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A workflow to process 3Dþtime microscopy
images of developing organisms and reconstruct
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The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3Dþtime

image data sets is a major challenge at the forefront of developmental biology. Despite recent

breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage

tree for any developing organism remains a difficult task. We present here the BioEmergences

workflow integrating all reconstruction steps from image acquisition and processing to

the interactive visualization of reconstructed data. Original mathematical methods and algo-

rithms underlie image filtering, nucleus centre detection, nucleus and membrane

segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin

embryos with stained nuclei and membranes. Subsequent validation and annotations are carried

out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools,

our workflow achieved the best lineage score. Delivered in standalone or web service mode,

BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology.
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C
ells being the necessary level of integration of biological
processes1, multicellular organization is best described by
the cell lineage tree deployed in space and time. Thus, the

quantitative investigation of cell behaviour based on lineage
branches annotated with relevant measurements at the individual
cell level is the indispensable basis for reconstructing the
multilevel dynamics of developing organisms2. Accurate and
precise data about cell positions, trajectories, divisions, nucleus
and cell shapes can be derived from the automated processing
of 3Dþtime images. Contributions in the field point to the
necessary co-optimization of 4D multimodal imaging techniques
and algorithmic image processing workflows3–5. Ideally, going
from the microscopy data to the interactive visualization of the
cell lineage tree and segmented shapes should be automated,
easily manageable and fast enough to allow a quantitative
comparison of individuals6.

In recent years, decisive breakthroughs were made in the
microscopy imaging of living systems, thanks to progress in
fluorescent protein engineering7–9 and microscopy imaging
techniques, including multiphoton laser scanning microscopy
(MLSM) and selective plane illumination microscopy (SPIM)10.
Concomitantly, image processing methods for cell segmentation,
cell tracking and the analysis of new types of quantitative data
have diversified and improved3–5,11–13. The huge data flow
produced by 3Dþtime imaging of live specimens has also greatly
benefited from faster computer hardware and computing grid
architectures able to cope with high-dimensional data sets14.
Finally, computer-aided data analysis and visualization software
have completed the toolbox of quantitative developmental
biology15.

Successful applications are still rare, however, and producing
an accurate cell lineage tree for any developing organism remains
a difficult challenge. In 2006, the automated reconstruction of the
nematode cell lineage from confocal images established the first
standard16, although it did not yield reliable results beyond the
194-cell stage. Later, reconstructions were attempted on more
complex organisms, such as the zebrafish embryo imaged by
digital scanned laser light-sheet fluorescence microscopy
(DSLM)17 or Drosophila imaged by MLSM during
gastrulation18, but they did not provide long-term accurate
single-cell tracking either. A concurrent work4 on semi-
automated cell lineage reconstruction from harmonic
generation imaging of non-labelled zebrafish embryos provided
six digital specimens with precise nucleus and membrane
segmentation, yet was limited to the first 10 divisions of the egg
cell. Most recently, Amat et al.5 delivered a standalone software
for the reconstruction of cell lineages from Drosophila embryos
with fluorescently stained nuclei. Their method, also tested on
developing mouse and zebrafish embryos, is well suited for the
low background and high temporal resolution of SPIM data.
Among all the state-of-the-art algorithmic image processing
strategies, whether commercial or open-source software, the latter
is the only one offering 3Dþtime cell tracking with detection
of mitotic events to reconstruct the branching dynamics of
cell lineage. Altogether, the growing number of solutions available
today confirms that the automated reconstruction of cell
trajectories and cell shapes, together with their interactive
visualization, is at the cutting edge of developmental biology.
Obviously, the performance achieved so far in terms of accuracy,
scalability and ease of operation leaves plenty of room for
improvement. There are still a great number of methods to
explore, and more to invent in the fields of image processing and
machine vision.

We deliver here an original image processing workflow,
BioEmergences, in the form of standalone software. Although
optimized for MLSM data and fast cell movements in gastrulating

zebrafish embryos, it generally performs well on 3Dþtime
imaging data without heavy requirements in terms of spatial
and temporal resolution, or signal-to-noise ratio. In addition to
the reconstruction of the cell lineage branching process, the
BioEmergences workflow includes segmentation algorithms for
cell nucleus and membrane shapes. These are based on the
‘subjective surface’ method, which can complete cell contours
from heterogeneous fluorescent membrane staining19. The
standalone version of the workflow can be operated through a
graphical user interface, and its output data are connected to
Mov-IT, a custom-made interactive visualization software.
Alternatively, our web service offers users customized assistance
and fast processing on computer clusters or on the European Grid
Infrastructure (EGI), together with the possibility to explore a
large parameter space for the optimization of results (see Methods
to request access).

We demonstrate the reconstruction and analysis of six digital
embryos from three different species. All the data obtained, raw
and reconstructed, is made available to the community. The
BioEmergences workflow is compared with eight other software
tools from four different providers on the basis of ‘gold standard’
data sets obtained by manual validation and correction of cell
lineages. It scores best in all three tested categories: nucleus centre
detection, linkage and mitosis detection. Thus, the combined
BioEmergences/Mov-IT platform can contribute to the definition
of standard procedures for the reconstruction of lineage trees
from 4D in vivo data. The validation, annotation and analysis
tools provided here support detailed, large-scale cell clonal
analysis and characterization of cell behaviour along the lineage
tree. This leads the way to the creation of benchmarks for a new
type of interdisciplinary and quantitative integrative biology.

Results
Overview of the BioEmergences workflow. The phenomen-
ological reconstruction of embryonic cell lineage starts from
multimodal 4D data, typically comprising at least one channel for
the fluorescent signals emitted by cell nuclei, and possibly another
one for cell membranes. Although nuclear staining is essential
for cell tracking, membrane staining is necessary to assess cell
morphology and neighbourhood topology. We deliver the first
public version of the standalone BioEmergences workflow, with
graphical user interface, able to launch a succession of algorithmic
steps on two-channel raw data (Fig. 1 and Methods). Image
filtering, nucleus centre detection, membrane shape segmentation
and cell tracking methods were all designed and tuned to deal
with the inherent noise and incompleteness of 4D imaging data
generated by MLSM (Fig. 2). The BioEmergences standalone
pipeline produces reconstructed data that can be directly
displayed by the interactive visualization software, Mov-IT
(Methods). By superimposing reconstructed data on raw data,
Mov-IT adds visual inferences to create an ‘augmented
phenomenology’. This allows the user to control data quality,
measure the error rate, easily correct cell detection and tracking
errors, and investigate the clonal history of cells and their
behaviour.

