
VIEW~~~~~~~~~~~~~~~ Communicated by Lawrence Jackel

Neural Networks and the Bias/Variance Dilemma

Stuart Geman
Division of Applied Mathematics,
Brown University, Providence, RI 02912 USA

Elie Bienenstock
Rene Doursat
ESPCI, 10 rue Vauquelin,
75005 Paris, France

Feedforward neural networks trained by error backpropagation are ex­
amples of nonparametric regression estimators. We present a tutorial
on nonparametric inference and its relation to neural networks, and
we use the statistical viewpoint to highlight strengths and weaknesses
of neural models. We illustrate the main points with some recognition
experiments involving artificial data as well as handwritten numer­
als. In way of conclusion, we suggest that current-generation feed­
forward neural networks are largely inadequate for difficult problems
in machine perception and machine learning, regardless of parallel­
versus-serial hardware or other implementation issues. Furthermore,
we suggest that the fundamental challenges in neural modeling are
about representation rather than learning per se. This last point is
supported by additional experiments with handwritten numerals.

1 Introduction ______________________ _

Much of the recent work on feedforward artificial neural networks brings
to mind research in nonparametric statistical inference. This is a branch of
statistics concerned with model-free estimation, or, from the biological
viewpoint, tabula rasa learning. A typical nonparametric inference prob­
lem is the learning (or "estimating," in statistical jargon) of arbitrary
decision boundaries for a classification task, based on a collection of la­
beled (pre-classified) training samples. The boundaries are arbitrary in
the sense that no particular structure, or class of boundaries, is assumed
a priori. In particular, there is no parametric model, as there would be with
a presumption of, say, linear or quadratic decision surfaces. A similar
point of view is implicit in many recent neural network formulations,
suggesting a close analogy to nonparametric inference.

Of course statisticians who work on nonparametric inference rarely
concern themselves with the plausibility of their inference algorithms

Neural Computation 4, 1-58 (1992) © 1992 Massachusetts Institute of Technology

2 S. Geman, E. Bienenstock, and R. Doursat

as brain models, much less with the prospects for implementation in
"neural-like" parallel hardware, but nevertheless certain generic issues
are unavoidable and therefore of common interest to both communities.
What sorts of tasks for instance can be learned, given unlimited time and
training data? Also, can we identify "speed limits," that is, bounds on
how fast, in terms of the number of training samples used, something
can be learned?

Nonparametric inference has matured in the past 10 years. There
have been new theoretical and practical developments, and there is now
a large literature from which some themes emerge that bear on neural
modeling. In Section 2 we will show that learning, as it is represented
in some current neural networks, can be formulated as a (nonlinear) re­
gression problem, thereby making the connection to the statistical frame­
work. Concerning nonparametric inference, we will draw some general
conclusions and briefly discuss some examples to illustrate the evident
utility of nonparametric methods in practical problems. But mainly we
will focus on the limitations of these methods, at least as they apply to
nontrivial problems in pattern recognition, speech recognition, and other
areas of machine perception. These limitations are well known, and well
understood in terms of what we will call the bias/variance dilemma.

The essence of the dilemma lies in the fact that estimation error can be
decomposed into two components, known as bias and variance; whereas
incorrect models lead to high bias, truly model-free inference suffers from
high variance. Thus, model-free (tabula rasa) approaches to complex infer­
ence tasks are slow to "converge," in the sense that large training samples
are required to achieve acceptable performance. This is the effect of high
variance, and is a consequence of the large number of parameters, indeed
infinite number in truly model-free inference, that need to be estimated.
Prohibitively large training sets are then required to reduce the variance
contribution to estimation error. Parallel architectures and fast hardware
do not help here: this "convergence problem" has to do with training set
size rather than implementation. The only way to control the variance in
complex inference problems is to use model-based estimation. However,
and this is the other face of the dilemma, model-based inference is bias­
prone: proper models are hard to identify for these more complex (and
interesting) inference problems, and any model-based scheme is likely to
be incorrect for the task at hand, that is, highly biased.

The issues of bias and variance will be laid out in Section 3, and the
"dilemma" will be illustrated by experiments with artificial data as well
as on a task of handwritten numeral recognition. Efforts by statisticians
to control the tradeoff between bias and variance will be reviewed in
Section 4. Also in Section 4, we will briefly discuss the technical issue of
consistency, which has to do with the asymptotic (infinite-training-sample)
correctness of an inference algorithm. This is of some recent interest in
the neural network literature.

In Section 5, we will discuss further the bias/variance dilemma, and

Neural Networks and the Bias/Variance Dilemma 3

relate it to the more familiar notions of interpolation and extrapolation.
We will then argue that the dilemma and the limitations it implies are
relevant to the performance of neural network models, especially as con­
cerns difficult machine learning tasks. Such tasks, due to the high di­
mension of the "input space," are problems of extrapolation rather than
interpolation, and nonparametric schemes yield essentially unpredictable
results when asked to extrapolate. We shall argue that consistency does
not mitigate the dilemma, as it concerns asymptotic as opposed to finite­
sample performance. These discussions will lead us to conclude, in Sec­
tion 6, that learning complex tasks is essentially impossible without the
a priori introduction of carefully designed biases into the machine's ar­
chitecture. Furthermore, we will argue that, despite a long-standing pre­
occupation with learning per se, the identification and exploitation of the
"right" biases are the more fundamental and difficult research issues in
neural modeling. We will suggest that some of these important biases
can be achieved through proper data representations, and we will illus­
trate this point by some further experiments with handwritten numeral
recognition.

2 Neural Models and Nonparametric Inference ________ _

2.1 Least-Squares Learning and Regression. A typical learning prob­
lem might involve a feature or input vector x, a response vector y, and the
goal of learning to predict y from x, where the pair (x, y) obeys some un­
known joint probability distribution, P. A training set (x11 y1), ••• , (xN, YN)
is a collection of observed (x, y) pairs containing the desired response y
for each input x. Usually these samples are independently drawn from
P, though many variations are possible. In a simple binary classification
problem, y is actually a scalar y E {0, 1 }, which may, for example, repre­
sent the parity of a binary input string x E {0, 1 }1, or the voiced/unvoiced
classification of a phoneme suitably coded by x as a second example. The
former is "degenerate" in the sense that y is uniquely determined by x,
whereas the classification of a phoneme might be ambiguous. For clearer
exposition, we will take y = y to be one-dimensional, although our re­
marks apply more generally.

The learning problem is to construct a function (or "machine") f(x)
based on the data (x1,y1), •.• , (xN,yN), so that f(x) approximates the de­
sired response y.

Typically, f is chosen to minimize some cost functional. For example,
in feedforward networks (Rumelhart et al. 1986a,b), one usually forms
the sum of observed squared errors,

N

L [y;- f(x;)]2 (2.1)
i=l

4 S. Geman, E. Bienenstock, and R. Doursat

and f is chosen to make this sum as small as possible. Of course f is
really parameterized, usually by idealized "synaptic weights," and the
minimization of equation 2.1 is not over all possible functions f, but
over the class generated by all allowed values of these parameters. Such
minimizations are much studied in statistics, since, as we shall later see,
they are one way to estimate a regression. The regression of y on x is
E[y I x], that is, that (deterministic) function of x that gives the mean value
of y conditioned on x. In the degenerate case, that is, if the probability
distribution P allows only one value of y for each x (as in the parity
problem for instance), E[y I x] is not really an average: it is just the
allowed value. Yet the situation is often ambiguous, as in the phoneme
classification problem.

Consider the classification example with just two classes: "Class A:'
and its complement. Let y be 1 if a sample xis in Class A, and 0 otherwise.
The regression is then simply

E [y I x] = P (y = 1 I x) = P (Class A I x)

the probability of being in Class A as a function of the feature vector x.
It may or may not be the case that x unambiguously determines class
membership, y. If it does, then for each x, E[y I x] is either 0 or 1:
the regression is a binary-valued function. Binary classification will be
illustrated numerically in Section 3, in a degenerate as well as in an
ambiguous case.

More generally, we are out to "fit the data," or, more accurately, fit
the ensemble from which the data were drawn. The regression is an
excellent solution, by the following reasoning. For any function f(x), and
any fixed x,1

E [(y ~ f(x)) 2
1 x] E [((y- E[y I x]) + (Elv I x]- f(x))) 2

1 x] (2.2)

E [(y ~ E[y I x])2 I x] + (E[y I x] - f(x)) 2

+ 2E [(y- E[y I x]) I x] · (E[y I x]- f(x))

E [(y- E[y I x]) 2 I x] + (E[y I x] - f(x)) 2

+ 2 (E[y I x] - E[y I x]) · (E[y I x] - f(x))

E [(y- E[y I x]) 2 I x] + (E[y I x] - f(x)) 2

2 E [(y- E[y I x]/ I x]
In other words, among all functions of x, the regression is the best pre­
dictor of y given x, in the mean-squared-error sense.

Similar remarks apply to likelihood-based (instead of least-squares­
based) approaches, such as the Boltzmann Machine (Ackley et al. 1985;
Hinton and Sejnowski 1986). Instead of decreasing squared error, the

1For any function rf>(x,y), and any fixed x, E[¢(x,y) I x] is the conditional expectation
of ¢(x,y) given x, that is, the average of rf>(x,y) taken with respect to the conditional
probability distribution P(y I x).

Neural Networks and the Bias/Variance Dilemma 5

Boltzmann Machine implements a Monte Carlo computational algorithm
for increasing likelihood. This leads to the maximum-likelihood estima­
tor of a probability distribution, at least if we disregard local maxima
and other confounding computational issues. The maximum-likelihood
estimator of a distribution is certainly well studied in statistics, primarily
because of its many optimality properties. Of course, there are many
other examples of neural networks that realize well-defined statistical
estimators (see Section 5.1).

The most extensively studied neural network in recent years is prob­
ably the backpropagation network, that is, a multilayer feedforward net­
work with the associated error-backpropagation algorithm for minimiz­
ing the observed sum of squared errors (Rumelhart et al. 1986a,b). With
this in mind, we will focus our discussion by addressing least-squares
estimators almost exclusively. But the issues that we will raise are ubiq­
uitous in the theory of estimation, and our main conclusions apply to a
broader class of neural networks.

2.2 Nonparametric Estimation and Consistency. If the response vari­
able is binary, y E {0, 1}, and if y = 1 indicates membership in "Class
A," then the regression is just P(Class A I x), as we have already ob­
served. A decision rule, such as "choose Class A if P(Class A I x) > 1/2,"
then generates a partition of the range of x (call this range H) into
HA = {x : P(Class A I x) > 1/2} and its complement H- HA = HA..
Thus, x E HA is classified as "A," x E Hp. is classified as "not A." It may
be the case that HA and HA. are separated by a regular surface (or "deci­
sion boundary"), planar or quadratic for example, or the separation may
be highly irregular.

Given a sequence of observations (xbyi), (xz,yz), ... we can proceed
to estimate P(Class A I x) (= E[y I xj), and hence the decision bound­
ary, from two rather different philosophies. On the one hand we can
assume a priori that HA is known up to a finite, and preferably small,
number of parameters, as would be the case if HA and Hp. were linearly
or quadratically separated, or, on the other hand, we can forgo such as­
sumptions and "let the data speak for itself." The chief advantage of the
former, parametric, approach is of course efficiency: if the separation re­
ally is planar or quadratic, then many fewer data are needed for accurate
estimation than if we were to proceed without parametric specifications.
But if the true separation departs substantially from the assumed form,
then the parametric approach is destined to converge to an incorrect,
and hence suboptimal solution, typically (but depending on details of
the estimation algorithm) to a "best" approximation within the allowed
class of decision boundaries. The latter, nonparametric, approach makes
no such a priori commitments.

The asymptotic (large sample) convergence of an estimator to the ob­
ject of estimation is called consistency. Most nonparametric regression

6 S. Geman, E. Bienenstock, and R. Doursat

algorithms are consistent, for essentially any regression function E[y I x].2

This is indeed a reassuring property, but it comes with a high price: de­
pending on the particular algorithm and the particular regression, non­
parametric methods can be extremely slow to converge. That is, they may
require very large numbers of examples to make relatively crude approx­
imations of the target regression function. Indeed, with small samples
the estimator may be too dependent on the particular samples observed,
that is, on the particular realizations of (x, y) (we say that the variance of
the estimator is high). Thus, for a fixed and finite training set, a paramet­
ric estimator may actually outperform a nonparametric estimator, even
when the true regression is outside of the parameterized class. These
issues of bias and variance will be further discussed in Section 3.

For now, the important point is that there exist many consistent non­
parametric estimators, for regressions as well as probability distributions.
This means that, given enough training samples, optimal decision rules
can be arbitrarily well approximated. These estimators are extensively
studied in the modern statistics literature. Parzen windows and nearest­
neighbor rules (see, e.g., Duda and Hart 1973; Hardie 1990), regular­
ization methods (see, e.g., Wahba 1982) and the closely related method
of sieves (Grenander 1981; Geman and Hwang 1982), projection pur­
suit (Friedman and Stuetzle 1981; Huber 1985), recursive partitioning
methods such as "CART," which stands for "Classification and Regres­
sion Trees" (Breiman et al. 1984), Alternating Conditional Expectations, or
"ACE" (Breiman and Friedman 1985), and Multivariate Adaptive Regres­
sion Splines, or "MARS" (Friedman 1991), as well as feedforward neural
networks (Rumelhart et al. 1986a,b) and Boltzmann Machines (Ackley et
al. 1985; Hinton and Sejnowski 1986), are a few examples of techniques
that can be used to construct consistent nonparametric estimators.

2.3 Some Applications of Nonparametric Inference. In this paper,
we shall be mostly concerned with limitations of nonparametric methods,
and with the relevance of these limitations to neural network models.
But there is also much practical promise in these methods, and there
have been some important successes.

An interesting and difficult problem in industrial "process specifica­
tion" was recently solved at the General Motors Research Labs (Lorenzen
1988) with the help of the already mentioned CART method (Breiman et
a/. 1984). The essence of CART is the following. Suppose that there are
m classes, y E {L 2, ... , m }, and an input, or feature, vector x. Based on
a training sample (x1.y1), ... ,(xN,yN) the CART algorithm constructs a
partitioning of the (usually high-dimensional) domain of x into rectan-

20ne has to specify the mode of convergence: the estimator is itself a function, and
furthermore depends on the realization of a random training set (see Section 4.2). One
also has to require certain technical conditions, such as measurability of the regression
function.

Neural Networks and the Bias/Variance Dilemma 7

gular cells, and estimates the class-probabilities { P(y = k) : k = 1, ... , m}
within each cell. Criteria are defined that promote cells in which the es­
timated class probabilities are well-peaked around a single class, and at
the same time discourage partitions into large numbers of cells, relative
to N. CART provides a family of recursive partitioning algorithms for
approximately optimizing a combination of these competing criteria.

The GM problem solved by CART concerned the casting of certain
engine-block components. A new technology known as lost-foam casting
promises to alleviate the high scrap rate associated with conventional
casting methods. A styrofoam "model" of the desired part is made,
and then surrounded by packed sand. Molten metal is poured onto the
styrofoam, which vaporizes and escapes through the sand. The metal
then solidifies into a replica of the styrofoam model.

Many "process variables" enter into the procedure, involving the set­
tings of various temperatures, pressures, and other parameters, as well
as the detailed composition of the various materials, such as sand. Engi­
neers identified 80 such variables that were expected to be of particular
importance, and data were collected to study the relationship between
these variables and the likelihood of success of the lost-foam casting
procedure. (These variables are proprietary.) Straightforward data anal­
ysis on a training set of 470 examples revealed no good "first-order"
predictors of success of casts (a binary variable) among the 80 process
variables. Figure 1 (from Lorenzen 1988) shows a histogram comparison
for that variable that was judged to have the most visually disparate his­
tograms among the 80 variables: the left histogram is from a population of
scrapped casts, and the right is from a population of accepted casts. Evi­
dently, this variable has no important prediction power in isolation from
other variables. Other data analyses indicated similarly that no obvious
low-order multiple relations could reliably predict success versus failure.
Nevertheless, the CART procedure identified achievable regions in the
space of process variables that reduced the scrap rate in this production
facility by over 75%.

