

Theories populating the mesolevel: a zoology of STPs

> A building-block game of mental representations

✓ STPs can *bind*, *interact* and/or *assemble* at several levels, forming complex structures from simpler ones in a hierarchy

✓ binding by *temporal correlations* and *fast synaptic plasticity*

- synchronization
- delayed correlations, waves
- analog induction, resonance, etc.

Inter-pattern perturbation and coherence induction

- ✓ cell assemblies can interact through weak coupling contacts and influence each other's dynamical activity modes
- an input "key" stimulating a "lock" pattern induces a transient regime change and a greater or lesser response in the lock

the lock has key-specific recognition/representation abilities; it is

- similar to a "template", except not a copy of, or analogous to the key
- similar to an "attractor", except does not need the key to be active

New neural dynamics: perturbation by coupling

- ✓ subtle but fundamental distinction between *activating* and *perturbing/influencing*
- ✓ old paradigms (input/output processing chain): a lower area literally *activates* a higher area, initially silent

 new paradigm: subnetworks already possess endogenous modes of activity, *perturbed* by coupling interactions, possibly two-way

> "Molding" locks by Hebbian learning

- ✓ a lock's ability to respond more to certain types of keys relies on its *specific distribution* of synaptic contacts
- these contacts could be *learned* through Hebbian modification, for example by presenting certain types of keys repeatedly

 during the training phase, *undifferentiated* locks are transformed into *specialized* locks

April 25, 2007

Lock diversification and inter-lock competition

- both training and functional phases could be carried out on multiple locks in parallel
- ✓ inter-lock competition by inhibitory feedback could create diversification and specialization in the context of a "society of locks"

> Preliminary lock & key experiments

- ✓ lock *L*: 100 neurons (*R*) driven by 20 source cells (*S*) via different combinations of synaptic weights (*W*), which make *L*'s specificity
- \checkmark S cells are bursting at various frequencies and phases, creating complex potential landscapes in R cells with low spike frequency

✓ key *K* is a random train of spikes: when *L* is stimulated by *K*, the *R* cells' firing rates increase more or less, depending on the match between their endogenous temporal structure and *K*'s structure

Lock excited by key

- ✓ example of strongly resonant *L*-cell \rightarrow 6 extra spikes when stimulated by *K*:
 - blue signal = intrinsic L potential
 - red signal = potential when excited by K

✓ example of nonresonant *L*-cell \rightarrow 0 extra spikes when stimulated by *K*:

Lock excited by key

 \checkmark other examples of *L*-cells strongly excited by the *K* spikes

Next stages in the model

- ✓ driven mode L modeled as a subthreshold SNN driven by source cells, and K as spike trains
- endogenous mode add to L recurrent connections (possibly delayed) and inhibitory neurons $\rightarrow RAIN Concepts$
- Hebbian learning add STDP synaptic plasticity and devise training procedure, so that lock L "molds" around specific keys K
- brain module integrate a society of *L* networks into the association module (AS) of the brain architecture

Large-Scale Cortical Mesocircuit Dynamics

- 1. Scope of Work
- 2. Neurodynamics & Mesocircuit Theory
- 3. RAIN Concepts & Progress to Date

4. Future Directions

Evoked vs. ongoing activity

(Tsodyks et al. Science 1999; 286, 1943 - 1946)

⁽Weliky M, Bosking WH, Fitzpatrick D. Nature 1996;379:725-728)

> Ongoing activity -transient coherence

(Kenet et al. Spontaneously emerging cortical representations of visual attributes. Nature 2003;425:954-956)

> in vivo awake spiking (identical cell, repeated trials)

Rat Thalamus LGN (Erik Flister, Pam Reinagel): 2006, UCSD online course

Monkey Lateral Prefrontal Cortex (Shima et al. Nature 2007; 445:315-318)

trial

First, we stimulate a recurrently connected excitatory network...

Next, we add recurrent inhibition via E:I and I:E synapses...

How could we get sustained firing?

But what if we instead add recurrent inhibition of inhibition?