The automated tracking of cells from 4D image data sets
across whole living embryos involves a difficult trade-off between
interdependent variables: signal-to-noise ratio, spatial and
temporal resolution, imaging depth and cell survival. Microscopy
techniques for in vivo and in toto imaging of developing
organisms are evolving rapidly. In particular, the combination
of two-photon excitation fluorescence for deep-tissue imaging
over extended periods of time20,21 with parallelized microscopy
based on SPIM/DSLM is a promising approach22, although it is
not yet widely available for routine time-lapse imaging in
developmental biology.
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We explored here the coupling of two femtosecond lasers with
two upright laser-scanning microscopes (Supplementary Fig. 1).
Our methods are illustrated on 6-h spatiotemporal sequences

covering the cleavage and gastrulation periods in Danio rerio
(Dr1 and Dr2) and Phallusia mammillata (Pm1 and Pm2), and
the cleavage stages in Paracentrotus lividus (Pl1 and Pl2; Fig. 2
and Supplementary Movies 1, 2 and 3). The ascidian and
echinoderm embryos were imaged in toto, allowing the
reconstruction of the complete cell lineage across entire
specimens. The subvolume imaged in the developing zebrafish
contained up to 9,500 cells, adding the difficulties of high nucleus
density and noise increase along the imaging depth. The user can
choose between a standalone version, easily deployed on a
personal computer but limited in terms of scalability, and a web
service with user support, made to rapidly process large data sets
through parallel implementation on our computer clusters and
the EGI (Supplementary Note 1 on computational speed).
The latter is especially powerful for optimizing the choice of
algorithm parameters under expert supervision. The comparison
of the BioEmergences workflow with other available strategies
demonstrates the performance and usefulness of our tools.

Image processing steps. The BioEmergences automated image
processing workflow (Fig. 1) is delivered as a standalone code that
can be executed from the command line and, in part, from a
graphical user interface. It starts by filtering the images and
detecting the cell centres from local maxima, then performs a
tracking of the cells’ trajectories, with optional segmentation of
the shapes of nuclei and membranes, producing in the end a
digital specimen in output (Methods, Supplementary Movies 4,
5 and 6).

Filtering and nucleus centre detection algorithms based on
multiscale image analysis23 and partial differential equations
(PDEs) are particularly useful for data sets that contain a high
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Figure 1 | The BioEmergences reconstruction workflow. From top to

bottom: successive steps starting from embryo preparation and leading to

the reconstructed data, all readily available for display and analysis by the

interactive visualization tool Mov-IT. Each processing step is described in

greater detail in the Methods. We propose two alternative nuclear centre

detection methods. Either output can be used for shape segmentation

and/or cell tracking.
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Figure 2 | Reconstructing early embryogenesis from time-lapse optical sectioning. (a–d) Danio rerio data set Dr1, animal pole (AP) view; (a,b) sphere

stage, volume cut at 68mm of the AP to visualize deep cells; (c,d) 1-somite stage (1 s), volume cut at 76 mm of the AP; NK, neural keel; PCP, prechordal

plate; YSL, yolk syncytial layer. (e–h) Phallusia mammillata data set Pm1, vegetal view, circum notochord side up; (e,f) gastrula stage; (g,h) tailbud stage.

(i–l) Paracentrotus lividus data set Pl1, lateral view, AP up; (i,j) 57-cell stage; (k,l) blastula stage. (a,c,e,g,i,k) 3D raw data visualization (with Amira software),

hours post fertilization (h.p.f.) indicated top right, developmental stage indicated bottom left, scale bars, 50mm. (a,c,i,k) Nuclear staining from

H2B-mCherry mRNA injection (in orange), membrane staining from eGFP-HRAS mRNA injection (in green). (e,g) Nuclear staining from H2B-eGFP mRNA

injection (in blue-green). (b,d,f,h,j,l) Reconstructed embryo visualized with the Mov-IT tool, corresponding to (a,c,e,g,i,k), respectively. Each cell is

represented by a dot with a vector showing its path over the next time steps (15 for the zebrafish data, 9 for the ascidian and sea urchin data). Colour

code indicates cell displacement orientation.
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density of nuclei, as observed in the zebrafish by the end of
gastrulation and beyond. Starting from raw images (Fig. 3a), an
initial image filtering step removes noise through geodesic mean
curvature flow (GMCF)24 relying on a nonlinear geometrical PDE
that can simultaneously smooth and sharpen the image25. Next,
the position of each nucleus is found by a flux-based level set
(FBLS) centre detection method (Fig. 3b)26. It identifies objects
with ‘humps’ in the image intensity function, and places nuclear
centres at local maxima. This is done through a nonlinear
advection-diffusion equation that moves each level set of image
intensity by a constant normal velocity and curvature.

Alternatively, we also provide a module performing well with a
low density of nuclei and highly contrasted images. Based on a
difference of Gaussians (DoG) convolution filter, it is able to
simultaneously smooth the image and keep the most salient
features. In the web service implementation of the workflow,
parameters of the Gaussians are interactively selected upon visual
inspection of the resulting centres.

In an optional step, both nucleus and membrane geometries
are automatically found by shape segmentation (Fig. 3c–e) using

the subjective surface (SubSurf) technique initialized with the
previously detected cell centres27–29. The numerical discretization
of GMCF, FBLS and SubSurf is based on the co-volume method30

and its parallel implementation19. The SubSurf method was also
used to segment the global volume of imaged embryonic tissue,
useful to estimate the average cell density and its evolution
through time (Fig. 3f–h). Finally, our original cell tracking
algorithm inputs the list of approximate centres of cell nuclei and
outputs their lineage in space and time following a three-step
strategy. The first step initializes the lineage links by a
nearest-neighbour heuristic method. The second step uses
simulated annealing31, a variant of the Metropolis algorithm, to
progressively enforce a set of constraints reflecting a priori
biological knowledge. This is achieved by repeated random trials
of link modification, and validation of possible changes according
to a cost function, based on a weighted sum of contributing terms
and a ‘temperature’ parameter. The last step uses simulated
annealing to link childless and motherless cells to the tree in an
acceptable way, leaving open the possibility to make a posteriori
changes in the detected nuclei.
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Figure 3 | Chain of PDE-based algorithms for the 3D segmentation of embryonic cells. Results from the zebrafish data set Dr1. Scale bars in mm (100 in

a,b,f,g, 10 in c,d,e). (a) Raw data image; single z section at 67 mm depth (orientation as in Fig. 2d), magnification in inset. (b) Nucleus centre detection by

the FBLS method, after filtering by GMCF; approximate centres (cyan cubes) superimposed on raw data (grey levels, same orthoslice as a). Magnification in

insets: left inset at depth 67mm; right inset located one section deeper, showing that several centres not displayed at 67 mm were in fact correctly detected

and visible below the chosen plane (white arrowheads); remaining centres can be found on other planes using the Mov-IT interactive visualization tool.

(c) Nucleus segmentation by SubSurf method; left panels: an interphase nucleus; right panels: a metaphase nucleus; top panels: initial segmentation (pink

contour) superimposed on raw data (grey levels); bottom panels: final segmentation (orange contours) superimposed on the same raw data. (d) Nucleus

segmentation by SubSurf method; top panel: three nuclear contours superimposed on two raw-data orthoslices; bottom panel: 3D rendering of the

segmented nuclei on a single orthoslice. (e) Membrane segmentation by SubSurf method; top panel: one cell membrane contour superimposed on two-raw

data orthoslices; bottom panel: 3D rendering of the segmented membrane shape on a single orthoslice. (f) 3D rendering of segmented cell shapes.