As might be expected, this success was achieved by a useful mix of
the nonparametric algorithm, which in principal is fully automatic, and
the statistician's need to bring to bear the realities and limitations of
the production process. In this regard, several important modifications
were made to the standard CART algorithm. Nevertheless, the result is
a striking affirmation of the potential utility of nonparametric methods.

There have been many success stories for nonparametric methods.
An intriguing application of CART to medical diagnosis is reported in
Goldman et al. (1982), and further examples with CART can be found in
Breiman et al. (1984). The recent statistics and neural network literatures
contain examples of the application of other nonparametric methods as
well. A much-advertised neural network example is the evaluation of
loan applications (cf. Collins et al. 1989). The basic problem is to clas­
sify a loan candidate as acceptable or not acceptable based on 20 or so

8

' ' ' '

S. Geman, E. Bienenstock, and R. Doursat

); ' ·- -· '...
~--~=--:=.-=:--=------------------------"·---===--::: .. ::: .. ::: _______ ::: .. =--=--::: ___ _

Figure 1: Left histogram: distribution of process variable for unsuccessful cast­
ings. Right histogram: distribution of same process variable for successful
castings. Among all 80 process variables, this variable was judged to have the
most dissimilar success I failure histograms. (Lorenzen 1988)

variables summarizing an applicant's financial status. These include, for
example, measures of income and income stability, debt and other fi­
nancial obligations, credit history, and possibly appraised values in the
case of mortgages and other secured loans. A conventional parametric
statistical approach is the so-called logit model (see, for example, Cox
1970), which posits a linear relationship between the logistic transforma­
tion of the desired variable (here the probability of a successful return
to the lender) and the relevant independent variables (defining financial
status).3 Of course, a linear model may not be suitable, in which case
the logit estimator would perform poorly; it would be too biased. On
the other hand, very large training sets are available, and it makes good
sense to try less parametric methods, such as the backpropagation algo­
rithm, the nearest-neighbor algorithm, or the "Multiple-Neural-Network
Learning System" advocated for this problem by Collins et al. (1989).

3The logistic transformation of a probability pis log,[p/(1- p)].

Neural Networks and the Bias/Variance Dilemma 9

These examples will be further discussed in Section 5, where we shall
draw a sharp contrast between these relatively easy tasks and problems
arising in perception and in other areas of machine intelligence.

3 Bias and Variance __________________ _

3.1 The Bias/Variance Decomposition of Mean-Squared Error. The
regression problem is to construct a function f(x) based on a "training set"
(x1oy1), ... , (xN,yN), for the purpose of approximating y at future obser­
vations of x. This is sometimes called "generalization," a term borrowed
from psychology. To be explicit about the dependence of f on the data
D = {(x1,y1), •.• , (xN,yN)}, we will write f(x;D) instead of simply f(x).
Given D, and given a particular x, a natural measure of the effectiveness
of f as a predictor of y is

E [(y- f(x;D)) 2
1 x, D]

the mean-squared error (where E[·] means expectation with respect to
the probability distribution P, see Section 2). In our new notation em­
phasizing the dependency off on D (which is fixed for the moment),
equation 2.2 reads

E[(y-f(x;D))2 Ix,D] = E[(y-E[ylxJ/Ix,D]

+ (f(x; D) - E[y I x]/

E[(y-E[y I x])2 I x, D] does not depend on the data, D, or on the estimator,
f; it is simply the variance of y given x. Hence the squared distance to
the regression function,

(f(x; D) - E[y I x]) 2

measures, in a natural way, the effectiveness off as a predictor of y. The
mean-squared error off as an estimator of the regression E[y I x] is

Ev [(f(x; D) - E[y I x]) 2
) (3.1)

where Ev represents expectation with respect to the training set, D, that
is, the average over the ensemble of possible D (for fixed sample size N).

It may be that for a particular training set, D, f(x; D) is an excellent
approximation of E[y I x], hence a near-optimal predictor of y. At the
same time, however, it may also be the case that f(x; D) is quite different
for other realizations of D, and in general varies substantially with D, or
it may be that the average (over all possible D) of f(x; D) is rather far from
the regression E[y I x]. These circumstances will contribute large values
in 3.1, making f(x; D) an unreliable predictor of y. A useful way to assess

10 S. Geman, E. Bienenstock, and R. Doursat

these sources of estimation error is via the bias/variance decomposition,
which we derive in a way similar to 2.2: for any x,

Ev [(f(x; V) - E[y I x]) 2
)

= Ev [((f(x;V)- Ev Lf(x;V)]) + (Ev Lf(x;V)]- E[y I x])) 2
)

= Ev ((f(x; V) - Ev Lf(x; V)]) 2
) + Ev ((Ev Lf(x; V)] - E[y I xJ/)

+ 2Ev [(f(x;V)- Ev Lf(x;V)]) (Ev Lf(x;V)]- E[y I x])]

= Ev ((f(x; V)- Ev Lf(x; V)]) 2
) + (Ev Lf(x; V)] - E[y I x]) 2

+ 2Ev Lf(x;V)- Ev Lf(x;V)]]· (Ev Lf(x;V)]- E[y I x])

= (Ev Lf(x;V)]- E[y I x]) 2 "bias"

+ Ev [(f(x; V) - Ev Lf(x; V)]) 2
) "variance"

If, on the average, f(x; V) is different from E[y I x], then f(x; V) is said to
be biased as an estimator of E[y I x]. In general, this depends on P; the
same f may be biased in some cases and unbiased in others.

As said above, an unbiased estimator may still have a large mean­
squared error if the variance is large: even with Evlf(x;V)] = E[y I x],
f(x; V) may be highly sensitive to the data, and, typically, far from the
regression E[y I x]. Thus either bias or variance can contribute to poor
performance.

There is often a tradeoff between the bias and variance contributions
to the estimation error, which makes for a kind of "uncertainty principle"
(Grenander 1951). Typically, variance is reduced through "smoothing,"
via a combining, for example, of the influences of samples that are nearby
in the input (x) space. This, however, will introduce bias, as details of
the regression function will be lost; for example, sharp peaks and valleys
will be blurred.

3.2 Examples. The issue of balancing bias and variance is much stud­
ied in estimation theory. The tradeoff is already well illustrated in the
one-dimensional regression problem: x = x E [0, 1]. In an elementary
version of this problem, y is related to x by

y=g(x)+TJ (3.2)

where g is an unknown function, and TJ is. zero-mean "noise" with distri­
bution independent of x. The regression is then g(x), and this is the best
(mean-squared-error) predictor of y. To make our points more clearly,
we will suppose, for this example, that only y is random - x can be
chosen as we please. If we are to collect N observations, then a natural
"design" for the inputs is xi = ifN, 1 s i s N, and the data are then
the corresponding N values of y, V = {yb ... , YN }. An example (from
Wahba and Wold 1975), with N = 100, g(x) = 4.26(e-x- 4e-2x + 3r3x),
and TJ gaussian with standard deviation 0.2, is shown in Figure 2. The
squares are the data points, and the broken curve, in each panel, is the