Work of others

 van Vreeswijk, C. & Sompolinsky, H. (1996)
 Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 315: 973–976

✓ Brunel, N. (2000)

Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. *J. Physiol. (Paris)* 94: 445–463

> Work of others (cont'd)

 Vogels, T. P. & Abbott, L. F. (2005)
 Signal propagation and logic gating in networks of integrate-and-fire neurons. *J. Neurosci.* 25: 10786-95.

time

"Negative-pulse ignited" firing phase diagram: G_{exc} vs. G_{inh}

 based on a combination of firing statistics, 4 consistent domains are discovered as excitatory and inhibitory conductances are covaried in separate experiments

Effect of Membrane Ion Channels

Figure 2: Excit [Km=0.015] and Inhib [Base no K+] [Km=0.025] [Ka=1.0] [Kahp=0.007]

Figure 3: Excit [Ka=6.000] and Inhib [Base no K+] [Km=0.025] [Ka=1.0] [Kahp=0.007]

Figure 4: Excit [Kahp=0.003] and Inhib [Base no K+] [Km=0.025] [Ka=1.0] [Kahp=0.007]

> Firing characteristics

20 40

-80

Subthreshold correlation complexity (eigenvalue distribution):

Multi-RAIN "Transient Winner-Take-Most"

Multi-RAIN Discriminate Hebbian Learning: clustering

Multi-RAIN Discriminate Hebbian Learning: clustering

Frey, B.J., Delbert, D. (2007) Clustering by Passing Messages Between Data Points Science 315: 973–976

200 cell RAIN network

Multi-RAIN Discriminate Hebbian STDP Learning

Robot's visual input

At the core: visual-association-motor triad

PFC buffer

- the visual cortex
 (VC) provides the stimulus patterns, or "keys"
 - the association area (AS) holds the complex neurodynamics in "locks"
- the motor cortex (MC)
 is the AS "readout": it
 coalesces the activity
 into winner-take-all

RAIN drives Robot's behavioral output

Completed sensorimotor loop between cluster and robot

- initial attempt to implement a real-time, embedded neural robot
- c) a robot (military sentry, industrial assistant, etc.) interacts with environment and humans via sensors & actuators
- a) NeoCortical Simulator (NCS) software runs on computer cluster; contains the brain architecture for decision-making and learning
- b) "brainstem" laptop brokers WiFi connection: transmits multimodal sensory signals to NCS; sends actuator commands to robot

Social robotics paradigm

✓ Typical robot/human interaction and learning scenario

a. resting

b. alerted, observing

c. reacting by offering a paw

d. receiving reward (stroking)

e. angry barking and walking (no reward!)

Large-Scale Cortical Mesocircuit Dynamics

- 1. Scope of Work
- 2. Neurodynamics & Mesocircuit Theory
- 3. RAIN Concepts & Progress to Date

4. Future Directions

Remote-RAIN Brain control of MDS (Mobile/Dexterous/Social) Robot

Developed by a collaboration of:

- 1. Cynthia Breazeal (MIT Media Lab)
- 2. Xitome (MIT spinoff)
- 3. Rod Grupen (U Mass Amherst)

Expressive face design to support the robot's social function (*Xitome*)

2 DoF hands with tactile sensing developed at MIT (based on SDM technique developed by Aaron Dollar and Rob Howe at Harvard)

uBot-5 chassis from U Mass—1/2 meter tall

- 11 DoF inverted pendulum mobility base
- Trunk rotation and two 4 DoF arms
- 11-channel embedded FPGA controller
- Force and position feedback & series-elastic actuators
- API in C++

NCS development & robotics

- optimization of RAIN mesocircuit network design and STDP
- addition of realistic dopamine-reward basal ganglion (subcortical SC) module for reinforcement learning & planning
- humanoid social interactive robotics
- mesocircuit application to other domains (eg, speech & threat recognition)

DURIP 2007: optimizing architecture for neural simulation

Additional CPUs:

- 1. Distributed, inexpensive cluster
- 2. New "less expensive" shared-memory architectures

Faster inter-CPU communication options:

- Infiniband (switched, theoretically up to 96 Gbit/s throughput) 1.
- 2. LightFleet's "Corowave" direct optical interconnect (32-cpu this summer)

Traditional switched Interconnect

Corowave optical interconnect

Collaboration with Mind Brain Institute, EPFL, Lausanne

• **Basic science**: ongoing biological extraction of neural parameters

- Computer science:
 - 1. Use of IBM BlueGene L: 8096-CPU cluster, 22 Trillion Flops
 - 2. Runs NCS and NEURON (and a hybrid)
 - 3. Plan to run remote-brain AIBO this summer
 - 4. & MDS robot by summer 2008

Q & A