(g) Embryo shape segmentation; local cell density increasing from blue to red (same orthoslice as a). (h) Total cell number (blue curve) and cell density

(brown curve) as a function of time; arrow indicates the end of gastrulation correlating with a plateau in cell density.
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Visualization and validation. After processing, each step of the
reconstruction can be interactively visualized and analysed with
the Mov-IT software. Developed to address the needs of biologists
investigating the potential of in silico embryology based on
3Dþtime microscopy imaging, Mov-IT allows easy validation
and correction of nucleus detection and cell lineage by super-
imposing reconstructed data on raw data. To this aim, it provides
a complete set of tools including 3D volume rendering, 2D
orthoslice views, cell lineage and segmentation display.

The Mov-IT software was used to validate the reconstruction of
our six specimens’ cell lineage trees. The sea urchin (Pl1,2) and
ascidian (Pm1,2) data sets were extensively checked and curated,
producing quasi error-free digital specimens (gold standards)
over an average of 30,000 temporal links. The fish data sets
(Dr1,2) were only partly checked because of their large number of
cells. More than 80,000 tracking links and 1,200 cell divisions
were validated and, when necessary, corrected in the data set Dr1
chosen to establish our standard validation protocol (Fig. 4a–d,
Methods, Supplementary Movies 7, 8 and 9).

The performance of our automated workflow on data set Dr1
was evaluated on three processing outputs: nuclear centre
detection, linkage (by tracking cells one time step in the past)
and mitosis detection. For each output, three success or error
percentages were calculated: a sensitivity (representing the rate of
true positives (TPs)), a false detection rate (representing false
positives (FPs)) and a false negative (FN) rate. Finally, the
product of centre detection sensitivity and linkage sensitivity
produced a global lineage score (Methods, Supplementary Table 1
and Supplementary Fig. 2). On average over four windows of 21
time steps distributed in the first 360 time steps of data set Dr1
(1h30 out of 6h40 of imaging from prior gastrulation to the 1
somite stage), the average linkage sensitivity of BioEmergences
was 97.89%, meaning that only 2.11% of the cells were missed or
not correctly tracked between time steps. FP nuclei were a
negligible source of tracking errors (0.21%). False trajectories, in
which tracking jumped from one cell to another between two
time steps were observed in a very small number of cases, too
(1.03%). The performance on small organisms, sea urchin and
ascidian, was close to the gold standards for the best part of the
images. Cell detection and tracking were occasionally poorer,

depending on the image quality, essentially the signal-to-noise
ratio, which degraded with imaging depth.

The relevance and usefulness of the BioEmergences
reconstruction workflow are demonstrated by comparing its
outputs with those obtained on the same dataset Dr1 using
state-of-the-art commercial and open-source software. Eight
image processing tools from four different providers were deemed
suitable to handle gigabytes of time-lapse data. Their performance
was tested on the detection of nuclear centres, links and cell
divisions in several time intervals (Fig. 5, Methods and
Supplementary Table 1). Based on measures of TP rates, called
‘sensitivity’, and FP rates, our methods produced the best results
in every category. In particular, BioEmergences had the lowest
rate of false linkage at 1% (Fig. 5h, column e). It also obtained an
average mitosis sensitivity of 67% against 13% for Amat et al. and
0% for the rest (Fig. 5h, column c), meaning that the other tools
were actually not designed to join lineage branches through the
detection of divisions. Our software and Amat et al.’s software
were the only ones allowing the linkage of one mother cell at time
step t to two daughter cells at time step tþ 1. In essence, mitosis
detection is a special task that only two packages among the nine
that we tested were able to solve. Typically, it is at the time of
anaphase and telophase that an algorithm can detect two separate
nuclei, and as soon as it does it must also link them back to their
mother. If this is not accomplished, the lineage tree will lack a
junction. Even when a mitotic event is missed, most methods
are still able to correctly track the resulting two cells, but
these cells will not be properly annotated as daughters
(Supplementary Movie 10).

Overall, our workflow reached an average ‘lineage score’ of 96%
(the product of centre sensitivity and linkage sensitivity), whereas
Amat et al. had 83% and all other tools remained below 50%
(Fig. 5h, column g). Behind these average values, there was also a
noticeable degradation of performance at later developmental
stages in all systems except BioEmergences (Fig. 5g).

Analysis of cell fate and proliferation in digital specimens. The
cell lineage tree is the cornerstone of a detailed understanding of
morphogenetic processes (Supplementary Note 2 on in silico fate

a b

c

5.88 h.p.f.5.80 h.p.f.5.73 h.p.f. 5.95 h.p.f.5.88 h.p.f. 5.90 h.p.f. 5.94 h.p.f.

d11.61 h.p.f. 11.61 h.p.f.

Figure 4 | Visualization and validation of the lineage tree reconstruction (zebrafish dataset Dr1). Results from the zebrafish data set Dr1. All

screenshots taken from the Mov-IT visualization interface, then tagged. (a) Cell division illustrated by three snapshots; time in hours post fertilization

(h.p.f.) indicated top right; cell centres (cyan cubes) and cell paths (cyan lines) superimposed on two raw-data orthoslices showing the membranes

(grey levels). (b) Flat representation of the cell lineage tree for three cell clones over 17 consecutive time steps: each cell is represented by a series of cyan

squares, linked according to the cell’s clonal history; the cell dividing in Fig. 4a is circled. (c,d) Nucleus centre detection in a subpopulation of cells chosen at

11.61 h.p.f. Mov-IT visualization in ’checking mode’ adding short vertical white lines to the detected centres, and displaying correct nuclei in green and false

positives in red; (c) all detected nuclei; (d) validated nuclei only.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9674 ARTICLE

NATURE COMMUNICATIONS | 7:8674 | DOI: 10.1038/ncomms9674 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


mapping). Digital specimens, such as the examples presented
here, constitute a unique source of in-depth knowledge into
embryonic patterning and the individuation of morphogenetic
fields (Fig. 6). In the zebrafish embryo, cells from the epiblast,
hypoblast or epithelial enveloping layer were distinguished
according to their position and behaviour32, and selected in the
digital specimen with the Mov-IT tool. The selected cell
populations were tracked, either backward or forward, revealing
their relative movements with resolution at the cellular level
during gastrulation stages (Fig. 6a,b and Supplementary Movie
11). The more stereotyped cell lineage of the tunicate Phallusia
mammillata allowed us to transpose the state-of-the-art fate map
established at the 110-cell stage33. Cells were marked in the digital
specimen according to their presumptive fate (Fig. 6c,d and
Supplementary Movie 12). The propagation of the 110-cell stage

fate map along the cell lineage revealed the patterning of all the
morphogenetic fields with a temporal resolution in the minute
range. In the sea urchin embryo at cleavage stages, the cell
membrane channel was used to mark cells according to their
volume. This led to the identification of the three cell populations:
micromeres, macromeres and mesomeres, organized along the
vegetal-animal axis, with further segregation of macromeres
into Vg1 and Vg2 subtypes, and micromeres into small and
large subtypes34 (Fig. 6e,f and Supplementary Movie 13). The
propagation of colours along the cell lineage showed that, despite
limited cell dispersion, the cellular organization in the sea urchin
embryo varied from one embryo to another.