Neural Networks and the Bias/Variance Dilemma 11

0 0 " ••• 0 °~" ~]
o ~~~~~~~-~~ "o':.~~;~--_ J

9' ~ 1:1 Cl OJ .J ~I
' !!l 0 t'l 0 ;;: ,:·.o 0 I

~~~~J 
a b 

c 

Figure 2: One hundred observations (squares) generated according to equation 
4, with g(x) = 4.26(e-x - 4e-zx + 3e-3x). The noise is zero-mean gaussian with 
standard error 0.2. In each panel, the broken curve is g and the solid curve is a 
spline fit. (a) Smoothing parameter chosen to control variance. (b) Smoothing 
parameter chosen to control bias. (c) A compromising value of the smoothing 
parameter, chosen automatically by cross-validation. (From Wahba and Wold 
1975) 

regression, g(x). (The solid curves are estimates of the regression, as will 
be explained shortly.) 

The object is to make a guess at g(x), using the noisy observations, 
y; = g(x;) + 7];, 1 :=; i ::; N. At one extreme, f(x; TJ) could be defined as 
the linear (or some other) interpolant of the data. This estimator is truly 
unbiased at x =X;, 1 :=; i :=; N, since 

Ev [f(x;; TJ)) = E [g(x;) + rJ;] = g(x;) = E [y I x;] 

Furthermore, if g is continuous there is also very little bias in the vicinity 
of the observation points, x;, 1 ::; i :=; N. But if the variance of 7J is large, 
then there will be a large variance component to the mean-squared error 
(3.1), since 



12 S. Geman, E. Bienenstock, and R. Doursat 

which, since TJ; has zero mean, is the variance of TJ;. This estimator is 
indeed very sensitive to the data. 

At the other extreme, we may take f(x; D) = h(x) for some well­
chosen function h(x), independent of D. This certainly solves the variance 
problem! Needless to say, there is likely to be a substantial bias, for this 
estimator does not pay any attention to the data. 

A better choice would be an intermediate one, balancing some reason­
able prior expectation, such as smoothness, with faithfulness to the ob­
served data. One example is a feedforward neural network trained by er­
ror backpropagation. The output of such a network is f(x; w) = f[x; w(D)], 
where w(D) is a collection of weights determined by (approximately) 
minimizing the sum of squared errors: 

N 

L [y;- f(x;;w)f (3.3) 
i=l 

How big a network should we employ? A small network, with say 
one hidden unit, is likely to be biased, since the repertoire of available 
functions spanned by f(x;w) over allowable weights will in this case be 
quite limited. If the true regression is poorly approximated within this 
class, there will necessarily be a substantial bias. On the other hand, if 
we overparameterize, via a large number of hidden units and associated 
weights, then the bias will be reduced (indeed, with enough weights and 
hidden units, the network will interpolate the data), but there is then 
the danger of a significant variance contribution to the mean-squared 
error. (This may actually be mitigated by incomplete convergence of the 
minimization algorithm, as we shall see in Section 3.5.5.) 

Many other solutions have been invented, for this simple regression 
problem as well as its extensions to multivariate settings (y --+ y E 
Rd, x --+ x E R1, for some d > 1 and l > 1). Often splines are used, 
for example. These arise by first restricting f via a "smoothing criterion" 
such as 

I 

dm 1

2 

j dxmf(x) dx ::; ). (3.4) 

for some fixed integer m ?:': 1 and fixed >.. (Partial and mixed partial 
derivatives enter when x--+ x E R1; see, for example, Wahba 1979.) One 
then solves for the minimum of 

N 

L [y;- f(x;)f 
i=l 

among all f satisfying equation 3.4. This minimization turns out to be 
tractable and yields f(x) = f(x; D), a concatenation of polynomials of 
degree 2m-1 on the intervals (x;, x;+1); the derivatives of the polynomials, 
up to order 2m-2, match at the "knots" { x;}~1 . With m = 1, for example, 
the solution is continuous and piecewise linear, with discontinuities in 



Neural Networks and the Bias/Variance Dilemma 13 

the derivative at the knots. When m = 2 the polynomials are cubic, the 
first two derivatives are continuous at the knots, and the curve appears 
globally "smooth." Poggio and Girosi (1990) have shown how splines 
and related estimators can be computed with multilayer networks. 

The "regularization" or "smoothing" parameter ,\ plays a role simi­
lar to the number of weights in a feedforward neural network. Small 
,\ produce small-variance high-bias estimators; the data are essentially 
ignored in favor of the constraint ("oversmoothing"). Large values of ,\ 
produce interpolating splines: f(x;; D) = y;, 1 ::; i::; N, which, as we have 
seen, may be subject to high variance. Examples of both oversmoothing 
and undersmoothing are shown in Figure 2a and b, respectively. The 
solid lines are cubic-spline (m = 2) estimators of the regression. There 
are many recipes for choosing ,\, and other smoothing parameters, from 
the data, a procedure known as "automatic smoothing" (see Section 4.1). 
A popular example is called cross-validation (again, see Section 4.1), a 
version of which was used in Figure 2c. 

There are of course many other approaches to the regression problem. 
Two in particular are the nearest-neighbor estimators and the kernel esti­
mators, which we have used in some experiments both on artificial data 
and on handwritten numeral recognition. The results of these experi­
ments will be reviewed in Section 3.5. 

3.3 Nonparametric Estimation. Nonparametric regression estimators 
are characterized by their being consistent for all regression problems. 
Consistency requires a somewhat arbitrary specification: in what sense 
does the estimator f(x; D) converge to the regression E[y I x]? Let us be 
explicit about the dependence off on sample size, N, by writing D = DN 
and then f(x;DN) for the estimator, given theN observations DN. One 
version of consistency is "pointwise mean-squared error": 

for each x. A more global specification is in terms of integrated mean­
squared error: 

(3.5) 

There are many variations, involving, for example, almost sure conver­
gence, instead of the mean convergence that is defined by the expectation 
operator Ev. Regardless of the details, any reasonable specification will 
require that both bias and variance go to zero as the size of the train­
ing sample increases. In particular, the class of possible functions f(x;DN) 
must approach E[y I x] in some suitable sense,4 or there will necessarily 

4The appropriate metric is the one used to define consistency. L2, for example, with 
3.5. 



14 S. Geman, E. Bienenstock, and R. Doursat 

be some residual bias. This class of functions will therefore, in general, 
have to grow with N. For feedforward neural networks, the possible 
functions are those spanned by all allowed weight values. For any fixed 
architecture there will be regressions outside of the class, and hence the 
network cannot realize a consistent nonparametric algorithm. By the 
same token, the spline estimator is not consistent (in any of the usual 
senses) whenever the regression satisfies 

I 

dm 1

2 

/ dxmE[y I x] dx >A 

since the estimator itself is constrained to violate this condition (see equa­
tion 3.4). 

It is by now well-known (see, e.g., White 1990) that a feedforward neu­
ral network (with some mild conditions on E[y I x] and network structure, 
and some optimistic assumptions about minimizing 3.3) can be made 
consistent by suitably letting the network size grow with the size of the 
training set, in other words by gradually diminishing bias. Analogously, 
splines are made consistent by taking A = AN j oo sufficiently slowly. This 
is indeed the general recipe for obtaining consistency in nonparametric 
estimation: slowly remove bias. This procedure is somewhat delicate, 
since the variance must also go to zero, which dictates a gradual reduc­
tion of bias (see discussion below, Section 5.1). The main mathematical 
issue concerns this control of the variance, and it is here that tools such 
as the Vapnik-Cervonenkis dimension come into play. We will be more 
specific in our brief introduction to the mathematics of consistency below 
(Section 4.2). 

As the examples illustrate, the distinction between parametric and 
nonparametric methods is somewhat artificial, especially with regards to 
fixed and finite training sets. Indeed, most nonparametric estimators, 
such as feedforward neural networks, are in fact a sequence of parametric 
estimators indexed by sample size. 

3.4 The Dilemma. Much of the excitement about artificial neural net­
works revolves around the promise to avoid the tedious, difficult, and 
generally expensive process of articulating heuristics and rules for ma­
chines that are to perform nontrivial perceptual and cognitive tasks, such 
as for vision systems and expert systems. We would naturally prefer to 
"teach" our machines by example, and would hope that a good learning 
algorithm would "discover" the various heuristics and rules that apply 
to the task at hand. It would appear, then, that consistency is relevant: a 
consistent learning algorithm will, in fact, approach optimal performance, 
whatever the task. Such a system might be said to be unbiased, as it 
is not a priori dedicated to a particular solution or class of solutions. 
But the price to pay for achieving low bias is high variance. A ma­
chine sufficiently versatile to reasonably approximate a broad range of 



Neural Networks and the Bias/Variance Dilemma 15 

input/ output mappings is necessarily sensitive to the idiosyncrasies of 
the particular data used for its training, and therefore requires a very 
large training set. Simply put, dedicated machines are harder to build 
but easier to train. 

Of course there is a quantitative tradeoff, and one can argue that for 
many problems acceptable performance is achievable from a more or less 
tabula rasa architecture, and without unrealistic numbers of training ex­
amples. Or that specific problems may suggest easy and natural specific 
structures, which introduce the "right" biases for the problem at hand, 
and thereby mitigate the issue of sample size. We will discuss these 
matters further in Section 5. 

3.5 Experiments in Nonparametric Estimation. In this section, we 
shall report on two kinds of experiments, both concerning classification, 
but some using artificial data and others using handwritten numerals. 
The experiments with artificial data are illustrative since they involve 
only two dimensions, making it possible to display estimated regres­
sions as well as bias and variance contributions to mean-squared error. 
Experiments were performed with nearest-neighbor and Parzen-window 
estimators, and with feedforward neural networks trained via error back­
propagation. Results are reported following brief discussions of each of 
these estimation methods. 

3.5.1 Nearest-Neighbor Regression. This simple and time-honored ap­
proach provides a good performance benchmark. The "memory" of the 
machine is exactly the training set 'D = {(x1,y1), ..• ,(xN,yN)}. For any 
input vector x, a response vector y is derived from the training set by av­
eraging the responses to those inputs from the training set which happen 
to lie close to x. Actually, there is here a collection of algorithms indexed 
by an integer, "k," which determines the number of neighbors of x that 
enter into the average. Thus, the k-nearest-neighbor estimator is just 

1 
f(x;'D) = k L y; 

iENk(x) 
(3.6) 

where Nk(x) is the collection of indices of the k nearest neighbors to 
x among the input vectors in the training set {x;}~1 . (There is also a 
k-nearest-neighbor procedure for classification: If y = y E {1, 2, ... , C}, 
representing C classes, then we assign to x the classy E {1, 2, ... , C} most 
frequent among the set {y;}iENk(x), where y; is the class of the training 
input x;.) 

If k is "large" (e.g., k is almost N) then the response f(x; 'D) is a rela­
tively smooth function of x, but has little to do with the actual positions 
of the x;'s in the training set. In fact, when k = N, f(x; 'D) is indepen­
dent of x, and of {x;}~1 ; the output is just the average observed output 
1/N2:~1 y;. When N is large, 1/N2:~1 y; is likely to be nearly unchanged 



16 S. Geman, E. Bienenstock, and R. Doursat 

from one training set to another. Evidently, the variance contribution to 
mean-squared error is then small. On the other hand, the response to 
a particular x is systematically biased toward the population response, 
regardless of any evidence for local variation in the neighborhood of x. 
For most problems, this is of course a bad estimation policy. 

The other extreme is the first-nearest-neighbor estimator; we can ex­
pect less bias. Indeed, under reasonable conditions, the bias of the first­
nearest-neighbor estimator goes to zero as N goes to infinity. On the other 
hand, the response at each x is rather sensitive to the idiosyncrasies of 
the particular training examples in D. Thus the variance contribution to 
mean-squared error is typically large. 

From these considerations it is perhaps not surprising that the best 
solution in many cases is a compromise between the two extremes k = 1 
and k = N. By choosing an intermediate k, thereby implementing a 
reasonable amount of smoothing, one may hope to achieve a significant 
reduction of the variance, without introducing too much bias. If we now 
consider the case N-> oo, the k-nearest-neighbor estimator can be made 
consistent by choosing k = kN T oo sufficiently slowly. The idea is that 
the variance is controlled (forced to zero) by kN T oo, whereas the bias 
is controlled by ensuring that the kNth nearest neighbor of x is actually 
getting closer to x as N -+ oo. 

3.5.2 Parzen- Window Regression. The "memory" of the machine is 
again the entire training set D, but estimation is now done by combin­
ing "kernels," or "Parzen windows," placed around each observed input 
point x;, 1 :::; i :::; N. The form of the kernel is somewhat arbitrary, but it 
is usually chosen to be a nonnegative function of x that is maximum at 
x = 0 and decreasing away from x = 0. A common choice is 

W(x) = ( vb) d exp { -~jxj2 } 
the gaussian kernel, for x E Rd. The scale of the kernel is adjusted by a 
"bandwidth" IJ: W(x) ___, (1/a)dW(x/cr). The effect is to govern the extent 
to which the window is concentrated at x = 0 (small cr), or is spread out 
over a significant region around x = 0 (large o"). Having fixed a kernel 
W(·), and a bandwidth IJ, the Parzen regression estimator at xis formed 
from a weighted average of the observed responses { y; }~1 : 

f(x;D) = L~ y;(l/o/W [(x- x;/cr)] = 2:~1 y;W [x- x;/a)] (3_7) 
2:;=1(1/a)dW [(x- x;/cr)] Li=l W [(x- x;/cr)] 

Clearly, observations with inputs closer to x are weighted more heavily. 
There is a close connection between nearest-neighbor and Parzen­

window estimation. In fact, when the bandwidth cr is small, only close 
neighbors of x contribute to the response at this point, and the procedure 
is akin to k-nearest-neighbor methods with small k. On the other hand, 



Neural Networks and the Bias/Variance Dilemma 17 

when a is large, many neighbors contribute significantly to the response, 
a situation analogous to the use of large values of k in the k-nearest­
neighbor method. In this way, a governs bias and variance much as 
k does for the nearest-neighbor procedure: small bandwidths generally 
offer high-variance/low-bias estimation, whereas large bandwidths incur 
relatively high bias but low variance. 

There is also a Parzen-window procedure for classification: we assign 
to x the classy= y E {1, 2, ... , C} which maximizes 

where Ny is the number of times that the classification y is seen in the 
training set, Ny = #{i: y; = y}. If W(x) is normalized, so as to integrate to 
one, then /y(x; D) estimates the density of inputs associated with the class 
y (known as the "class-conditional density"). Choosing the class with 
maximum density at x results in minimizing the probability of error, at 
least when the classes are a priori equally likely. (If the a priori probabili­
ties of the C classes, p(y) y E {L 2, ... , C}, are unequal, but known, then 
the minimum probability of error is obtained by choosing y to maximize 
p(y) · [y(x;D).) 

3.5.3 Feedforward Network Trained by Error Backpropagation. Most read­
ers are already familiar with this estimation technique. We used two­
layer networks, that is, networks with one hidden layer, with full con­
nections between layers. The number of inputs and outputs depended 
on the experiment and on a coding convention; it will be laid out with 
the results of the different experiments in the ensuing paragraphs. In the 
usual manner, all hidden and output units receive one special input that 
is nonzero and constant, allowing each unit to learn a "threshold." 

Each unit outputs a value determined by the sigmoid function 

e'-e-r 
S(r)-

er + e-r 
(3.8) 

given the input 

r= L:w;(; 

Here, { (;} represents inputs from the previous layer (together with the 
above-mentioned constant input) and { W;} represents the weights ("syn­
aptic strengths") for this unit. Learning is by discrete gradient descent, 
using the full training set at each step. Thus, if w(t) is the ensemble of 
all weights after t iterations, then 

w(t + 1) = w(t)- tVwE[w(t)] (3.9) 



18 S. Geman, E. Bienenstock, and R. Doursat 

where Eisa control parameter, 'Vw is the gradient operator, and t'(w) is 
the mean-squared error over the training samples. Specifically, if f(x; w) 
denotes the (possibly vector-valued) output of the feedforward network 
given the weights w, then 

1 N 
E(w) = N ~Jy;- f(x;;wW 

i=l 

where, as usual, the training set is V = { ( x1 , y1 ), ... , ( XN, YN)}. The gra­
dient, 'V wE(w), is calculated by error backpropagation (see Rumelhart et 
al. 1986a,b). The particular choices of E and the initial state w(O), as well 
as the number of iterations of 3.9, will be specified during the discussion 
of the experimental results. 

It is certainly reasonable to anticipate that the number of hidden units 
would be an important variable in controlling the bias and variance con­
tributions to mean-squared error. The addition of hidden units con­
tributes complexity and presumably versatility, and the expected price 
is higher variance. This tradeoff is, in fact, observed in experiments 
reported by several authors (see, for example, Chauvin 1990; Morgan 
and Bourlard 1990), as well as in our experiments with artificial data 
(Section 3.5.4). However, as we shall see in Section 3.5.5, a somewhat 
more complex picture emerges from our experiments with handwritten 
numerals (see also Martin and Pittman 1991). 

3.5.4 Experiments with Artificial Data. The desired output indicates one 
of two classes, represented by the values ±.9. [This coding was used in 
all three methods, to accommodate the feedforward neural network, in 
which the sigmoid output function equation 3.8 has asymptotes at ± 1. 