The Mov-IT interface was also designed for fast import of
processed data files in order to perform a systematic analysis of
cell and tissue properties (Mov-IT tutorial). This is illustrated by
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Figure 5 | Comparative performance of nine software tools on zebrafish data set Dr1. The BioEmergences workflow presented here (red) was evaluated

alongside Imaris (four shades of blue), Icy (yellow), Volocity (two shades of green) and Amat et al.5 (pink). Measurements were made by comparing the

outcome of three reconstruction methods: nucleus detection, cell tracking (linkage) and mitosis detection, to a set of validated events (positions,

trajectories, divisions) registered in a ‘gold standard’. This was done inside four time intervals centred in 4.36, 6.22, 8.08 and 9.95 h.p.f. (a) Sensitivity of

nuclear centre detection, representing the rate of true positive (TP) centres. (b) Sensitivity of linkage, representing the rate of TP links (restricted to the

subset of TP centers that possessed a validated link). (c) Sensitivity of mitosis detection, representing the rate of TP divisions (restricted to the subset of TP

centres). (d–f) Rates of false positive (FP) centres, links and divisions (only two software tools applicable to the latter). (g) Global lineage score, equal to

the linkage sensitivity times the centre detection sensitivity: all methods except BioEmergences deteriorate noticeably at later developmental stages.

(h) Average rates calculated over the four time intervals: each column displays the mean heights of one of the previous seven charts. BioEmergences

obtained the best results in every category: highest values in a–c,g (success rates), lowest values in d–f (failure rates). Formulas can be seen in Methods,

detailed values in Supplementary Table 1.
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the analysis of the evolution of cell proliferation and cell density
in our sea urchin, ascidian and zebrafish specimens
(Supplementary Fig. 3). Further statistical analysis and measure-
ments are expected to contribute in a feedback loop to theoretical
models and numerical simulations (Supplementary Fig. 4).

Discussion
The BioEmergences reconstruction pipeline, accessible through a
simple graphical user interface, was designed to run as quickly
and efficiently as possible from the acquisition of microscopy
images to the display of cell lineage and cell segmentation aligned
with raw data. Although the standalone version was crafted for
convenient processing of small data sets on a laptop computer,
there is no size limit on the data that can be uploaded to the
BioEmergences web service through iRODS, an open-source data
management software and the OpenMOLE engine14 for data
processing on the EGI.

The concept of ‘augmented phenomenology’, coined to
describe the overlay of raw and reconstructed data required for
validation, correction and analysis, is fully exploited using the
custom-made Mov-IT software. This tool serves in particular to

demonstrate that the reconstructed cell lineages meet the best
quality of precision and accuracy. So far, cell lineage data can only
be validated by eye inspection or by comparison with available
gold standards, which are established manually and cross-checked
by at least two experts. Corrected data sets are considered error-
free as long as experts do not dispute this conclusion. Although
gold standards themselves depend on what the eye can achieve, it
is generally accepted that automated image processing software is
still on average less effective than human vision. Our cross-
software comparison method based on a set of validated events
(cell positions, temporal links, divisions) is a step in the direction
of standardized validation and comparison protocols. All the
results led to the conclusion that the BioEmergences workflow
achieved the best performance on standard data produced by
MLSM imaging with a temporal resolution chosen to explore
either a small specimen (sea urchin or tunicate embryo) or up to
one-third of the zebrafish gastrula. The software provided by
Amat et al. was the next best, but its performance dropped faster
than BioEmergences with the increase in cell density and tissue
thickness.

The cell tracking pipeline delivered here should be useful for a
large variety of model organisms that have adequate optical
properties to allow the acquisition of 3Dþtime data sets,
including a channel for stained nuclei. The requirements in
terms of spatial and temporal resolution and signal-to-noise ratio
are easily fulfilled with commercial microscopy setups, either
MLSM or SPIM. However, the accuracy of cell lineage
reconstruction depends to a great extent on the quality of the
data. Biologists who try for the first time the automated
processing of their time-lapse images might have to adjust their
staining and imaging scheme to increase the quantity of
information collected, especially across tissue depth. Image
processing outcome also depends on the selection of algorithm
parameters. This might require a few trials in the standalone
version, if the default parameters do not already lead to
satisfactory results. The web service version, on the other hand,
offers the advantage of fast processing on a grid infrastructure,
allowing the concurrent execution of hundreds of parameter
combinations that can be easily explored by the user through
Mov-IT, as done for the DoG centre detection method.

The detection of cell nuclei is a critical step, as it is used not
only for cell tracking but also for nucleus and membrane shape
segmentation, which must be performed on validated nuclei to
avoid major errors but is computationally expensive. Although
the standalone software performs well on a few selected cells,
full-scale shape segmentation can be achieved in a reasonable
amount of time only on a computing cluster such as the one
accessible through the BioEmergences web service. Segmentation
output can also be verified with Mov-IT, but its quantitative
validation remains an issue35.

The public availability of the BioEmergences platform and its
application to the embryogenesis of model organisms is intended
to open the path to in silico embryology based on digital
specimens. We illustrate this ambition with fate-map studies.
The possibility of constructing complete fate maps in digital
specimens, as we achieved for the tunicate embryos, is a
revolution in the field. Finally, although delivering here a
standalone software, we also expect to initiate through the web
service option a synergistic effort of the scientific community
towards further validation, correction and annotation of digital
specimens.

Methods
Embryo staining and mounting. Wild-type Danio rerio (zebrafish) embryos were
injected at the one-cell stage with 200 pg H2B-mCherry and 200 pg enhanced green
fluorescent protein (eGFP)-HRAS mRNA prepared from PCS2þ constructs36,37.

a b4.2 h.p.f. 10.9 h.p.f.

c d5 h.p.f. 8.6 h.p.f.

e 4.3 h.p.f. 9.5 h.p.f.f

Sphere 1 s

32-cell Blastula 

Gastrula TB

Figure 6 | Automated fate map propagation. Cells were manually selected

according to their identity or fate, using the interactive visualization tool

Mov-IT. Developmental stages indicated bottom left, developmental times

in h.p.f., top right. All scale bars, 50mm. (a,b) Three cell populations in

Danio rerio specimen Dr1, animal pole view; (a) sphere stage, ventral

(anterior) up, enveloping layer cells in cyan, epiblast cells in blue;

(b) 1-somite stage, same colour code plus hypoblast cells in yellow.