By coding classes with values ±0.9, the training data could be fit by 
the network without resorting to infinite weights.] In some of the ex­
periments, the classification is unambiguously determined by the input, 
whereas in others there is some "overlap" between the two classes. In 
either case, the input has two components, x = (x1 , x2 ), and is drawn 
from the rectangle [-6,6] x [-1.5, 1.5]. 

In the unambiguous case, the classification is determined by the curve 
x2 = sin(ixJ), which divides the rectangle into "top" [x2 :2: sin(('rr/2)x1), 

y = 0.9] and ''bottom" [x2 < sin((n'/2)xJ),y = -0.9] pieces. The regression 
is then the binary-valued function E[y I x] = .9 above the sinusoid and 
-0.9 below (see Fig. 3a). The training set, V = {(x1,y1), ... , (xN,yN)}, 
is constructed to have 50 examples from each class. For y = 0.9, the 
50 inputs are chosen from the uniform distribution on the region above 
the sinusoid; the y = -0.9 inputs are chosen uniformly from the region 
below the sinusoid. 

Classification can be made ambiguous within the same basic setup, 
by randomly perturbing the input vector before determining its class. 
To describe precisely the random mechanism, let us denote by B1 (x) the 



Neural Networks and the Bias/Variance Dilemma 19 

a 

b 

Figure 3: Two regression surfaces for experiments with artificial data. (a) Output 
is deterministic function of input, +0.9 above sinusoid, and -0.9 below sinusoid. 
(b) Output is perturbed randomly. Mean value of zero is coded with white, 
mean value of +0.9 is coded with gray, and mean value of -0.9 is coded with 
black. 

disk of unit radius centered at x. For a given x, the classification y is 
chosen randomly as follows: x is "perturbed" by choosing a point z 
from the uniform distribution on B1 (x), and y is then assigned value 
0.9 if z2 2:: sin((7r/2)z1), and -0.9 otherwise. The resulting regression, 
E[y I x]], is depicted in Figure 3b, where white codes the value zero, gray 
codes the value +0.9, and black codes the value -0.9. Other values are coded 
by interpolation. (This color code has some ambiguity to it: a given gray 
level does not uniquely determine a value between -0.9 and 0.9. This 
code was chosen to emphasize the transition region, where y :::::: 0.) The 
effect of the classification ambiguity is, of course, most pronounced near 
the "boundary" x2 = sin((7r/2)xJ). 

If the goal is to minimize mean-squared error, then the best response 
to a given x is E[y I x]. On the other hand, the minimum error classifier 
will assign class "+0.9" or "-0.9" to a given x, depending on whether 
E[y I x] 2:: 0 or not: this is the decision function that minimizes the 
probability of misclassifying x. The decision boundary of the optimal 
classifier ({x : E[y I x] = 0}) is very nearly the original sinusoid x2 = 
sin((1r /2)xi); it is depicted by the whitest values in Figure 3b. 

The training set for the ambiguous classification task was also con­
structed to have 50 examples from each class. This was done by repeated 
Monte Carlo choice of pairs (x,y), with x chosen uniformly from the rect­
angle [-6,6] x [-1.5, 1.5] andy chosen by the above-described random 



20 S. Geman, E. Bienenstock, and R. Doursat 

mechanism. The first 50 examples for which y = 0.9 and the first 50 
examples for which y = -0.9 constituted the training set. 

In each experiment, bias, variance, and mean-squared error were eval­
uated by a simple Monte Carlo procedure, which we now describe. De­
note by f(x; 'D) the regression estimator for any given training set 'D. 
Recall that the (squared) bias, at x, is just 

and that the variance is 

Ev [ (f(x; 'D) - Evlf(x; 'D)]) 2
] 

These were assessed by choosing, independently, 100 training sets 'Dl, 
'D2, ... , 'D100, and by forming the corresponding estimators f(x;'D1), •.• , 

f(x;'D100
). Denote by f(x) the average response at x: f(x) = (1/100) I:~~1 

f(x; V). Bias and variance were estimated via the formulas: 

Bias(x) ~ V(x)- E[y I xJ/ 
1 100 2 

~ 100 L V(x; TY) -f(x)] 
k=1 

Variance(x) 

(Recall that E[y I x] is known exactly - see Fig. 3.) The sum, Bias(x) + 
Variance(x) is the (estimated) mean-squared error, and is equal to 

1 100 2 

100 L (/(x;v'<)- E[y I xJ) 
k=1 

In several examples we display Bias(x) and Variance(x) via gray-level 
pictures on the domain [ -6, 6] x [ -1.5, 1.5]. We also report on integrated 
bias, variance, and mean-squared error, obtained by simply integrating 
these functions over the rectangular domain of x (with respect to the 
uniform distribution). 

The experiments with artificial data included both nearest-neighbor 
estimation and estimation by a feedforward neural network. Results of 
the experiments with the nearest-neighbor procedure are summarized in 
Figure 4. 

In both the deterministic and the ambiguous case, bias increased while 
variance decreased with the number of neighbors, as should be expected 
from our earlier discussion. In the deterministic case, the least mean­
squared error is achieved using a small number of neighbors, two or 
three; there is apparently, and perhaps not surprisingly, little need to 
control the variance. In contrast, the more biased eight- or nine-nearest­
neighbor estimator is best for the ambiguous task. 

Figures 5 through 7 demonstrate various additional features of the 
results from experiments with the ambiguous classification problem. Fig­
ure 5 shows the actual output, to each possible input, of two machines 



Neural Networks and the Bias/Variance Dilemma 21 

0.4 ,--~---,--------TD=-e=te=rm"-=iin=is=tic'--'C=l=asi"si=fic=a=-tio=nT---,--~------. 

0.1 

0 
I 2 3 4 5 6 7 8 9 10 

0.5 Ambiguous Classification 

0.4 

~-0.3 

0.2 

0.1 

0 
I 2 3 4 5 6 7 8 9 10 

#Neighbors 

Figure 4: Integrated bias (as), variance (xs), and total error (+s) as functions of 
the number of neighbors in the nearest-neighbor regression. 

trained on a typical sample of the data: Figure Sa is the first-nearest­
neighbor solution and Figure Sb is the two-nearest-neighbor solution. 
The actual training data are also displayed - see figure legend for inter­
pretation. Average output of the five-nearest-neighbor machine (averaged 
over 100 independently chosen training sets- see earlier discussion) is 
depicted in Figure 6 (using the same color convention as for the regres­
sion). Compare this with the regression (Fig. 3b): there apparently is 
very little bias. Finally, in Figure 7, bias and variance are displayed as 
functions of the input x, both for the first-nearest-neighbor and the 10-
nearest-neighbor machines. Notice again the tradeoff. 

An analogous pattern emerged from the experiments with the feedfor­
ward neural network. In these experiments, the error-backpropagation 
algorithm (see equation 3.9) was run for 3,000 iterations, using r: = 0.05, 
and initializing the weights as independent random variables chosen 
from the uniform distribution on [-0.2, 0.2]. The results are summarized 
in Figure 8. 

The relatively unbiased, high-variance, 15-hidden-unit machine is best 
for the simpler deterministic classification task. For the ambiguous task, 
the more biased, single-hidden-unit machine is favored. Figure 9 shows 



22 S. Geman, E. Bienenstock, and R. Doursat 

a 

b 

Figure 5: Nearest-neighbor estimates of regression surface shown in Figure 
3b. Gray-level code is the same as in Figure 3. The training set comprised 50 
examples with values +0.9 (circles with white centers) and 50 examples with 
values -0.9 (circles with black centers) . (a) First-nearest-neighbor estimator. 
(b) Two-nearest-neighbor estimator. 

Figure 6: Average output of 100 five-nearest-neighbor machines, trained on 
independent data sets. Compare with the regression surface shown in Figure 3b 
(gray-level code is the same) - there is little bias. 

the output of two typical machines, with five hidden units each. Both 
were trained for the ambiguous classification task, but using statisti­
cally independent training sets. The contribution of each hidden unit 
is partially revealed by plotting the line w1x1 + w2x2 + w3 = 0, where 
x = (x1, x2) is the input vector, w1 and w2 are the associated weights, 
and w3 is the threshold. On either side of this line, the unit's output is 
a function solely of distance to the line. The differences between these 
two machines hint at the variance contribution to mean-squared error 
(roughly 0.13 - see Fig. 8). For the same task and number of hidden 



Neural Networks and the Bias/Variance Dilemma 23 

a I 

~ 

'-

b 

c 

d 

Figure 7: Bias and variance of first-nearest-neighbor and 10-nearest-neighbor 
estimators, as functions of input vector, for regression surface depicted in Fig­
ure 3b. Scale is by gray levels, running from largest values, coded in black, to 
zero, coded in white. (a) Bias of first-nearest-neighbor estimator. (b) Variance 
of first-nearest neighbor estimator. (c) Bias of 10-nearest-neighbor estimator. 
(d) Variance of 10-nearest-neighbor estimator. Overall, the effect of additional 
neighbors is to increase bias and decrease variance. 

units, the bias contribution to error is relatively small (0.05, again from 
Fig. 8). This is clear from Figure 10, which shows the average output of 
the five-hidden-unit machine to the ambiguous classification task. The 
fit to the regression (Fig. 3b) is good, except for some systematic bias 
at the left and right extremes, and at the peaks and valleys of the sinu­
soid. Finally, with reference again to the ambiguous classification task, 



24 S. Geman, E. Bienenstock, and R. Doursat 

0.5 ,--~--~---'D~eo;ote"'rm""i""ni,st""ic..'C"'Ia.,ss,if-"'ic""at~io"'-n-~--~-----, 

0.4 

0.3 

0.2 

0.1 _..At--------------~~----~' 

,..--_./ 
---~ 

0 .. ----~---------- ... ' 
0 2 4 6 8 10 12 14 

Ambi uous Classification 
0.2 ,-~-~-~~~=~=:=:====:=· __ -----+ /_-+-----+----t---

_____.---
0.15 

:~)<--=-·-- -· --
0.1 

0.05 

16 

~l---~2--~4--~6--~--~,0-~-~,2--~,4--~16 

#Hidden Units 

Figure 8: Integrated bias (os), variance (xs), and total error (+s) as functions of 
the number of hidden units in a feedforward neural network. 

Figure 11 shows bias and variance contributions to error for the one­
hidden-unit and the IS-hidden-unit machines. The pattern is similar to 
Figure 7 (nearest-neighbor machines), and reflects the tradeoff already 
apparent in Figure 8. 

3.5.5 Experiments with Handwritten Numerals. The data base in these 
experiments consisted of 1200 isolated handwritten numerals, collected 
from 12 individuals by I. Guyon at the AT&T Bell Laboratories (Guyon 
1988). Each individual provided 10 samples of each of the 10 digits, 
0, 1, ... , 9. Each sample was digitized and normalized to fit exactly within 
a 16 x 16 pixel array; it was then thresholded to produce a binary picture. 

A sampling of characters from this data base is displayed in the top 
four rows of Figure 12. The problem of recognizing characters in this set 
is rather easy, at least when compared to other widely available data sets, 
involving for example postal zip codes (see Le Cun et al. 1989) or courtesy 
numbers from checks. In fact, the data were collected with the intention of 
producing a more or less canonical set of examples: a standard "model" 
was chosen for each digit and the 12 individuals were asked to follow the 
model. However, our interest here was to demonstrate generic features 
of nonparametric estimation, and this turned out to be more easily done 



Neural Networks and the Bias/Variance Dilemma 25 

Figure 9: Output of feedforward neural networks trained on two independent 
samples of size 100. Actual regression is depicted in Figure 3b, with the same 
gray-level code. The training set comprised 50 examples with values +0.9 (cir­
cles with white centers) and 50 examples with values -0.9 (circles with black 
centers). Straight lines indicate points of zero output for each of the five hid­
den units - outputs are functions of distance to these lines. Note the large 
variation between these machines. This indicates a high variance contribution 
to mean-squared error. 

Figure 10: Average output of 100 feed forward neural networks with five hidden 
units each, trained on independent data sets. The regression surface is shown 
in Figure 3b, with the same gray-level code. 

with a somewhat harder problem; we therefore replaced the digits by 
a new, "corrupted," training set, derived by flipping each pixel (black 
to white or white to black), independently, with probability 0.2. See 
the bottom four rows of Figure 12 for some examples. Note that this 
corruption does not in any sense mimic the difficulties encountered in 



26 5. Geman, E. Bienenstock, and R. Doursat 

a 

b 

c 

d 

Figure 11: Bias and variance of single-hidden-unit and 15-hidden-unit feed­
forward neural networks, as functions of input vector. Regression surface is 
depicted in Figure 3b. Scale is by gray levels, running from Jargest values, 
coded in black, to zero, coded in white. (a) Bias of single-hidden-unit machine. 
(b) Variance of single-hidden-unit machine. (c) Bias of 15-hidden-unit machine. 
{d) Variance of 15-hidden-unit machine. Bias decreases and variance increases 
with the addition of hidden units. 

real problems of handwritten numeral recognition; the latter are linked 
to variability of shape, style, stroke widths, etc. 

The input xis a binary 16 x 16 array. We perform no "feature extrac­
tion" or other preprocessing. The classification, or output, is coded via a 
10-dimensional vector y = (y0 , . . . , y9}, where y; = +0.9 indicates the digit 
"i," and y; = -0.9 indicates "not i." Each example in the (noisy) data set 
is paired with the correct classification vector, which has one component 
with value +0.9 and nine components with values -0.9. 



Neural Networks and the Bias/Variance Dilemma 27 

Figure 12: Top four rows: examples of handwritten numerals. Bottom four 
rows: same examples, corrupted by 20% flip rate (black to white or white to 
black). 

To assess bias and variance, we set aside half of the data set (600 
digits), thereby excluding these examples from training. Let us de­
note these excluded examples by (x6oi> Y6ol), ... , (x12oo, Y12oo), and the re­
maining examples by (x1, y1), ... , (x6oo, Y6oo). The partition was such that 
each group contained 60 examples of each digit; it was otherwise ran­
dom. Algorithms were trained on subsets of {(x,,y,)}y~, and assessed 
on { (x~, Yl) }l~~~n· 

Each training set V consisted of 200 examples, 20 of each digit, cho­
sen randomly from the set { ( x~, Yl)} ~~. As with the previous data set, 
performance statistics were collected by choosing independent training 
sets, V 1

, ••• , TYA, and forming the associated (vector-valued) estimators 
f(x; V 1 

), ... , f(x; 'JYA). The performances of the nearest-neighbor and 
Parzen-window methods were assessed by using M = 100 independent 
training sets. For the error-backpropagation procedure, which is much 
more computationally intensive, M = 50 training sets were generally 
used. 

Let us again denote by f(x) the average response at x over all training 
sets. For the calculation of bias, this average is to be compared with the 



28 S. Geman, E. Bienenstock, and R. Doursat 

regression E[y I x]. Unlike the previous example ("artificial data"), the 
regression in this case is not explicitly available. Consider, however, the 
600 noisy digits in the excluded set: {x1 }l~~~1 • Even with 20% corrup­
tion, the classification of these numerals is in most cases unambiguous, 
as judged from the bottom rows of Figure 12. Thus, although this is not 
quite what we called a "degenerate" case in Section 2.1, we can approx­
imate the regression at x1, 601 ::; l ::; 1200, to be the actual classification, 
y, : E[y I xi] ;::.::: y,. Of course there is no way to display visually bias and 
variance as functions of x, as we did with the previous data, but we can 
still calculate approximate integrated bias, variance, and mean-squared 
error, using the entire excluded set, x601 , •.. , x1200, and the associated (ap­
proximate) "regressions" Y601, ... , Y12oo : 

1 1200 

Integrated Bias ;::.::: 
600 

L IJ(x,) - Yil 2 

1=601 

1 1200 1 M 

Integrated Variance ;::.::: 
600 

L M L lf(xl; Vk) - f(xl W 
/=601 k=1 

1 1200 1 M 

Integrated Mean-Squared Error ;::.::: 
600 

L M L lf(x,; Vk) - y,j 2 

1=601 k=1 

The last estimate (for integrated mean-squared error) is exactly the sum 
of the first two (for integrated bias and integrated variance). 

Notice that the nearest-neighbor and Parzen-window estimators are 
both predicated on the assignment of a distance in the input (x) space, 
which is here the space of 16 x 16 binary images, or, ignoring the lattice 
structure, simply {0, 1 }256 • We used Hamming distance for both esti­
mators. (In Section 6, we shall report on experiments using a different 
metric for this numeral recognition task.) The kernel for the Parzen­
window experiments was the exponential: W(x) = exp{ -lxl}, where lxl 
is the Hamming distance to the zero vector. 

We. have already remarked on the close relation between the kernel 
and nearest-neighbor methods. It is, then, not surprising that the ex­
perimental results for these two methods were similar in every regard. 
Figures 13 and 14 show the bias and variance contributions to error, 
as well as the total (mean-squared) error, as functions of the respective 
"smoothing parameters" -the number of nearest neighbors and the ker­
nel "bandwidth." The bias/variance tradeoff is well illustrated in both 
figures. 

As was already noted in Sections 3.5.1 and 3.5.2, either machine can be 
used as a classifier. In both cases, the decision rule is actually asymptot­
ically equivalent to implementing the obvious decision function: choose 
that classification whose 10-component coding is closest to the machine's 
output. To help the reader calibrate the mean-squared-error scale in these 
figures, we note that the values 1 and 2 in mean-squared error corre­
spond, roughly, to 20 and 40% error rates, respectively. 



Neural Networks and the Bias/Variance Dilemma 29 

-------------·-----------, 

k 

Figure 13: Nearest-neighbor regression for handwritten numeral recognition. 
Bias, variance, and total error as a function of number of neighbors. 

The results of experiments with the backpropagation network are 
more complex. Indeed, the network's output to a given input x is not 
uniquely defined by the sole choice of the training set 1J and of a "smooth­
ing parameter," as it is in the nearest-neighbor or the Parzen-window 
case. As we shall now see, convergence issues are important, and may 
introduce considerable variation in the behavior of the network. In the 
following experiments, the learning algorithm (equation 3.9) was initial­
ized with independent and uniformly distributed weights, chosen from 
the interval [ -0.1, 0.1]; the gain parameter, E, was 0.1. 

Figure 15 shows bias, variance, and total error, for a four-hidden­
unit network, as a function of iteration trial (on a logarithmic scale). We 
observe that minimum total error is achieved by stopping the training 
after about 100 iterations, despite the fact that the fit to the training data 



30 S. Geman, E. Bienenstock, and R. Doursat 

- ~-~~~~~~---, 

Variance 

01~~~~~~~~~~----~~~~-~~~~~~ 
0 10 15 20 25 30 

Figure 14: Kernel regression for handwritten numeral recognition. Bias, vari­
ance, and total error as a function of kernel bandwidth. 

continues to improve, as depicted by the curve labeled "learning." Thus, 
even with just four hidden units, there is a danger of "overfitting," with 
consequent high variance. Notice indeed the steady decline in bias and 
increase in variance as a function of training time. 

This phenomenon is strikingly similar to one observed in several other 
applications of nonparametric statistics, such as maximum-likelihood re­
construction for emission tomography (d. Vardi et al. 1985; Veklerov and 
Llacer 1987). In that application, the natural "cost functional" is the (neg­
ative) log likelihood, rather than the observed mean-squared error. Some­
what analogous to gradient descent is the "E-M" algorithm (Dempster 
et al. 1976, but see also Baum 1972) for iteratively increasing likelihood. 
The reconstruction is defined on a pixel grid whose resolution plays a 
role similar to the number of hidden units. For sufficiently fine grids, 



Neural Networks and the Bias/Variance Dilemma 31 

log( time) 

Figure 15: Neural network with four hidden units trained by error backprop­
agation. The curve marked "Learning" shows the mean-squared error, on the 
training set, as a function of the number of iterations of backpropagation [de­
noted "log(time)"]. The best machine (minimum total error) is obtained after 
about 100 iterations; performance degrades with further training. 

the E-M algorithm produces progressively better reconstructions up to a 
point, and then decisively degrades. 

In both applications there are many solutions that are essentially con­
sistent with the data, and this, in itself, contributes importantly to vari­
ance. A manifestation of the same phenomenon occurs in a simpler 
setting, when fitting data with a polynomial whose degree is higher than 
the number of points in the data set. Many different polynomials are 
consistent with the data, and the actual solution reached may depend 
critically on the algorithm used as well as on the initialization. 

Returning to backpropagation, we consistently found in the experi-



32 S. Geman, E. Bienenstock, and R. Doursat 

Total Error 

Bias 

0~------~--------~------~--------~----~ 
0 10 15 20 

# Hidden Units 

Figure 16: Total error, bias, and variance of feedforward neural network as a 
function of the number of hidden units. Training is by error backpropagation. 
For a fixed number of hidden units, the number of iterations of the backprop­
agation algorithm is chosen to minimize total error. 

ments with handwritten numerals that better results could be achieved 
by stopping the gradient descent well short of convergence; see, for ex­
ample, Chauvin (1990) and Morgan and Bourlard (1990) who report on 
similar findings. Keeping in mind these observations, we have plotted, 
in Figure 16, bias, variance, and total mean-squared error as a function 
of the number of hidden units, where for each number of hidden units 
we chose the optimal number of learning steps (in terms of minimizing 
total error). Each entry is the result of 50 trials, as explained previously, 
with the sole exception of the last experiment. In this experiment, in­
volving 24 hidden units, only 10 trials were used, but there was very 
little fluctuation around the point depicting (averaged) total error. 



Neural Networks and the Bias/Variance Dilemma 33 

The basic trend is what we expect: bias falls and variance increases 
with the number of hidden units. The effects are not perfectly demon­
strated (notice, for example, the dip in variance in the experiments with 
the largest numbers of hidden units), presumably because the phenome­
non of overfitting is complicated by convergence issues and perhaps also 
by our decision to stop the training prematurely. The lowest achievable 
mean-squared error appears to be about 2. 

4 Balancing Bias and Variance _______________ _ 

This section is a brief overview of some techniques used for obtaining 
optimal nonparametric estimators. It divides naturally into two parts: 
the first deals with the finite-sample case, where the problem is to do 
one's best with a given training set of fixed size; the second deals with 
the asymptotic infinite-sample case. Not surprisingly, the first part is a 
review of relatively informal "recipes," whereas the second is essentially 
mathematical. 

4.1 Automatic Smoothing. As we have seen in the previous section, 
nonparametric estimators are generally indexed by one or more parame­
ters which control bias and variance; these parameters must be properly 
adjusted, as functions of sample size, to ensure consistency, that is, con­
vergence of mean-squared error to zero in the large-sample-size limit. 
The number of neighbors k, the kernel bandwidth(], and the number of 
hidden units play these roles, respectively, in nearest-neighbor, Parzen­
window, and feedforward-neural-network estimators. These "smoothing 
parameters" typically enforce a degree of regularity (hence bias), thereby 
"controlling" the variance. As we shall see in Section 4.2, consistency the­
Qrems specify asymptotic rates of growth or decay of these parameters 
to guarantee convergence to the unknown regression, or, more generally, 
to the object of estimation. Thus, for example, a rate of growth of the 
number of neighbors or of the number of hidden units, or a rate of decay 
of the bandwidth, is specified as a function of the sample size N. 

Unfortunately, these results are of a strictly asymptotic nature, and 
generally provide little in the way of useful guidelines for smoothing­
parameter selection when faced with a fixed and finite training set 'D. 
It is, however, usually the case that the performance of the estimator 
is sensitive to the degree of smoothing. This was demonstrated previ­
ously in the estimation experiments, and it is a consistent observation 
of practitioners of nonparametric methods. This has led to a search for 
"automatic" or "data-driven" smoothing: the selection of a smoothing 
parameter based on some function of the data itself. 

The most widely studied approach to automatic smoothing is "cross­
validation." The idea of this technique, usually attributed to Stone (1974), 
is as follows. Given a training set 'DN = {(x1.y1), ••• , (xN,yN)} and a 



34 5. Geman, E. Bienenstock, and R. Doursat 

"smoothing parameter" ..\, we denote, generically, an estimator by 
f(x; N, ..\, VN) [see, for example, (3.6) with ..\ = k or (3.7) with ..\ = rr]. 
Cross-validation is based on a "leave-one-out" assessment of estimation 
performance. Denote by vu>N, 1 :s: i :s: N, the data set excluding the 
ith observation (x;,y;) : vU>N = {(xt,Yt), ... , (x;-t,Yi-t), (xi+t,Yi+t), ... , 
(xN,yN)}. Now fix ,\and form the estimator f(x;N- 1, ..\, 7J(i)N), which 
is independent of the excluded observation (x;, y;). We can "test," or 
"cross-validate," on the excluded data: if f(x;;N ·-1, ..\, v~>) is close toy;, 
then there is some evidence in favor of f(x; N, ..\, VN) as an estimator of 
E[y I x], at least for large N, wherein we do not expect f(x; N - 1, ..\, v~>) 
andf(x;N, ..\, VN) to be very different. Better still is the pooled assessment 

...:_ 1 ~I . . (i) 12 A(..\)- N ~ y,- f(x;,N- 1, ..\, VN) 
i=l 

The cross-validated smoothing parameter is the minimizer of A(..\), which 
we will denote by..\*. The cross-validated estimator is then f(x; N, ..\ •, VN ). 

Cross-validation is computation-intensive. In the worst case, we need 
to form N estimators at each value of..\, to generate A(..\), and then to find 
a global minimum with respect to ..\. Actually, the computation can often 
be very much reduced by introducing closely related (sometimes even 
better) assessment functions, or by taking advantage of special structure 
in the particular function f(x; N, ..\, VN) at hand. The reader is referred to 
Wahba (1984, 1985) and O'Sullivan and Wahba (1985) for various gener­
alizations of cross-validation, as well as for support of the method in the 
way of analytic arguments and experiments with numerous applications. 
In fact, there is now a large statistical literature on cross-validation and 
related methods (Scott and Terrell 1987; Hardie et al. 1988; Marron 1988; 
Faraway and Jhun 1990; Hardie 1990 are some recent examples), and 
there have been several papers in the neural network literature as well 
-see White (1988, 1990), Hansen and Salamon (1990), and Morgan and 
Bourlard (1990). 

Computational issues aside, the resulting estimator, f(x; N, ..\ *, VN ), is 
often strikingly effective, although some "pathological" behaviors have 
been pointed out (see, for example, Schuster and Gregory 1981). In gen­
eral, theoretical underpinnings of cross-validation remain weak, at least 
as compared to the rather complete existing theory of consistency for the 
original (not cross-validated) estimators. 

Other mechanisms have been introduced with the same basic design 
goal: prevent overfitting and the consequent high contribution of vari­
ance to mean-squared error (see, for example, Mozer and Smolensky 1989 
and Kamin 1990 for some "pruning" methods for neural networks). Most 
of these other methods fall into the Bayesian paradigm, or the closely re­
lated method of regularization. In the Bayesian approach, likely regular­
ities are specified analytically, and a priori. These are captured in a prior 
probability distribution, placed on a space of allowable input-to-output 
mappings ("machines"). It is reasonable to hope that estimators then 



Neural Networks and the Bias/Variance Dilemma 35 

derived through a proper Bayesian analysis would be consistent; there 
should be no further need to control variance, since the smoothing, as 
it were, has been imposed a priori. Unfortunately, in the nonparametric 
case it is necessary to introduce a distribution on the infinite-dimensional 
space of allowable mappings, and this often involves serious analytical, 
not to mention computational, problems. In fact, analytical studies have 
led to somewhat surprising findings about consistency or the lack thereof 
(see Diaconis and Freedman 1986). 

Regularization methods rely on a "penalty function," which is added 
to the observed sum of squared errors and promotes (is minimum at) 
"smooth," or "parsimonious," or otherwise "regular" mappings. Min­
imization can then be performed over a broad, possibly even infinite­
dimensional, class of machines; a properly chosen and properly scaled 
penalty function should prevent overfitting. Regularization is very sim­
ilar to, and sometimes equivalent to, Bayesian estimation under a prior 
distribution that is essentially the exponential of the (negative) penalty 
function. There has been much said about choosing the "right" penalty 
function, and attempts have been made to derive, logically, information­
based measures of machine complexity from "first principles" (see Akaike 
1973; Rissanen 1986). Regularization methods, complexity-based as well 
as otherwise, have been introduced for neural networks, and both an­
alytical and experimental studies have been reported (see, for example, 
Barron 1991; Chauvin 1990). 

4.2 Consistency and Vapnik-Cervonenkis Dimensionality. The stu­
dy of neural networks in recent years has involved increasingly sophis­
ticated mathematics (cf. Barron and Barron 1988; Barron 1989; Baum and 
Haussler 1989; Haussler 1989b; White 1989, 1990; Amari 1990; Amari et 
al. 1990; Azencott 1990; Baum 1990a), often directly connected with the 
statistical-inference issues discussed in the previous sections. In particu­
lar, machinery developed for the analysis of nonparametric estimation in 
statistics has been heavily exploited (and sometimes improved on) for the 
study of certain neural network algorithms, especially least-squares al­
gorithms for feedforward neural networks. A reader unfamiliar with the 
mathematical tools may find this more technical literature unapproach­
able. He may, however, benefit from a somewhat heuristic derivation 
of a typical (and, in fact, much-studied) result: the consistency of least­
squares feedforward networks for arbitrary regression functions. This 
is the purpose of the present section: rather than a completely rigorous 
account of the consistency result, the steps below provide an outline, or 
plan of attack, for a proper proof. It is in fact quite easy, if somewhat 
laborious, to fill in the details and arrive at a rigorous result. The non­
technically oriented reader may skip this section without missing much 
of the more general points that we shall make in Sections 5 and 6. 

Previously, we have ignored the distinction between a random vari­
able on the one hand, and an actual value that might be obtained on 



36 S. Geman, E. Bienenstock, and R. Doursat 

making an observation of the random variable on the other hand. In this 
discussion of consistency, we will be more careful and adopt the usual 
convention of denoting random variables by upper-case letters, and their 
values by the corresponding lower-case letters. In the general regression 
problem, there are two random vectors, X and Y, which we might think 
of as the argument and corresponding value of some unknown, and pos­
sibly random, function. We observe N independent samples with values 
VN = {(x1,y1), .••. (xN,yN)}. Based on this "training set," we wish to 
learn to accurately predict Y from the "input" X. Because there is noth­
ing special about the mathematics of learning a vector relation per se, we 
will simplify our discussion by treating X and Y as scalars X and Y. 

We will continue to use mean-squared error, 

to evaluate the accuracy of a function f as a predictor of Y. We recall 
(see 2.2) that 

E [(Y- f(X)) 2j = E [lf(X)- E[Y I XJ/] + E [(Y- E[Y I X]) 2j (4.1) 

where E[ · ] means expectation (averaging) with respect to the joint dis­
tribution on X and Y. Since the second term of the right-hand side does 
not involve f, we will, as usual, adopt E[(f(X) - E[Y I X])2] in evaluating 
f as a predictor of Y from X. 

The actual estimator is drawn from some class of functions that we 
will denote by :FM. The primary example that we have in mind is a class 
of feedforward networks with M hidden units. Depending on details 
about the distribution of X and Y, and about the architecture of machines 
in :FM, it may be necessary to restrict the magnitudes of the "synaptic 
weights," for example, lwii I ::; f'JM for all weights { wii}, where (iM i oo as 
the number of hidden units, M, is increased to infinity. 

Given Manda training set VN of size N, we define now our estimator 
f(x;N,M, VN) to be the best fit to the data within the class :FM: 

(4.2) 

Of course, actually getting this solution may be a very difficult, perhaps 
even intractable, computational problem. Our discussion of consistency 
necessarily concerns the true minimizer of 4.2, rather than the actual out­
put of an algorithm designed to minimize 4.2, such as error back propaga­
tion. In practice, there are serious convergence issues for such algorithms, 
with, unfortunately, very few analytical tools to address them. Also, it 
may be that 4.2 has multiple global minima. This is only a technical 
complication, as we could replace f(x; N, M, VN ), in what follows, by the 
set of minimizers. We shall therefore assume that the minimization is 
unique. 



Neural Networks and the Bias/Variance Dilemma 37 

For large N, we would hope to find f(x;N,M, DN) "close" to E[Y I x]. 
Let us denote by [M the best that can be done within the family :FM: 

[M = arg minE [ (f(X) - E[Y I X]) 2
) (4.3) 

fEFM 

Of course, if FM is "too small," or at least if E[Y I x] is not well ap­
proximated by any element in :FM, then f(x; N, M, DN) cannot be a very 
good estimator of the regression. But later we will make :FM "large" by 
taking M j oo. For now, let us compare f(x;N,M, DN) to [M, the best so­
lution available in :FM. We will argue that, under appropriate conditions, 
f(x;N,M, DN) is essentially as good as [M(x). 

Notice thatforany fixed f E :FM, theN numbers [y;-f(x;)]2 , 1 :::; i:::; N, 
are independent and identically distributed ("i.i.d.") observations of the 
random variable [Y- f(X)f. Therefore, we expect that (1/N) L::;:Jfy; -
f(x;)] 2 is well approximated by E[(Y-f(X)f] (the "law of large numbers," 
or "LLN"). With this in mind, we can proceed to bound the mean­
squared error of f(X;N,M, DN): 

E [ (f(X; N, M, DN) - E[Y I X]) 2
) 

(as before- see 4.1) E [(Y- f(X;N,M, DN)) 2
] 

-E [(Y- E[Y I X]) 2
] 

1 N 2 
~ (LLN) N 2: [y;- f(x;;N,M, DN)] 

i=l 

-E [(Y- E[Y I X]) 2
] 

1 ~ 2 [ 2] < (by defn.- see 4.2) N L. [y;- [M(x;)] - E (Y- E[Y I X]) 
i=l 

~ (LLN) E [(Y- /M(X)) 2
]- E [(Y- E[Y I X]) 2

] 

(again, see 4.1) E [ (fM(X)- E[Y I X]) 2
] 

minE [(f(X) - E[Y I X]) 2
) 

fE:FM 

We thus obtained the desired result: f(x; N, M, DN) is asymptotically op­
timal in the class :FM. 

Although this reasoning is essentially correct, we are still two fairly 
big steps away from a rigorous consistency argument. The first gap to be 
filled in has to do with the bias of the function [M: E[(fM(X) - E[Y I X])2] 

is not likely to be zero, hence we have no reason to believe that, even 
as N ---> oo, E[(f(X;N,M, DN) - E[Y I X])2] ---> 0. In other words, since 
:FM may not (probably does not) contain E[Y I x], there is a residual bias. 
This is remedied by adding more hidden units: we take M = MN j 
oo as N ---> oo. The reason why this indeed eliminates residual bias is 
that the class FM is asymptotically (M ---> oo) dense in the space of all 
"reasonable" functions. (This is an often-quoted result in the neural­
modeling literature. Of course it depends on details about architecture 



38 S. Geman, E. Bienenstock, and R. Doursat 

and the particular "neuronal response function" used -see Barron 1989; 
Cybenko 1989; Funahashi 1989; Hornik eta[. 1989; Hartman et al. 1990.) 
That is to say, for any (measurable) E[Y I x], there exists a sequence 
gM E FM such that E[(gM(X) - E[Y I X])2] ~ 0 as M ~ oo. In particular, 
the sequence [M defined in 4.3 will have this property. 

The second problem is more difficult to solve, and is moreover con­
founded by the evident necessity of taking M = MN i oo. The difficulty 
lies in our (first) use of the law of large numbers. It is true that 

1 ~ 2 [ 2] N ~ [yi- f(xi)] --> E (Y- f(X)) 
i=l 

as N --> oo, for fixed functions f E FM· This is so because, as we have 