(c,d) Fate map in Phallusia mammillata specimen Pm1, vegetal view, circum

notochord up, colour code as in ref. 33; (c) gastrula stage; (d) tailbud (TB)

stage with automated propagation along the cell lineage of the fate map

shown in c. (e,f) Cell populations in Paracentrotus lividus specimen Pl1,

lateral view, animal pole up; small micromeres in dark purple, large

micromeres in light purple; mesomeres in cyan. (e) 32-cell stage,

macromeres in red; (f) blastula stage, Veg1 cell population in red,

Veg2 cell population in yellow.
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Although mCherry was not as bright as eGFP and bleached more through imaging,
this colour combination was the best compromise for a proper staining of cell
membranes and further segmentation. Injected embryos were raised at 28.5 �C for
the next 3 h. Embryos were mounted in a 3-cm Petri dish with a glass coverslip
bottom, sealing a hole of 0.5 mm at the dish centre, where a Teflon tore
(ALPHAnov) with a hole of 780 mm received the dechorionated embryo. The
embryo was maintained and properly oriented by infiltrating around it 0.5%
low-melting-point agarose (Sigma) in embryo medium38. Temperature control in
the room resulted in B26 �C under the objective, slightly slowing down
development with respect to the standard 28.5 �C developmental table32

(Supplementary Table 2). After the imaging procedure, the embryo morphology
was checked under the dissecting binocular and the animal was raised for at least
24 h to assess morphological defects. Embryo survival depended on total imaging
duration, average laser power and image acquisition frequency (time step Dt). The
zebrafish data sets Dr1 and Dr2 were imaged through a standardized procedure
with Dto150 s allowing up to 120 sections per time point with an average laser
power of 80 mW delivered to the sample for more than 10 h without detectable
photodamage. Lowering the laser power to less than 60 mW and increasing Dt up
to 3.5 min allowed imaging embryos for more than 20 h, then raising them to
adulthood. These conditions were used to obtain up to 320 sections at a 400 Hz line
scan rate (bidirectional scanning) or 200 Hz to improve signal-to-noise ratio.

Oocytes from Phallusia mammillata (ascidian) were dechorionated and injected
as described39 with 1 mg ml� 1 H2B-eGFP mRNA prior fertilization. Membrane
staining was obtained through continuous bathing in artificial sea-water containing
FM 4–64 (Life Technologies) at a concentration of 1.6 mg ml� 1. Embryos were
deposited in a hole made in 1% agarose in filtered sea water at the centre of a 3-cm
Petri dish.

Oocytes from Paracentrotus lividus (sea urchin) were prepared and injected as
described40 with 150 mg ml� 1 H2B-mCherry and 150 mg ml� 1 eGFP-HRAS
synthetic mRNA. Embryos were either maintained between slide and coverslip
covered with protamin41 or embedded in 0.25% low-melting-point agarose sea
water at the centre of a 3-cm Petri dish.

Image acquisition. Imaging was performed with Leica DM5000 and DM6000
upright microscopes SP5 MLSM, equipped with an Olympus 20/0.95NA W
dipping lens objective or a Leica 20/1NA W dipping lens objective. Axial resolution
at the sample surface (1.5 mm) was estimated by recording 3D images of 0.1 or
1 mm fluorescent polystyrene beads (Invitrogen) embedded in 1% agarose.
For the zebrafish specimen Dr1, the field size was 700� 700 mm2 in x, y and
142mm in z, with a voxel size of 1.37� 1.37� 1.37 mm3 and a time step of 67 s.
For the zebrafish Dr2, the field size was 775� 775 mm2 in x, y and 164 mm in z, a
cubic voxel of edge 1.51 mm and a time step 153 s. For the ascidian Pm1, these
dimensions were 384� 384 mm2 in x, y, 165 mm in z, voxel 0.75� 0.75� 1.5 mm3

and time step 180 s. For the ascidian Pm2: 353� 353 mm2 in x, y, 188 mm in z, voxel
0.69� 0.69� 1.39 mm3 and time step 180 s. For the sea urchin Pl1: 280� 280 mm2

in x, y, 86mm in z, voxel 0.55� 0.55� 1.09 mm3 and time step 207 s. For the sea
urchin Pl2: 266� 266 mm2 in x, y, 82mm in z, voxel 0.52� 0.52� 1.05 mm3 and
time step 180 s. For two-colour acquisition, simultaneous two-photon excitation42

at two different wavelengths (1,030 and 980 nm) was performed with pulsed laser
beams (T-pulse 20, Amplitude Systèmes and Ti-Sapphire femtosecond oscillator
Mai Tai HP, Newport Spectra physics, respectively). Details of the optical bench are
provided in Supplementary Fig. 1. Raw-data movies were made with the Amira
software (Mercury Computer Systems).

Image processing algorithms. Explanation of the parameters and their useful
range, along with the specific values used to process data sets Dr1-2, Pm1-2 and
Pl1-2, are all provided in Supplementary Table 3. Filtering by GMCF relied on the
following PDE25,43,44:

@tu ¼ ruj jr � g rGs�uj jð Þ ru
ruj j

� �
: ð1Þ

It was accompanied by the initial condition u 0; xð Þ ¼ u0
N xð Þ, or u 0; xð Þ ¼ u0

M xð Þ,
where u0

N xð Þ and u0
M xð Þ are the image intensities of the nuclei and the membranes,

respectively, depending on which channel was filtered. In the GMCF model, the
mean curvature motion of the level sets of image intensity is influenced by the edge
indicator function g(s)¼ 1/(1þKs2), KZ0, applied to the image intensity gradient
pre-smoothed by convolution with a Gaussian kernel Gs of small variance s.
Details of the numerical method for solving equation (1) and its (parallel)
computer implementation are given in refs 25,43.

Centre detection by FBLS defined the nuclei as the local maxima of a smoothed
version of the original image. Our algorithm was based on the following PDE26:

@tuþ d ruj j ¼ m ruj jr � ru
ruj j

� �
; ð2Þ

where the initial condition was given by the intensity function of the filtered
nucleus image uf

N. Equation (2) represents the level-set formulation for the motion
of isosurfaces of solution u by a normal velocity V¼ dþ mk, where d and m are
constants and k is the mean curvature. Owing to the shrinking and smoothing of all
level sets, the function uf

N was simplified, and we observed a decrease in the

number of spatial positions of local maxima, which could be used as approximate
nuclear centre positions. Details of the numerical solution to equation (2) can be
found in refs 26,43.

Alternatively, smoothing and centre detection could be achieved by DoG,
a convolution of the image with two Gaussians of different standard deviations,
here 1.5–2.5 mm and 12–16 mm respectively. Their difference was calculated and the
gray values above a threshold between 1 and 10% were selected. This allowed to
simultaneously smooth the image and keep the most significant objects. We ran
multiple simulations combining different possible values of standard deviations
and thresholds. Optimal values were visually chosen with Mov-IT by interactively
checking the detection results.

Nucleus and membrane segmentation extracted the shapes of cell nuclei and/or
membranes by evolving an initial segmentation function based on the subjective
surface (SubSurf) equation27:

@tu�wcrg � ru ¼ wdg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ ruj j2

q
r � ruffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ ruj j2
q

0
@

1
A; ð3Þ

where g ¼ gðjrGs�uf
NjÞ for nucleus shapes, g ¼ gðjrGs�uf

MjÞ for membrane
shapes, and e, wc, wd are parameters. A detailed description of the role of these
parameters, with explicit and semi-implicit numerical schemes, along with a
discussion of the computational results is given in refs 28,29. The same
equation (3) is also used for the overall embryo shape segmentation29.