noted, [yi- f(xi)j2 are i.i.d. realizations of a random variable. However, 
the function f(x;N,M, VN) depends on all of the x/s and y/s; therefore, 
the numbers {(yi- f(xi;N,M, VN)?} are not i.i.d. observations. They are 
coupled by the minimization procedure that defines f(x; N, M, VN ), and 
this coupling introduces dependence. 

One rather crude solution consists in proving a uniform law of large 
numbers: 

(4.4) 

Then, in particular, 

J~ ~ ~ [yi- f(xi;N,M, VN)]
2 = E [(Y- f(X))

2
] 

Recall however that we must take M = MN i oo to eliminate any residual 
bias. Therefore, what we actually need is a result like 

J~ sup ~~f. [yi- f(xi)]
2

- E [CY- f(X))
2

] I= 0 
fE:FMN 1=1 

(4.5) 

In most cases, the class of machines, FMw will be increasing with N, so 
4.5 is stronger than 4.4. But it is not much more difficult to prove. In fact, 
it actually follows from 4.4, provided that 4.4 can be established along 
with bounds on the rate of convergence. One then specifies a sequence 
M = MN, increasing to infinity sufficiently slowly, so that 4.5 is true as 
well. We will forgo the details of making this extension (from 4.4 to 4.5), 
and concentrate instead on the fundamental problem of establishing a 
uniform LLN, as in 4.4. 

Recall that for every element f E FM we have 1/N I:;:1[yi- f(xi)j2--> 
E[(Y- f(X))Z] as N ~ oo, by the ordinary LLN. In this case, moreover, we 
know essentially everything there is to know about the rate of conver­
gence. One way to prove 4.4 is then to cover FM with "small balls" (see, 
for example, Grenander 1981; Geman and Hwang 1982). We judiciously 



Neural Networks and the Bias/Variance Dilemma 39 

choose {1,[2 , •.• ,[L E FM such that every other f E FM is close to one of 
these (inside one of L small balls centered at the f;'s). Since convergence 
for each fi, 1 :::; i :::; L, always guarantees uniform convergence for the 
finite set {/i}T=l' and sin~e all other fare close to one of these f;'s, 4.4 is 
shown to be "nearly true." Finally, taking L -> oo (so that the balls can 
get smaller), 4.4 can be rigorously established. 

The modern approach to the problem of proving 4.4 and 4.5 is to use 
the Vapnik-Cervonenkis dimension. Although this approach is techni­
cally different, it proceeds with the same spirit as the method outlined 
above. Evidently, the smaller the set FM, the easier it is to establish 
4.4, and in fact, the faster the convergence. This is a direct consequence 
of the argument put forward in the previous paragraph. The Vapnik­
Cervonenkis approach "automates" this statement by assigning a size, or 
dimension, to a class of functions. In this case we would calculate, or at 
least bound, the size or Vapnik-Cervonenkis dimension of the class of 
functions of (x,y) given by 

(4.6) 

For a precise technical definition of Vapnik-Cervonenkis dimension (and 
some generalizations), as well as for demonstrations of its utility in es­
tablishing uniform convergence results, the reader is referred to Vapnik 
(1982), Pollard (1984), Dudley (1987), and Haussler (1989a). Putting aside 
the details, the important point here is that the definition can be used 
constructively to measure the size of a class of functions, such as the one 
defined in 4.6. The power of this approach stems from generic results 
about the rate of uniform convergence (see, e.g., 4.4), as a function of the 
Vapnik-Cervonenkis dimension of the corresponding function class, see, 
e.g., 4.6. One thereby obtains the desired bounds for 4.4, and, as dis­
cussed above, these are rather easily extended to 4.5 by judicious choice 
of M = MN i oo. 

Unfortunately, the actual numbers that come out of analytical argu­
ments such as these are generally discouraging: the numbers of samples 
needed to guarantee accurate estimation are prohibitively large. (See, 
for example, the excellent paper by Haussler 1989b, in which explicit 
upper bounds on sample sizes are derived for a variety of feedforward 
networks.) Of course these analytical arguments are of a general nature. 
They are not dedicated to particular estimators or estimation problems, 
and therefore are not "tight"; there may be some room for improvement. 
But the need for large sample sizes is already dictated by the fact that we 
assume essentially no a priori information about the regression E[Y I x]. 
It is because of this assumption that we require uniform convergence re­
sults, making this a kind of "worst case analysis." This is just another 
view of the dilemma: if we have a priori information about E[Y I x] then 
we can employ small sets FM and achieve fast convergence, albeit at the 
risk of large bias, should E[Y I x] in fact be far from FM. 



40 S. Geman, E. Bienenstock, and R. Doursat 

We end this section with a summary of the consistency argument: 

Step 1. Check that the class :FM is rich enough, that is, show that the 
sequence fM (see 4.3) is such that E[(fM- E[Y I X])2] ---> 0 as M---> oo. 

Step 2. Establish a uniform LLN: 

lim sup I-N
1 £: [y;- f(x;)]

2
- E [ (Y- f(X))

2
] I = 0 (4.7) 

N~oo {E:FM i=l 

together with a (probabilistic) rate of convergence (e.g., with the 
help of Vapnik-Cervonenkis dimensionality). 

Step 3. Choose M = MN T oo sufficiently slowly that 4.7 is still true with 
M replaced by MN. 

Step 4. Put together the pieces: 

limE [(f(X;N,MN, 'DN)- E[Y I X]) 2
] 

N~oo 

lim E [(Y- f(X;N,MN, 'DN))2] 
N~oo 

-E [(Y- E[Y I X]) 2
] 

(by 4.7 with M = MN) 
1 N 

J~ N ~ [y;- f(x;;N,MN, 'DN)]
2 

-E [(Y- E[Y I X])
2

] 

< (by defn. - see 4.2) J~ ~ ~ [y; -fMN(X;)]
2 

-E [(Y- E[Y I X]) 2
] 

(again, by 4.7) J~~E [(Y- fMN(X))
2

] 

-E [(Y- E[Y I X]) 2
] 

lim E [(fMN(X) - E[Y I X]) 2
] = 0 

N~oo 

5 Interpretation and Relevance to Neural Networks ______ _ 

Let us briefly summarize the points made thus far. We first remarked that 
the goals one is trying to achieve with artificial neural networks, particu­
larly of the feedforward layered type (multilayer perceptrons), generally 
match those of statistical inference: the training algorithms used to adjust 
the weights of such networks - for example, the error-backpropagation 
algorithm - can be interpreted as algorithms for statistical inference. We 
further mentioned that although learning precisely consists of adjusting a 
collection of parameters, namely the "synaptic weights" of the network, 



Neural Networks and the Bias/Variance Dilemma 41 

such networks with their associated learning algorithms really belong 
to the class of nonparametric inference schemes, also called model-free 
methods. Nonparametric methods may b.e characterized by the prop­
erty of consistency: in the appropriate asymptotic limit they achieve the 
best possible performance for any learning task given to them, however 
difficult this task may be. We saw that in many tasks performance is ade­
quately measured by mean-squared error, and that optimal performance 
is achieved by the conditional mean, or "regression" of the output on 
the input: this is, among all possible functions, the one that minimizes 
mean-squared error. 

We also saw that mean-squared error can be decomposed into a bias 
term and a variance term. Both have to be made small if we want to 
achieve good performance. The practical issue is then the following: 
Can we hope to make both bias and variance "small," with "reasonably" 
sized training sets, in "interesting" problems, using nonparametric infer­
ence algorithms such as nearest-neighbor, CART, feedforward networks, 
etc.? It is one of the main goals of the present paper to provide an an­
swer to this question, and we shall return to it shortly. Let us, however, 
immediately emphasize that the issue is purely about sample size, and 
quite distinct from implementation considerations such as the speed of 
the hardware, the parallel versus serial or analog versus digital type of 
machine, or the number of iterations required to achieve convergence in 
the case of the backpropagation algorithm. 

5.1 Neural Nets and Nonparametric Inference for Machine Learning 
and Machine Perception Tasks. We mentioned that the focus of most 
connectionist models is the problem of inferring relationships among a 
set of observable variables, from a collection of examples called a training 
set. This is also the focus of the statistical sciences, so it is not surprising 
that statistical tools are increasingly exploited in the development and 
analysis of these kinds of neural models (Lippmann 1987; Barron and 
Barron 1988; Gallinari et al. 1988; Barron 1989; Haussler 1989a; Tishby et 
al. 1989; White 1989; Amari et al. 1990; Baum 1990b; Hinton and Nowlan 
1990). Thus, the perceptron (Rosenblatt 1962) and other adaptive pattern 
classifiers (e.g., Amari 1967) are machines for computing linear decision 
boundaries; the "Brain State in a Box" model of categorical perception 
(Anderson et al. 1977) is related to factor analysis; Boltzmann Machines 
(Ackley et al. 1985; Hinton and Sejnowski 1986) compute (approximate) 
maximum-likelihood density estimators; and backpropagation networks 
realize an algorithm for nonparametric least-squares regression. Back­
propagation networks can also be trained to achieve transformations re­
lated to principal-component analysis (Bourlard and Kamp 1988, Baldi 
and Hornik 1989). A good state-of-the-art statistical method for high­
dimensional data analysis is projection pursuit (Friedman and Stuetzle 
1981, Huber 1985). It may then be a good strategy to start from a sta­
tistical method such as this and to look for neural-like realizations of it, 



42 S. Geman, E. Bienenstock, and R. Doursat 

thereby suggesting efficient parallel, and possibly even ultrafast, analog, 
implementations. Examples of networks based upon projection pursuit 
can be found in Intrator (1990) and Maechler et al. (1990). 

Modern nonparametric statistical methods, and hence many recent 
neural models, are important tools for wide-ranging applications. Two 
rather natural applications were discussed in Section 2: the General 
Motors foam casting problem and the problem of evaluating loan ap­
plications. There are no doubt many other applications in economics, 
medicine, and more generally in modern data analysis. 

Nevertheless, the enthusiasm over neural modeling is mostly about 
different kinds of problems. Indeed, anybody remotely connected to the 
field knows, if only from his or her mail, that much more is expected 
from neural networks than making additions to the statistician's toolbox. 
The industrial and military scientists, and to some extent academia, are 
poised for the advances in machine intelligence that were once antic­
ipated from artificial intelligence. There is, for example, much enthu­
siasm anticipating important advances in automatic target recognition, 
and more generally in invariant object recognition. In speech processing 
there have been successes in isolated phoneme recognition (Waibel et al. 
1988; Lippmann 1989) and there is a suggestion of neural networks (or 
other nonparametric methods) as good "front-ends" for hidden Markov 
models (Bourlard and Wellekens 1990), and, beyond this, of advances 
in continuous speech recognition via trained neural networks, avoiding 
the difficult task of estimating parameters in complex hidden Markov 
models. Further, there is the hope of building expert systems without 
"engineering knowledge": neural networks can learn by example. In 
this regard, evaluating loans is indeed a modest start. Typical applica­
tions of expert systems would involve many more variables, and would 
need to predict more than just a small number of possible outcomes. Fi­
nally, it should not be forgotten that from their inception neural networks 
were also, if not chiefly, meant to contribute to the understanding of real 
brains. The debate about their adequacy as models of cognition is prob­
ably more intense now than ever (Fodor and Pylyshyn 1988; Smolensky 
1988). 

From at least one point of view the optimism about neural networks 
is well-founded. The consistency theorems mentioned in Sections 2 and 4 
guarantee a (suitably formulated) optimal asymptotic performance. Lay­
ered networks, Boltzmann Machines, and older methods like nearest­
neighbor or window estimators, can indeed form the basis of a trainable, 
"from scratch," speech recognition system, or a device for invariant ob­
ject recognition. With enough examples and enough computing power, 
the performance of these machines will necessarily approximate the best 
possible for the task at hand. There would be no need for preprocessing 
or devising special representations: the "raw data" would do. 

Is this hope indeed realistic? Also, is there any reason to believe that 
neural networks will show better performances than other non parametric 



Neural Networks and the Bias/Variance Dilemma 43 

methods with regard to difficult problems that are deemed to require 
some form of "intelligence"? As we have seen, the question really boils 
down to the following: Can training samples be large enough to make 
both bias and variance small? 

To get a feeling about this issue, consider for a moment the prob­
lem of recognizing all nonambiguous handwritten characters. This is 
somewhat ill-defined, but we mean, roughly, the following. The input X 
is a digitized raw image of a single segmented character, handwritten, 
drawn, or etched, using any kind of tool or process, on any kind of mate­
rial. The distribution of inputs includes various styles of writing, various 
sizes, positions, and orientations of the character in the image, various 
widths of stroke, various lighting conditions, various textures, shadings, 
etc. Images may moreover include substantial "noise" and degradations 
of various sorts. It is assumed that in spite of the variability of the data, 
the conditional distribution P(Y I X) is degenerate for all X: a human 
observer provides a perfectly nonambiguous labeling Y for any X drawn 
from this distribution. By definition, an optimal classifier for this task 
achieves zero mean-squared error, since the labeling Y is a deterministic 
function of the input X. 

This general problem is certainly more difficult than the hardest of 
character recognition problems actually solved today, for example, by 
neural methods (d. Le Cun et al. 1989; Martin and Pittman 1991). On the 
other hand, insofar as this problem is well defined, consistency theorems 
apply to it and guarantee optimal performance, in this case zero-error 
classification. One should thus be able to devise a sequence of machines 
that would, in the limit, when trained on enough data drawn from the 
given distribution of (X, Y), perform the task just as accurately as the 
human observer, that is, never fail, since we assumed nonambiguous 
labeling. 

In reality, the reason why we are still quite far from building optimal 
performance machines for this problem is the wide gap between the theo­
retical notion of consistency- an asymptotic property- and conditions 
realized in practice. As we have seen in Section 4, consistency requires 
that the size of the training set grows to infinity, and that the algorithm 
simultaneously adapts itself to larger and larger training sets. In essence, 
the machine should become more and more versatile, that is, eliminate 
all biases. On the other hand, elimination of bias should not happen 
too fast, lest the machine become dedicated to the idiosyncrasies of the 
training examples. Indeed, we have seen that for any finite-size training 
set the price to pay for low bias is high variance. In most cases, as we 
have seen in Section 3, there is a "smoothing parameter" whose value 
can be adjusted to achieve the very best bias/variance tradeoff for any 
fixed size of the training set. However, even with the best compromise, 
an estimator can still be quite far from optimal. Only when the size of 
the training set literally grows to infinity, can one eliminate at the same 



44 S. Geman, E. Bienenstock, and R. Doursat 

time both bias and variance. This justifies the term "dilemma," and the 
consequence is prohibitively slow convergence. 

In practice, the size of the training set for our "general" character 
recognition problem will always be considerably smaller than would be 
required for any nonparametric classification scheme to meaningfully ap­
proximate optimality. In other words, for complex perceptual tasks such 
as this, a "sufficiently large training set" exists only in theory. 

5.2 Interpolation and Extrapolation. The reader will have guessed 
by now that if we were pressed to give a yes/no answer to the question 
posed at the beginning of this chapter, namely: "Can we hope to make 
both bias and variance 'small,' with 'reasonably' sized training sets, in 
'interesting' problems, using nonparametric inference algorithms?" the 
answer would be no rather than yes. This is a straightforward conse­
quence of the bias/variance "dilemma." Another way to look at this 
stringent limitation is that if a difficult classification task is indeed to be 
learned from examples by a general-purpose machine that takes as inputs 
raw unprocessed data, then this machine will have to "extrapolate," that 
is, generalize in a very nontrivial sense, since the training data will never 
"cover" the space of all possible inputs. The question then becomes: 
What sorts of rules do conventional algorithms follow when faced with 
examples not suitably represented in the training set? Although this is 
dependent on the machine or algorithm, one may expect that, in general, 
extrapolation will be made by "continuity," or "parsimony." This is, in 
most cases of interest, not enough to guarantee the desired behavior. 

For instance, consider again the sinusoid-within-rectangle problem 
discussed in Section 3. Suppose that after training the machine with 
examples drawn within the rectangle, we ask it to extrapolate its "knowl­
edge" to other regions of the plane. In particular, we may be interested 
in points of the plane lying far to the left or to the right of the rectangle. 
If, for instance, the k-nearest-neighbor scheme is used, and if both k and 
the size of the training set are small, then it is fairly easy to see that the 
extrapolated decision boundary will be very sensitive to the location of 
training points at the far extremes of the rectangle. This high variance 
will decrease as k and the sample size increase: eventually, the extrapo­
lated decision boundary will stabilize around the horizontal axis. Other 
schemes such as Parzen windows and layered networks will show sim­
ilar behavior, although the details will differ somewhat. At any rate, it 
can be seen from this example that extrapolation may be to a large extent 
arbitrary. 

Using still the same example, it may be the case that the number of 
training data is too small for even a good interpolation to take place. This 