Our cell tracking algorithm uses simulated annealing (SimAnn). It takes in
input the list of approximate centres of cell nuclei detected at each time step, and
produces in output a lineage ‘forest’, a graph equal to the union of several disjoint
trees, in which each cell present at the first time step was the root of a lineage tree.
A graph is composed of a set of edges, or ‘links’, each of them connecting a nucleus
centre at time t to a nucleus centre at time tþ 1. The algorithm was implemented
by an automated three-stage process:

First, edges between centres at consecutive time steps were initialized using a
nearest-neighbour heuristic method. This created a set of links that were not
necessarily biologically plausible.

Second, simulated annealing31, a variant of the Metropolis algorithm45, was
used to progressively enforce a set of predefined constraints summarizing together
a certain number of biological requirements on the lineage forest, most notably:
each cell beyond the first time step should come from a single cell at a previous
time step; each cell should have a single ‘mother’ (a corresponding centre at t� 1);
no cell should have more than two ‘daughters’ (corresponding centres at tþ 1); no
cell should disappear (there is no cell death at these developmental stages in the
chosen species—an assumption invalid in other cases, such as mammalian
preimplantation embryos); divisions should not occur too frequently; cell
displacements should be bounded and so on. At the start, a finite set of allowed link
modifications and a cost function F measuring the departure from the constraints
were defined. Then, the algorithm relied on random link visits, and acceptance or
rejection of a potential link change based on its cost. More precisely, F was the
weighted sum of local contributions, each addressing one of the a priori biological
requirements. The cost function weights were selected after some initial trials of the
algorithm and visual inspection of the resulting lineages, then recorded in a
configuration file and kept constant during computation. This second stage
consisted of repeatedly selecting and tentatively modifying a link at random from
the list of permitted moves, then evaluating the resulting change through the cost
function. In case of cost decrease, the candidate change was systematically
accepted, whereas in case of cost increase, it was accepted with a probability
proportional to exp(�DF /T), where T is a ‘temperature’ parameter that was
progressively lowered (‘annealed’) over time so that fewer and fewer breaches to the
constraints were accepted. The temperature decrease schedule was linear with time.
The cost function also included terms to penalize deformations, to favour
symmetry in the behaviour of sister cells, to add noise-countering inertia, to bound
speed, and to account for division times.

Third, the final goal was to minimize false-positive and false-negative errors in
the nuclear detection steps. This was achieved by looking at the whole biological
coherence of the lineage tree and identifying lineage gaps or cells that lived only a
few time steps. The algorithm could then delete the centres of short branches or
introduce ‘virtual centres’ to regain continuity. To find a best solution, it used
simulated annealing again. A parallel implementation was written, which
partitioned space-time into different ‘cylinders’ that were run on different
processors, then merged the results.

Validation protocol. Obtaining a complete ‘gold standard’ annotated reference,
even for small animals such as the ascidian and sea urchin embryos, was possible
only with considerable human effort. The Phallusia and Paracentrotus data sets,
Pm1-2 and Pl1-2, were almost completely checked and curated. Cell tracking
accuracy depended on the imaging depth, along which the signal-to-noise ratio
degraded. Owing to the decrease in image quality with depth, there remained a few
errors for which there was no solution, even through manual expertise. We curated
around 25,000 temporal links in Pl1, 22,000 in Pl2, 30,000 in Pm1 and 40,000 in
Pm2. All divisions were also fully annotated. The four digital embryos produced
were validated by two independent experts.
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In the case of the zebrafish, however, a complete gold standard was almost
impossible due to a number of cell samples of the order of several million. Our gold
standard for the Danio data set Dr1 was obtained by a large-scale curation strategy:
(i) all detected nuclear centres were completely annotated inside 54 spatial boxes of
average size 340� 70� 140mm3 in x, y, z, over ten time steps starting at various
sample times t0A{1, 20, 100, 200, 300, 350}. By this method, 25,123 links were
manually checked, comprising 3,262 links for t0¼ 1 (from t¼ 1 to t¼ 10), 2,735 for
t0¼ 20 (from t¼ 20 to t¼ 29), 3,005 for t0¼ 100, 8,736 for t0¼ 200, 5,474 for
t0¼ 300 and 1,911 for t0¼ 350. This strategy insured even sampling throughout the
image data both in time and space (Fig. 4). (ii) As part of the investigation of the
zebrafish fate map, several cell clones were manually validated and when required
corrected along with the whole data set, corresponding to 50,503 additional curated
temporal links and the corresponding curated nuclei. (iii) An entire layer of
epithelial cells was completely curated at one specific time, t¼ 4. (iv) In addition,
a large number of links were randomly checked, bringing the total to 80,428.
(v) Finally, more than 600 mitoses were checked.

Accuracy estimation protocol. Taking the consistent and representative gold
standard of data set Dr1 as a basis, we were able to automatically identify and count
various error types in the reconstructed embryos (Supplementary Table 1). This
produced TP, FP and FN numbers, which were used as a performance metric for
BioEmergences and other software tools. The accuracy of a given processing
workflow was evaluated on three outputs: nuclear centre detection, linkage
(tracking cells one time step in the past) and mitosis detection.

By definition, the sum of TP and FN centres was equal to the total number of
centres in the gold standard. This relationship did not hold, however, for TP and
FN links or divisions because counting those events was restricted to the subset of
TP centres. For links, FN was the sum of the numbers of ‘wrong links’ (WL) and
‘missing links’ (ML). This is because WL, which connect a cell to a wrong target,
contributed both to FP (by creating new links that do not exist) and to FN (by
missing the correct links), whereas ML, which correspond to a cell without any
link, contributed only to FN.

Then, for each output, three types of success and error percentages were
measured: a ‘sensitivity’, equal to TP/(TPþ FN), a ‘false detection rate’, equal to
FP/(TPþ FP) and a ‘FN rate’, equal to FN/(TPþ FN). Finally, a ‘global lineage
score’ was calculated as the product of centre detection sensitivity and linkage
sensitivity. The rationale for this formula is that linkage alone could appear
successful even if many centres were missing, therefore it should be weighted by the
actual proportion of detected centres.

Software performance and comparison. We identified eight state-of-the-art
tools most relevant for our benchmark comparison: Icy (Spot Tracking, http://
icy.bioimageanalysis.org), Imaris (Autoregressive Motion Expert, Autoregressive
Motion, Brownian Motion and Connected Component, http://www.bitplane.com/
imaris/imaris), Volocity (Shortest Path and Trajectory Variation, http://
cellularimaging.perkinelmer.com/downloads) and the last method published
by Amat et al.5,46. For each software tool, if a command line mode was
available, we ran several reconstructions using different sets of parameters and
selected the most advantageous one. For example, in the case of Amat et al.,
we found that an optimal configuration was backgroundThreshold¼ 16 and
persistanceSegmentationTau¼ 0. If the software provided only a
visualization interface, we produced the best reconstruction by visual inspection
based on a few parameter variations.