will happen inevitably if the size of the training sample is kept constant 
while the number of periods of the sinusoid in the rectangle, that is, the 
complexity of the task, is increased. Such a learning task will defeat 
general nonparametric schemes. In reality, the problem has now become 



Neural Networks and the Bias/Variance Dilemma 45 

extrapolation rather than interpolation, and there is no a priori reason 
to expect the right type of extrapolation. One recourse is to build in ex­
pectations: in this particular case, one may favor periodic-type solutions, 
for. instance by using estimators based on Fourier series along the x­
axis. Evidently, we are once more facing the bias/variance dilemma: 
without anticipating structure and thereby introducing bias, one should 
be prepared to observe substantial dependency on the training data. If 
the problem at hand is a complex one, such as the high-frequency two­
dimensional sinusoid, training samples of reasonable size will never ad­
equately cover the space, and, in fact, which parts are actually covered 
will be highly dependent on the particular training sample. 

The situation is similar in many real-world vision problems, due to 
the high dimensionality of the input space. This may be viewed as a 
manifestation of what has been termed the "curse of dimensionality" by 
Bellman (1961). 

The fundamental limitations resulting from the bias-variance dilemma 
apply to all nonparametric inference methods, including neural networks. 
This is worth emphasizing, as neural networks have given rise in the last 
decade to high expectations and some surprising claims. Historically, the 
enthusiasm about backpropagation networks stemmed from the claim 
that the discovery of this technique allowed one, at long last, to over­
come the fundamental limitation of its ancestor the perceptron, namely 
the inability to solve the "credit (or blame) assignment problem." The 
hope that neural networks, and in particular backpropagation networks, 
will show better generalization abilities than other inference methods, 
by being able to develop clever "internal representations," is implicit in 
much of the work about neural networks. It is indeed felt by many in­
vestigators that hidden layers, being able to implement any nonlinear 
transformation of the input space, will use this ability to "abstract the 
regularities" from the environment, thereby solving problems otherwise 
impossible or very difficult to solve. 

In reality, the hidden units in a layered network are a nonlinear device 
that can be used to achieve consistency like many others. There would 
seem to be no reason to expect sigmoid functions with adaptive weights 
to do a significantly better job than other nonlinear devices, such as, for 
example, gaussian kernels or the radial basis functions discussed by Pog­
gio and Girosi (1990). Consistency is an asymptotic property shared by all 
nonparametric methods, and it teaches us all too little about how to solve 
difficult practical problems. It does not help us out of the bias/variance 
dilemma for finite-size training sets. Equivalently, it becomes irrelevant 
as soon as we deal with extrapolation rather than interpolation. Unfor­
tunately, the most interesting problems tend to be problems of extrapo­
lation, that is, nontrivial generalization. It would appear, then, that the 
only way to avoid having to densely cover the input space with training 
examples - which is unfeasible in practice - is to prewire the important 
generalizations. 



46 S. Geman, E. Bienenstock, and R. Doursat 

In light of these rather pessimistic remarks, one is reminded of our 
earlier discussion (see Section 2.3) of some successful applications of non­
parametric methods. Recall that General Motors, for example, made an 
important reduction in the scrap rate of styrofoam castings after building 
a nonparametric classifier based on the CART procedure. The input, or 
feature, space comprised 80 process variables. It was not reasonable to 
hope that the 470 training examples would meaningfully cover the po­
tentially achievable settings of these variables. Certainly, extrapolation to 
regions not represented would have been hazardous, at least without a 
believable model for the relationship between castings and process vari­
ables. But this was not a problem of extrapolation; the goal was not to 
learn the relationship between casting success and process variables per 
se, but rather to identify an achievable range of process variables that 
would ensure a high likelihood of good castings. With this more modest 
goal in mind, it was not unreasonable to anticipate that a data set with 
substantial variation in the settings of the process variables would help 
locate regions of high likelihood of success. 

Also discussed in Section 2.3 was the application of a neural network 
learning system to risk evaluation for loans. In contrast to the styrofoam 
casting problem, there is here the luxury of a favorable ratio of training­
set size to dimensionality. Records of many thousands of successful and 
defaulted loans can be used to estimate the relation between the 20 or 
so variables characterizing the applicant and the probability of his or her 
repaying a loan. This rather uncommon circumstance favors a nonpara­
metric method, especially given the absence of a well-founded theoretical 
model for the likelihood of a defaulted loan. 

6 Designing Bias ---------------------

If, as we have seen in the previous chapter, the asymptotic property of 
consistency does not help us much in devising practical solutions to the 
more substantial·problems of machine learning and machine perception, 
how could one improve on the capabilities of existing algorithms? It is 
sometimes argued that the brain is a proof of existence of near-optimal 
methods that do not require prohibitively large training samples. In­
deed, in many cases, we do learn with remarkable speed and reliability. 
Language acquisition offers a striking example: children often memorize 
new words after hearing them just once or twice. Such "one-shot" learn­
ing has apparently little to do with statistical inference. Without going 
to such extremes, does not the simple observation that quick and reliable 
perceptual learning exists in living brains contradict the conclusions of 
the previous chapter? 

The answer is that the bias/variance dilemma can be circumvented if 
one is willing to give up generality, that is, purposefully introduce bias. 
In this way, variance can be eliminated, or significantly reduced. Of 



Neural Networks and the Bias/Variance Dilemma 47 

course, one must ensure that the bias is in fact harmless for the problem 
at hand: the particular class of functions from which the estimator is to 
be drawn should still contain the regression function, or at least a good 
approximation thereof. The bias will then be harmless in the sense that it 
will contribute significantly to mean-squared error only if we should at­
tempt to infer regressions that are not in the anticipated class. In essence, 
bias needs to be designed for each particular problem. For a discussion of 
this point in a psychological perspective, and some proposals for specific 
regularities that living brains may be exploiting when making nontrivial 
generalizations, see Shepard (1989). 

Similar suggestions have been made by several other authors in the 
specific context of neural networks (cf. Anderson et al. 1990). Indeed, it 
has been found that for many problems a constrained architecture can do 
better than a general-purpose one (Denker et al. 1987; Waibel et al. 1988; 
Le Cun et al. 1989; Solla 1989). This observation has a natural expla­
nation in terms of bias and variance: in principle, the synaptic weights 
in a "generalist" neural network should converge to a satisfactory solu­
tion if such a solution exists, yet in practice this may be unfeasible, as 
a prohibitive number of examples are required to control the variance 
(not to mention the computational problem of identifying good minima 
in "weight space"). In some cases, a set of simple constraints on the ar­
chitecture, that is, a bias, will essentially eliminate the variance, without 
at the same time eliminating the solution from the family of functions 
generated by the network. A simple example of such a situation is the so­
called contiguity problem (Denker et al. 1987; Solla 1989). In a statistical 
physics perspective, introducing bias may also be viewed as a means of 
decreasing an appropriately defined measure of entropy of the machine 
(Carnevali et al. 1987; Denker et al. 1987; Tishby et al. 1989; Schwartz et 
al. 1990). 

In many cases of interest, one could go so far as to say that design­
ing the right biases amounts to solving the problem. If, for example, 
one could prewire an invariant representation of objects, then the bur­
den of learning complex decision boundaries would be reduced to one 
of merely storing a label. Such a machine would indeed by very bi­
ased; it would, in fact, be incapable of distinguishing among the various 
possible presentations of an object, up-side-up versus up-side-down, for 
example. This is, then, perhaps somewhat extreme, but the bias/variance 
dilemma suggests to us that strong a priori representations are unavoid­
able. Needless to say, the design of such representations, and other biases 
that may be essential, for example, to auditory perception or to other cog­
nitive tasks, is a formidable problem. Unfortunately, such designs would 
appear to be much more to the point, in their relevance to real brains, 
than the study of nonparametric inference, whether neurally inspired or 
not. This suggests that the paradigm of near tabula rasa learning (i.e., 
essentially unbiased learning), which has been so much emphasized in 



48 S. Geman, E. Bienenstock, and R. Doursat 

the neural-computing literature of the last decade, may be of relatively 
minor biological importance. 

It may still be a good idea, for example, for the engineer who wants 
to solve a task in machine perception, to look for inspiration in living 
brains. In the best of all cases, this could allow him or her to discover 
the nature of the biases "internalized" during the course of phylogenetic 
and ontogenetic evolution. However, the hope that current connectionist 
networks already inherit the biases of real brains from the mere fact that 
they are built from "brain-like" processing elements seems farfetched, to 
say the least. Indeed, one could reasonably question the extent to which 
connectionist networks adequately reflect the basic principles of anatomy 
and physiology of living brains (see, e.g., Crick 1989). 

6.1 Further Experiments with Handwritten Numerals. We have per­
formed some further experiments on handwritten-numeral recognition 
for the purpose of illustrating the possible advantages of forgoing gener­
ality in a challenging inference problem, and concentrating, instead, on 
the design of appropriate bias. These experiments were inspired from a 
theory of neural coding (von der Malsburg 1981, 1986; von der Malsburg 
and Bienenstock 1986) that emphasizes the role of accurate temporal cor­
relations across neuronal populations. This theory leads to an alternative 
notion of distance between patterns (sensory stimuli) that accommodates, 
a priori, much of the invariance that would otherwise need to be learned 
from examples (Bienenstock and Doursat 1991). In brief, von der Mals­
burg and Bienenstock argue that living brains, exploiting the fine tem­
poral structure of neural activity, are well-suited to the task of finding 
near-optimal, that is, topology-preserving, maps between pairs of labeled 
graphs. In a simple example, such graphs could be the nearest-neighbor, 
black-white, graphs defined by the 16 x 16 binary character arrays used 
in our handwritten-numeral experiments. These map computations give 
rise to a natural metric, which measures the extent to which one pattern 
needs to be distorted to match a second pattern. Shifts, for example, cost 
nothing, and two patterns that differ only by a shift are therefore deemed 
to be zero-distance apart. Small distortions, such as a stroke extending 
at a slightly different angle in one character than in another, incur only 
small costs: the distance between two such patterns is small. A very 
similar notion of distance has arisen in computer vision, via so-called 
deformable templates, for the purpose of object recognition (see Fischler 
and Elschlager 1973; Widrow 1973; Burr 1980; Bajcsy and Kovacic 1989; 
Yuille 1990). For applications to image restoration and pattern synthesis, 
as well as to recognition, see Grenander et al. (1990), Knoerr (1988), and 
Amit et a/. (1991). 

Given a pair of 16 x 16 binary images, x and x', let us denote by 
m(x, x') the "deformation metric" suggested by the von der Malsburg­
Bienenstock theory. A formal definition of the metric m, as well as de­
tails behind the biological motivation and a more extensive discussion of 



Neural Networks and the Bias/Variance Dilemma 49 

experiments, can be found in Bienenstock and Doursat (1989, 1991) and 
in Buhmann et al. (1989). For our purposes, the important point is that 
m(x, x') measures the degree of deformation necessary to best match the 
patterns represented by x and x'. Recall that the Parzen-window and 
nearest-neighbor methods require, for their full specification, some metric 
on the range of the input, x, and recall that we used the Hamming dis­
tance in our earlier experiments (see Section 3.5.5). Here, we experiment 
with k-nearest-neighbor estimation using the graph-matching metric, m, 
in place of Hamming distance. Of course by so doing we introduce a 
particular bias: small changes in scale, for example, are given less im­
portance than when using Hamming distance, but this would seem to be 
highly appropriate for the task at hand. 

Figure 17 summarizes the results of these experiments. The task was 
the same as in Section 3.5.5, except that this time we added no noise to 
the discretized images of handwritten numerals. Examples of the uncor­
rupted numerals used for these experiments are shown in the top four 
rows of Figure 12. As in our previous experiments, they-axis indicates 
mean-squared error (see Section 3.5.5), which can be used to approxi­
mate the percent misclassification by the rough rule of thumb: percentage 
misclassification = 20 x mean-squared error. There are three curves in Fig­
ure 17. Two of these give results from experiments with the k-nearest­
neighbor estimator: one using the graph-matching metric and the other, 
for comparison, using the Hamming distance. Also for comparison, a 
third curve gives results from experiments with the backpropagation net­
work described in Section 3.5.3. As we have noted earlier, the neural net 
performance does not necessarily improve with each learning iteration. 
To make the most of the feedforward neural network, we have again 
used, for each number of hidden units, the optimal number of iterations 
(see Section 3.5.5). Note that the x-axis now serves two purposes: it 
indicates the value of k for the two k-nearest-neighbor curves, but also 
the number of hidden units for the neural network estimator; there is no 
correspondence between the two scales, the only purpose of this simul­
taneous display being the comparison of the performances in each of the 
three methods. 

We first observe that the best performances of the two nonparametric 
estimators (k-nearest-neighbor with Hamming distance and backpropa­
gation network) are almost identical. This comes as no surprise since we 
observed similar results in our experiments with the noisy data in Sec­
tion 3. The result of interest here is that when the image space is equipped 
with the graph-matching distance m, rather than the usual Hamming 
distance, the performance of the k-nearest-neighbor classifier improves 
significantly. More experiments, including other nonparametric schemes 
(Parzen windows as well as various neural networks) applied either to 
the raw image or to an image preprocessed by extraction of local features, 
confirm that the use of the graph-matching distance yields significantly 
better results on this task (Bienenstock and Doursat 1991). 



50 S. Geman, E. Bienenstock, and R. Doursat 

Hanrning 

backpropagation 

k,H.U. 

Figure 17: Classification of handwritten numerals: performance as a function 
of the number k of neighbors in a k-nearest-neighbor estimator (curves marked 
"Hamming" and "elastic matching") and the number of hidden units in a feed­
forward neural network trained by error backpropagation (curve marked "back­
propagation"). The two curves representing k-nearest-neighbor estimation are 
the results of experiments with two different measures of distance, and hence 
two notions of "neighbor." The first is ordinary Hamming distance (the pat­
terns are binary); the second is a measure of the deformation necessary to bring 
one pattern into another (the "elastic matching" metric). 

Evidently then, the metric arising from graph matching is more suit­
able for the problem at hand than the straightforward Hamming distance, 
arising from the pixel-array representation. By adopting a different repre­
sentation, we have introduced a very significant bias, thereby achieving a 
better control of the variance. We believe, more generally, that adopting 



Neural Networks and the Bias/Variance Dilemma 51 

an appropriate data representation is an efficient means for designing 
the bias required for solving many hard problems in machine percep­
tion. This view is of course shared by many authors. As Anderson and 
Rosenfeld (1988) put it: "A good representation does most of the work." 

7 Summary----------------------

To mimic substantial human behavior such as generic object recognition 
in real scenes - with confounding variations in orientation, lighting, 
texturing, figure-to-ground separation, and so on- will require complex 
machinery. Inferring this complexity from examples, that is, learning it, 
although theoretically achievable, is, for all practical matters, not feasible: 
too many examples would be needed. Important properties must be 
built-in or "hard-wired," perhaps to be tuned later by experience, but not 
learned in any statistically meaningful way. 

These conclusions and criticisms are probably shared by many au­
thors. They can perhaps be argued most convincingly from the point of 
view of modern statistical theory, especially the theory of nonparametric 
inference. We have therefore presented a tutorial on the connection be­
tween nonparametric inference and neural modeling as it stands today, 
and we have used the statistical framework, together with some simple 
numerical experiments, to argue for the limitations of learning in neural 
modeling. 

Of course most neural modelers do not take tabula rasa architectures 