We used data set Dr1 in input to all methods, preprocessed through our
filtering algorithm (GMCF, 5 iterations). The nucleus detection and tracking
outputs were compared with our gold standard data. To assess nucleus detection,
we explored the neighbourhood of validated centres by looking for other detected
centres at a distance of 0.2–0.6 times the average internuclear distance. The number
of correct links was estimated by inspecting the subset of detected nuclei labelled
TP that also possessed a link in the gold standard, and counting the correct links
from t to t� 1. Mitosis detection was also assessed within the set of TP nuclei.
All measurements were made over four separate windows of 21 time steps each:
from t¼ 0 to t¼ 20 (corresponding to 4.36±0.18 h.p.f.), from t¼ 100 to t¼ 120
(6.22 h.p.f.), from t¼ 200 to t¼ 220 (8.08 h.p.f.) and from t¼ 300 to t¼ 320
(9.95 h.p.f.). The final sensitivity, false detection and FN rates were averaged over
these four intervals. Detailed scores are shown in Supplementary Table 1.

Data sets and software. The standalone BioEmergences workflow, the
visualization tool Mov-IT and the six in vivo 3Dþtime image data sets are
provided online at http://bioemergences.iscpif.fr/bioemergences/openworkflow-
datasets.php. For each specimen, we provide the 4D raw-data images and the
corresponding reconstructed embryo. The parameters used to process these data
sets are provided in Supplementary Table 3.

Our BioEmergences platform is also available as a web service at http://
bioemergences.iscpif.fr/workflow/, which offers users customized assistance in
addition to fast processing. The online workflow architecture relies on iRODS,
an open-source data management software, and the OpenMOLE engine14,
a middleware platform facilitating the experimental exploration of complex
systems models on a computing cluster, which leverages the power of the EGI.

Interested users are invited to request access to these resources by sending an email
to nadine.peyrieras@cnrs.fr.
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Supplementary Information 

 
Supplementary Figure 1 | MLSM imaging setup. Laser 1: ytterbium mode-locked laser, with linear polarization, maximum 

power 1.1 W, wavelength 1 = 1030 nm, repetition rate 50 MHz, pulse duration 200 fs. Laser 2: tunable Ti-Sapphire mode-

locked laser used at fixed wavelength 2 = 980 nm, with linear polarization, maximum power 1 W at 2 = 980 nm, repetition 

rate 80 MHz, pulse duration < 100 fs. HWP: achromatic half-wave plate. PC: polarizing cube (HWP+PC is used as a hand 

power controller). BS: 50/50 beamsplitter (broadband, non-polarizing cube) to transform two separate beams with distinct 

wavelengths into two dual-wavelength beams with equal optical power. M: broadband dielectric mirror. 
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Supplementary Figure 2 | Eye inspection of false positive events. The automated comparison of the reconstructed data with 

the gold standard from zebrafish dataset Dr1 provided a list of false positive events that were verified with Mov-IT 

(Supplementary Software 2). Visual inspection demonstrated the validity of the conclusions drawn from our comparison 

protocol (Fig. 5 and Supplementary Table 3). Three examples of false positives in the reconstructed data obtained with Amat 

et al.’s software
1
 are presented here. (a,b) False positive nucleus detection creating a lineage branch. (a) Two approximate 

centers (pink and yellow) are found inside a single real nucleus, displayed at the intersection of three raw-data orthoslices 

(gray levels). In “checking mode”, Mov-IT extends detected centers with a short vertical white line to signal their presence 

across other z sections where they may not be visible. (b) Flat representation of the lineage tree with Mov-IT showing that this 

event is associated with a false positive division, since the two centers are interpreted as having the same mother cell. The 

false positive nucleus remained visible over the next time steps. (c,d) False positive cell division, displayed in a single raw-

data orthoslice (gray levels). (c) The putative mother is labeled with a pink dot. Future trajectories over the next three time 

steps are indicated by thin yellow lines. (d) A neighboring cell was incorrectly picked to be a daughter cell and colored in 

pink, too, since Mov-IT propagates colors assigned to selected cells along their lineage. (e,f) False positive nucleus detection 

ending a lineage branch. (e) Same display mode as (a) and, coincidentally, at the same time. (f) Flat representation of the 

lineage tree with Mov-IT showing that this particular false positive event actually originated earlier, then disappeared at 

4.36 hpf. 
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Supplementary Figure 3 | Cell proliferation rate and cell dispersion along the lineage tree. Left column: zebrafish dataset 

Dr1. Center column: ascidian dataset Pm1. Right column: sea urchin dataset Pl1. (a,b) The successive cell division cycles in 

the developing ascidian or sea urchin embryos were revealed by plotting (a) the total cell number and (b) the cell cycle length 

(time between two consecutive divisions) as functions of time, in hours post fertilization (hpf). In blue: all detected and 

tracked cells; in red: cells validated by eye inspection. Cell division synchrony was more prominent in the sea urchin. For the 
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zebrafish embryo, analyzed here at late blastula stages, the interpretation of the increase in cell number was highlighted by the 

quantification of cell density and internuclear distance (see next row). Whereas the sea urchin and ascidian reconstructed 

specimens were extensively corrected by experts to define gold standards, we only validated and corrected subsets of the 

zebrafish clones. The characteristics of the validated cells (in red) were consistent with a linear progression of cycle length for 

most cells throughout the blastula and gastrula stages. However, the dispersion of cycle length around the average, beside 

suggesting a certain number of errors in the detection of cell divisions (especially at late developmental stages), also 

highlighted a greater diversity of behaviors. In this respect, the ascidian Phallusia mammillata showed the largest variety of 

specific proliferation rates along the lineages. (c) Average distance between pairs of neighboring cell nuclei through divisions 

as a function of hpf (error margin in gray). Cells’ neighborhoods are calculated by 3D Delaunay triangulation using the 

Computational Geometry Algorithms Library (CGAL)
2
. In all three species, this average distance decreased during early 

embryogenesis and converged to a minimal value around 10µm, corresponding to an average cell diameter. This observation 

fits with the plot of cell density, obtained by segmentation of the global imaged volume (Fig. 3h), which increased throughout 

gastrulation and plateaued at the end of gastrulation (10 hpf). It is also consistent with an estimate of the average proliferation 

rate during the same developmental period
3
. (d) Average number of neighbors as a function of hpf. In both the zebrafish and 

the ascidian, this value is near 12, i.e. in the range of the perfect 3D hexagonal close packing
4
. In the sea urchin, the observed 

value of about 10 neighbors is consistent with the presence of a blastocoel and the organization of its early embryo into a 

pseudostratified epithelium. (e) Dispersion of cells as a function of hpf. At each time step, all possible pairs of neighboring 

cells are identified and tracked forward. Distances between neighbors are divided by the average internuclear distance. The 

resulting average normalized distance increases over time, providing a quantitative evaluation of cell dispersion. Information 

about the global cohesiveness of the embryonic tissues and indicates distinct developmental periods. 
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Supplementary Figure 4 | Formal and applied epistemology for the reconstruction of the multilevel dynamics of 

complex systems. This diagram summarizes our general methodology for the integrative modeling of living systems’ 

morphogenesis. Ultimately, imaging data revealing the characteristic scales of biological processes should lead to models 

coupling the different organization levels of developing embryos (molecular, cellular and tissular). The methods and tools 

provided in this publication are specific to the cellular level of organization. The architecture of the workflow accessible 

through our webservice, however, is ready for the integration of new algorithms operating on other types of data. The three 

bottom pictures illustrate our concepts with the biomechanical modeling of the sea urchin early embryogenesis (blastula 

stages): imaged live specimen (bottom-left panel), reconstructed specimen (bottom-center panel), and simulated specimen with 

the MecaGen platform
5
 (bottom-right panel, image courtesy of Julien Delile). We call phenomenological multilevel model, or 

“reconstruction” (middle-left panel and underlying triangle graph) the set of operations based on algorithmic methods to 

extract measurements from 3D+time images and provide the most accurate quantitative information relevant to the detected 

components: cell numbers, positions, shapes, interactions, trajectories, and so on. The design and implementation of image 

processing algorithms, data management, and analysis tools are key steps toward high-throughput 3D+time image analysis. 