as serious models of the nervous system; these are viewed as providing 
a mere starting point for the study of adaptation and self-organization. 
Such an approach is probably meant as a convenience, a way of concen­
trating on the essential issue of finding neurally plausible and effective 
learning algorithms. It strikes us, however, that identifying the right 
"preconditions" is the substantial problem in neural modeling. More 
specifically, it is our opinion that categorization must be largely built in, 
for example, by the use of generic mechanisms for representation, and 
that identifying these mechanisms is at the same time more difficult and 
more fundamental than understanding learning per se. 

Acknowledgments ____________________________________ _ 

We are indebted to Isabelle Guyon and the AT&T Bell Laboratories for 
providing the data set of handwritten numerals used in our experiments, 
and to Nathan Intrator for a careful reading of the manuscript and many 
useful comments. S. G. was supported by Army Research Office Contract 
DAAL03-86-K-0171 to the Center for Intelligent Control Systems, Na­
tional Science Foundation Grant DMS-8813699, Office of Naval Research 



52 S. Geman, E. Bienenstock, and R. Doursat 

Contract N00014-88-K-0289, and the General Motors Research Labora­
tories. E. B. was supported by grants from the Commission of Euro­
pean Communities (B.R.A.I.N. ST2J-0416) and the French Ministere de la 
Recherche (87C0187). 

References 

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. 1985. A learning algorithm 
for Boltzmann machines. Cog. Sci. 9, 147-169. 

Akaike, H. 1973. Information theory and an extension of the maximum likeli­
hood principle. In Proceedings of the 2nd International Symposium on Informa­
tion Theory, B. N. Petrov and F. Csaki, eds., pp. 267-281. Akademia Kiado, 
Budapest. 

Amari, S. I. 1967. A theory of adaptive pattern classifiers. IEEE Transact. Elect. 
Computers EC-16, 299-307. 

Amari, S. I. 1990. Dualistic geometry of the manifold of higher-order neurons. 
Tech. Rep. METR 90-17, Department of Mathematical Engineering and In­
strumentation Physics, University of Tokyo, Bunkyo-Ku, Tokyo. 

Amari, S. I., Kurata, K., and Nagaoka, H. 1990. Differential geometry of Boltz­
mann machines. Tech. Rep., Department of Mathematical Engineering and 
Instrumentation Physics, University of Tokyo, Bunkyo-Ku, Tokyo. 

Amit, Y., Grenander, U., and Piccioni, M. 1991. Structural image restoration 
through deformable templates. J. Am. Statist. Assoc. 86, 376-387. 

And~rson, J. A., and Rosenfeld, E. 1988. Neurocomputing, Foundations of Research, 
p. 587. MIT Press, Cambridge MA. 

Anderson, J. A., Silverstein, J. W., Ritz, S. A., and Jones, R. S. 1977. Distinctive 
features, categorical perception, and probability learning: Some applications 
of a neural model. Psycho!. Rev. 84, 413-451. 

Anderson, J. A., Rossen, M. L., Viscuso, S. R., and Sereno, M. E. 1990. Ex­
periments with representation in neural networks: Object motion, speech, 
and arith:tnetic. In Synergetics of Cognition, H. Haken and M. Stadler, eds. 
Springer-Verlag, Berlin. 

Azencott, R. 1990. Synchronous Boltzmann machines and Gibbs fields: Learn­
ing algorithms. In Neurocomputing, Algorithms, Architectures and Applica­
tions, F. Fogelman-Soulie and J. Herault, eds., pp. 51-63. NATO ASI Series, 
Vol. F68. Springer-Verlag, Berlin. 

Bajcsy, R., and Kovacic, S. 1989. Multiresolution elastic matching. Comput. 
Vision, Graphics, Image Process. 46, 1-21. 

Baldi, P., and Hornik, K. 1989. Neural networks and principal component anal­
ysis: Learning from examples without local minima. Neural Networks 2, 
53-58. 

Barron, A. R. 1989. Statistical properties of artificial neural networks. Proc. of 
the 28th Con[. Decision Control, Tampa, Florida, 280-285. 



Neural Networks and the Bias/Variance Dilemma 53 

Barron, A. R. 1991. Complexity regularization with application to artificial 
neural networks. In Nonparametric Functional Estimation and Related Topics, 
G. Roussas, ed., pp. 561-576. Kluwer, Dordrecht. 

Barron, A. R., and Barron, R. L. 1988. Statistical learning networks: A unifying 
view. In Computing Science and Statistics, Proceedings of the 20th Symposium 
Interface, E. Wegman, ed., pp. 192-203. American Statistical Association, 
Washington, DC. 

Baum, E. B. 1990a. The perceptron algorithm is fast for nonmalicious distribu­
tions. Neural Camp. 2, 248-260. 

Baum, E. B. 1990b. When are k-nearest-neighbor and backpropagation accurate 
for feasible-sized sets of examples? In Proceedings Eurasip Workshop on Neural 
Networks, L. B. Almeida and C. J. Wellekens, eds., pp. 2-25. Springer-Verlag, 
Berlin. 

Baum, E. B., and Haussler, D. 1989. What size net gives valid generalization? 
Neural Camp. l, 151-160. 

Baum, L. E. 1972. An inequality and associated maximization technique in 
statistical estimation for probabilistic functions of Markov processes. In­
equalities 3, 1-8. 

Bellman, R. E. 1961. Adaptive Control Processes. Princeton University Press, 
Princeton, NJ. 

Bienenstock, E., and Doursat, R. 1989. Elastic matching and pattern recogni­
tion in neural networks. In Neural Networks: From Models to Applications, 
L. Personnaz and G. Dreyfus, eds., pp. 472-482. IDSET, Paris. 

Bienenstock, E., and Doursat, R. 1991. Issues of representation in neural net­
works. In Representations of Vision: Trends and Tacit Assumptions in Vision 
Research, A. Gorea, ed., pp. 47-67. Cambridge University Press, Cambridge. 

Bourlard, H., and Kamp, Y. 1988. Auto-association by multi-layer perceptrons 
and singular value decomposition. Bioi. Cybernet. 59, 291-294. 

Bourlard, H., and Wellekens, C. J. 1990. Links between Markov models and 
multilayer perceptrons. IEEE Transact. Pattern Anal. Machine Intell. 12, 1167-
1178. 

Breiman, L., and Friedman, J. H. 1985. Estimating optimal transformations for 
multiple regression and correlation. f. Am. Stat. Assoc. 80, 580-619. 

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984. Classification 
and Regression Trees. Wadsworth, Belmont, CA. 

Buhmann, J., Lange, J., von der Malsburg, Ch., Vorbriiggen, J. C., and Wurtz, 
R. P. 1989. Object recognition in the dynamic link architecture: Parallel 
implementation on a transputer network. In Neural Networks: A Dynamic 
Systems Approach to Machine Intelligence, B. Kosko, ed. Prentice Hall, New 
York. 

Burr, D. J. 1980. Elastic matching of line drawings. IEEE Transact. Pattern Anal. 
Machine Intel/. PAMI-3 6, 708-713. 

Carnevali, P., and Patarnello, S. 1987. Exhaustive thermodynamic analysis of 
Boolean learning networks. Europhys. Lett. 4, 1199-1204. 

Chauvin, Y. 1990. Dynamic behavior of constrained back-propagation networks. 
In Neural Information Processing Systems II, D. S. Touretzky, ed., pp. 642-649. 



54 S. Geman, E. Bienenstock, and R. Doursat 

Morgan Kaufmann, San Mateo, CA. 
Collins, E., Ghosh, S., and Scofield, C. 1989. An application of a multiple neu­

ral network learning system to emulation of mortgage underwriting judge­
ments. Nestor Inc., Providence, RI. 

Cox, D. R. 1970. The Analysis of Binary Data. Methuen, London. 
Crick, F. 1989. The recent excitement about neural networks. Nature (London) 

337, 129-132. 
Cybenko, G. 1989. Approximations by superpositions of a sigmoidal function. 

Math. Control, Signals Syst. 2, 303-314. 
Dempster, A. P., Laird, N. M., and Rubin, D. B. 1976. Maximum likelihood from 

incomplete data via the EM algorithm. f. R. Statist. Soc. B 39, 1-38. 
Denker, L Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., and Hop­

field, J. 1987. Automatic learning, rule extraction and generalization. Com­
plex Syst. 1, 877-922. 

Diaconis, P., and Freedman, D. 1986. On the consistency of Bayes estimates. 
Ann. Statist. 14, 1-26. 

Duda, R. 0., and Hart, P. E. 1973. Pattern Classification and Scene Analysis. Wiley, 
New York. 

Dudley, R. M. 1987. Universal Donsker classes and metric entropy. Ann. Prob. 
15, 1306-1326. 

Faraway, J. J., and Jhun, M. 1990. Bootstrap choice of bandwidth for density 
estimation. J. Am. Statist. Assoc. 85, 1119-1122. 

Fischler, M., and Elschlager, R. 1973. The representation and matching of pic­
torial structures. IEEE Transact. Comput. 22, 67-92. 

Fodor, J. A., and Pylyshyn, Z. 1988. Connectionism and cognitive architecture: 
A critical analysis. Cognition 28, 3-71. 

Friedman, J. H. 1991. Multivariate adaptive regression splines. Ann. Statist. 19, 
1-141. 

Friedman, J. H., and Stuetzle, W. 1981. Projection pursuit regression. J. Am. 
Statist. Assoc. 76, 817-823. 

Funahashi, K. 1989. On the approximate realization of continuous mappings 
by neural networks. Neural Networks 2, 183-192. 

Gallinari, P., Thiria, S., and Fogelman, F. 1988. Multilayer perceptrons and data 
analysis. Proc. IEEE ICNN 88(1), 391-399. 

Geman, S., and Hwang, C. 1982. Nonparametric maximum likelihood estima­
tion by the method of sieves. Ann. Statist. 10, 401-414. 

Goldman, L., Weinberg, M., Weisberg, M., Olshen, R., Cook, E. F., Sargent, 
R. K., Lamas, G. A., Dennis, C., Wilson, C., Deckelbaum, L., Fineberg, H., 
and Stiratelli, R. 1982. A computer-derived protocol to aid in the diagnosis 
of emergency room patients with acute chest pain. New Engl. J. Med. 307, 
588-596. 

Grenander, U. 1951. On empirical spectral analysis of stochastic processes. Ark. 
Matemat. 1, 503-531. 

Grenander, U. 1981. Abstract Inference. Wiley, New York. 
Grenander, U., Chow, Y. S., and Keenan, D. 1990. HANDS, A Pattern Theoretic 



Neural Networks and the Bias/Variance Dilemma 55 

Study of Biological Shapes. Springer-Verlag, New York. 
Guyon, I. 1988. Reseaux de neurones pour Ia reconnaissance des formes: archi­

tectures et apprentissage. Unpublished doctoral dissertation, University of 
Paris VI, December. 

Hansen, L. K., and Salamon, P. 1990. Neural network ensembles. IEEE Transact. 
Pattern Anal. Machine Intell. PAMI-12(10), 993-1001. 

Hardie, W. 1990. Smoothing Techniques with Implementation in S. Springer Series 
in Statistics. Springer-Verlag, New York. 

Hardie, W., Hall, P., and Marron, J. S., 1988. How far are automatically chosen 
regression smoothing parameters from their optimum? f. Am. Statist. Assoc. 
83, 86-95. 

Hartman, E. J., Keeler, J.D., and Kowalski, J. M. 1990. Layered neural networks 
with gaussian hidden units as universal approximations. Neural Comp. 2, 
210-215. 

Haussler, D. 1989a. Generalizing the PAC model: Sample size bounds from 
metric dimension-based uniform convergence results. Proc. 30th Ann. Symp. 
Foundations Comput. Sci., IEEE. 

Haussler, D. 1989b. Decision theoretic generalizations of the PAC model for 
neural net and other learning applications. Preprint. 

Hinton, G. E., and Nowlan, S. J. 1990. The boostrap Widrow-Hoff rule as a 
duster-formation algorithm. Neural Comp. 2, 355-362. 

Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltzmann 
machines. In Parallel Distributed Processing: Explorations in the Microstructure 
of Cognition. Vol. 1: Foundations, D. E. Rumelhart, J. L. McClelland, and the 
PDP group, eds., pp. 282-317. MIT Press, Cambridge, MA. 

Hornik, M., Stinchcombe, M., and White, H. 1989. Multilayer feedforward 
networks are universal approximators. Neural Networks 2, 359-366. 

Huber, P. J. 1985. Projection pursuit. Ann. Statist. 13, 435-475. 
Intrator, N. 1990. Feature extraction using an exploratory projection pursuit 

neural network. Ph.D. Thesis, Division of Applied Mathematics, Brown 
University, Providence, Rl. 

Kamin, E. D., 1990. A simple procedure for pruning back-propagation trained 
neural networks. IEEE Transact. Neural Networks 1(2), 239-242. 

Knoerr, A. 1988. Global models of natural boundaries: Theory and applica­
tions. Ph.D. Thesis, Division of Applied Mathematics, Brown University, 
Providence, Rl. 

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., 
and Jackel, L. D. 1989. Backpropagation applied to handwritten zip code 
recognition. Neural Comp. 1, 541-551. 

Lippmann, R. P. 1987. An introduction to computing with neural nets. IEEE 
ASSP Mag. April, 4-22. 

Lippmann, R. P. 1989. Review of neural networks for speech recognition. Neural 
Comp. 1, 1-39. 

Lorenzen, T. J. 1988. Setting realistic process specification limits- A case study. 
General Motors Research Labs. Publication GMR-6389, Warren, MI. 



56 S. Geman, E. Bienenstock, and R. Doursat 

Maechler, M., Martin, D., Schimert, J., Csoppenszky, M., and Hwang, J. N. 1990. 
Projection pursuit learning networks for regression. Preprint. 

Marron, J. S. 1988. Automatic smoothing parameter selection: A survey. Em­
pirical Econ. 13, 187-208. 

Martin, G. L., and Pittman, J. A. 1991. Recognizing hand-printed letters and 
digits using backpropagation learning. Neural Comp. 3, 258-267. 

Morgan, N., and Bourlard, H. 1990. Generalization and parameter estimation 
in feedforward nets: Some experiments. In Neural Information Processing 
Systems II, D. S. Touretzky, ed., pp. 630-637. Morgan Kaufmann, San Mateo, 
CA. 

Mozer, M. C., and Smolensky, P. 1989. Skeletonization: A technique for trim­
ming the fat from a network via relevance assessment. In Advances in Neural 
Information Processing Systems I, D. S. Touretzky, ed., pp. 107-115. Morgan 
Kaufmann, San Mateo, CA. 

O'Sullivan, F., and Wahba, G. 1985. A cross validated Bayesian retrieval al­
gorithm for non-linear remote sensing experiments. f. Comput. Phys. 59, 
441-455. 

Poggio, T., and Girosi, F. 1990. Regularization algorithms for learning that are 
equivalent to multilayer networks. Science 247, 978-982. 

Pollard, D. 1984. Convergence of Stochastic Processes. Springer-Verlag, Berlin. 
Rissanen, J. 1986. Stochastic complexity and modeling. Ann. Statist. 14(3), 

1080--1100. 
Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory of 

Brain Mechanisms. Spartan Books, Washington. 
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986a. Learning internal 

representations by error propagation. In Parallel Distributed Processing: Ex­
plorations in the Microstructure of Cognition. Vol. 1: Foundations, D. E. Rumel­
hart, J. L. McClelland, and the PDP group, eds., pp. 318-362. MIT Press, 
Cambridge, MA. 

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986b. Learning represen­
tations by backpropagating errors. Nature (London) 323, 533-536. 

Schuster, E. F., and Gregory, G. G. 1981. On the nonconsistency of maxi­
mum likelihood nonparametric density estimators. In Computer Science and 
Statistics: Proceedings of the 13th Symposium on the Interface, W. F. Eddy, ed., 
pp. 295-298. Springer-Verlag, New York. 

Schwartz, D. B., Samalam, V. K., Solla, S. A., and Denker, J. S. 1990. Exhaustive 
learning. Neural Comp. 2, 374--385. 

Scott, D., and Terrell, G. 1987. Biased and unbiased cross-validation in density 
estimation. J. Am. Statist. Assoc. 82, 1131-1146. 

Shepard, R. N. 1989. Internal representation of universal regularities: A chal­
lenge for connectionism. In Neural Connections, Mental Computation, L. Nadel, 
L. A. Cooper, P. Culicover, and R. M. Harnish, eds., pp. 104--134. Brad­
ford /MIT Press, Cambridge, MA, London, England. 

Smolensky, P. 1988. On the proper treatment of connectionism. Behav. Brain Sci. 
11, 1-74. 

Solla, S. A. 1989. Learning and generalization in layered neural networks: The 



Neural Networks and the Bias/Variance Dilemma 57 

contiguity problem. In Neural Networks: From Models to Applications, L. Per­
sonnaz and G. Dreyfus, eds., pp. 168-177. IDSET, Paris. 

Stone, M. 1974. Cross-validatory choice and assessment of statistical predictors 
(with discussion). f. R. Statist. Soc. B36, 111-147. 

Tishby, N., Levin, E., and Solla, S. A. 1989. Consistent inferences of probabilities 
in layered networks: Predictions and generalization. In IfCNN International 
Joint Conference on Neural Networks, Vol. II, pp. 403-409, IEEE, New York. 

Vapnik, V: N. 1982. Estimation of Dependences Based on Empirical Data. Springer­
Verlag, New York. 

Vardi, Y., Shepp, L. A., and Kaufman, L. 1985. A statistical model for positron 
emission tomography (with comments). f. Am. Statist. Assoc. 80, 8-37. 

Veklerov, E., and Llacer, J. 1987. Stopping rule for the MLE algorithm based on 
statistical hypothesis testing. IEEE Transact. Med. Imaging 6, 313-319. 

von der Malsburg, Ch. 1981. The correlation theory of brain function. Inter­
nal Report 81-2, Max Planck Institute for Biophysical Chemistry, Dept. of 
Neurobiology, Gottingen, W.-Germany. 

von der Malsburg, Ch. 1986. Am I thinking assemblies? In Brain Theory, 
G. Palm and A. Aertsen, eds., pp. 161-176. Springer-Verlag, Heidelberg. 

von der Malsburg, Ch., and Bienenstock, E. 1986. Statistical coding and short­
term synaptic plasticity: A scheme for knowledge representation in the 
brain. In Disordered Systems and Biological Organization, E. Bienenstock, F. Fo­
gelman, and G. Weisbuch eds., pp. 247-272. Springer-Verlag, Berlin. 

Wahba, G. 1979. Convergence rates of "thin plate" smoothing splines when the 
data are noisy. In Smoothing Techniques for Curve Estimation, T. Gasser and 
M. Rosenblatt, eds., pp. 233-245. Springer-Verlag, Heidelberg. 

Wahba, G. 1982. Constrained regularization for ill posed linear operator equa­
tions, with applications in meteorology and medicine. In Statistical Decision 
Theory and Related Topics III, Vol. 2, S. S. Gupta and J. 0. Berger, eds., pp. 383-
418. Academic Press, New York. 

Wahba, G. 1984. Cross validated spline methods for the estimation of multivari­
ate functions from data on functionals. In Statistics: An Appraisal, Proceedings 
50th Anniversary Conference Iowa State Statistical Laboratory, H. A. David and 
H. T. David, eds., pp. 205-235. Iowa State Univ. Press, Ames. 

Wahba, G. 1985. A comparison of GCV and GML for choosing the smoothing 
parameter in the generalized spline smoothing problem. Ann. Statist. 13, 
1378-1402. 

Wahba, G. and Wold, S. 1975. A completely automatic French curve: fitting 
spline functions by cross validation. Commun. Statist. 4, 1-17. 

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. 1988. Phoneme 
recognition using time-delay networks. Proc. ICASSP-88, New York. 

White, H. 1988. Multilayer feedforward networks can learn arbitrary mappings: 
Connectionist nonparametric regression with automatic and semi-automatic 
determination of network complexity. UCSD Department of Economics Dis­
cussion Paper. 

White, H. 1989. Learning in artificial neural networks: A statistical perspective. 
Neural Camp. 1, 425-464. 



58 S. Geman, E. Bienenstock, and R. Doursat 

White, H. 1990. Connectionists nonparametric regression: multilayer feedfor­
ward networks can learn arbitrary mappings. Neural Networks 3, 535-549. 

Widrow, B. 1973. The rubber mask technique, Part I. Pattern Recognition 5, 175-
211. 

Yuille, A. 1990. Generalized deformable models, statistical physics, and match­
ing problems. Neural Comp. 2, 1-24. 

Received 4 May 1991; accepted 3 June 1991. 