This phenomenological reconstruction feeds a database of raw and reconstructed data used for statistical analysis. Quantitative 

results are then used to set the parameters of a theoretical model (top panel) and its derived numerical simulations, leading to a 

simulated multilevel model, or “virtual morphogenesis” (middle-right panel). This scheme creates a virtuous cycle of 

experimental validation of the models (top triangle graph) by questioning both the biological system and the simulation. 

Measuring the differences (’s) between the multiscale raw data (imaged specimen), the phenomenological data 

(reconstructed specimen) and the virtual data (simulated specimen), constitutes a major challenge. So far, the  between the 

raw and reconstructed data is estimated by a manual procedure using our custom-made visualization interface Mov-IT. 
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Supplementary Table 1 | Comparative performance of BioEmergences and eight software tools on dataset Dr1 

 

 
Lineage 
Score 

Center Detection Rates 
  

Linkage Rates 
only on TP centers with a GS past link 

Mitosis Detection Rates 
only on TP centers 

Software Tool 

%Sensitivity 

of centers  
%Sensitivity 

of links 

 
%Sensitivity: 

TP/(TP+FN)a 

%False 
Detection: 

FP/(TP+FP) 

%False 
Negative: 

FN/(TP+FN) 

 
%Sensitivity: 
TP/(TP+FN) 

%False 
Linkage: 

FP/(TP+FP) 

%False 
Negative: 

FN/(TP+FN) 

 
%Sensitivity: 
TP/(TP+FN) 

%False 
Detection: 

FP/(TP+FP) 

%False 
Negative: 

FN/(TP+FN) 

BioEmergences Workflow 96.04% 98.11% 0.21% 1.89% 97.89% 1.03% 2.11% 67.37% 37.03% 32.63% 

Imaris Autoregressive Motion Expert 15.50% 30.38% 2.22% 69.62% 51.03% 42.43% 48.97% 0.00% N/A 100.00% 

Imaris Autoregressive Motion 27.40% 35.08% 0.25% 64.92% 78.10% 20.71% 21.90% 0.00% N/A 100.00% 

Imaris Brownian Motion 29.43% 36.22% 0.24% 64.14% 82.05% 17.02% 17.95% 0.00% N/A 100.00% 

Imaris Connected Component 3.33% 32.34% 0.01% 67.66% 10.31% 8.60% 89.69% 0.00% N/A 100.00% 

Icy Spot Tracking 41.42% 47.35% 0.39% 52.65% 87.49% 9.72% 12.51% 0.00% N/A 100.00% 

Volocity Shortest Path 17.80% 31.04% 44.25% 68.96% 57.33% 39.26% 42.67% 0.00% N/A 100.00% 

Volocity Trajectory Variation 12.82% 31.07% 44.44% 68.93% 41.27% 43.02% 58.73% 0.00% N/A 100.00% 

Amat et al. 2014 83.06% 87.45% 0.86% 12.55% 94.99% 4.06% 5.01% 12.93% 82.06% 87.07% 

 
 

 

Mitosis Detection Counts 
only on TP centers 

Software Tool 
#Gold Std = GS #True Pos = TP #False Pos = FP #False Neg = FN 

t = 4.36* t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 

BioEmergences Workflow 

264 26 24 27 

203 22 12 15 6 7 17 25 53 4 12 12 

Imaris Autoregressive Motion Expert 0 0 0 0 0 0 0 0 37 7 8 4 

Imaris Autoregressive Motion 0 0 0 0 0 0 0 0 153 10 9 6 

Imaris Brownian Motion 0 0 0 0 0 0 0 0 162 11 10 7 

Imaris Connected Component 0 0 0 0 0 0 0 0 170 5 8 4 

Icy Spot Tracking 0 0 0 0 0 0 0 0 197 14 13 4 

Volocity Shortest Path 0 0 0 0 0 0 0 0 52 3 4 4 

Volocity Trajectory Variation 0 0 0 0 0 0 0 0 51 3 4 4 

Amat et al. 2014 83 2 1 0 49 23 111 116 135 20 21 23 
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Center Detection Counts 

 

Software Tool 
#Gold Std = GS #True Pos = TP #False Pos = FP #False Neg = FN 

t = 4.36* t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 

BioEmergences Workflow 

4356 4060 10957 7426 

4292 4035 10600 7262 15 1 25 18 64 25 357 164 

Imaris Autoregressive Motion Expert 1547 1682 2700 1479 16 67 51 33 2809 2378 8257 5947 

Imaris Autoregressive Motion 2226 1751 2797 1528 3 11 7 0 2130 2309 8160 5898 

Imaris Brownian Motion 2322 1791 2793 1525 4 3 1 9 2034 2269 8164 5901 

Imaris Connected Component 2427 1448 2298 1263 1 0 0 0 1929 2612 8659 6163 

Icy Spot Tracking 2849 2048 4717 2264 26 3 15 4 1507 2012 6240 5162 

Volocity Shortest Path 1936 946 2871 2244 1156 1096 2192 1669 2420 3114 8086 5182 

Volocity Trajectory Variation 1930 953 2869 2252 1184 1098 2231 1663 2426 3107 8088 5174 

Amat et al. 2014 3748 3926 9730 5810 43 22 42 78 608 134 1227 1616 

 

 
Linkage Counts 

only on TP centers with a GS past link 

Software Tool 
#Gold Std = GS #True Pos = TP 

#False Pos = FP = WL 
#Wrong Links (WL)b 

#False Neg = FN = WL + ML 
#Missing Links (ML)c 

t = 4.36* t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 t = 4.36 t = 6.22 t = 8.08 t = 9.95 

BioEmergences Workflow 

3329 3841 10283 7029 

3079 3641 9548 6501 44 
44 

15 
15 

98 
98 

84 
84 

132 
88 

26 
11 

171 
73 

123 
39 

Imaris Autoregressive Motion Expert 356 715 858 518 145 
145 

571 
571 

939 
939 

409 
409 

284 
139 

773 
202 

1067 
128 

409 
0 

Imaris Autoregressive Motion 1075 1167 1426 805 100 
100 

288 
288 

606 
606 

264 
264 

119 
19 

341 
53 

621 
15 

264 
0 

Imaris Brownian Motion 1170 1258 1559 847 101 
101 

239 
239 

478 
478 

221 
221 

112 
11 

283 
44 

492 
14 

221 
0 

Imaris Connected Component 103 94 97 167 2 
2 

9 
9 

23 
23 

8 
8 

1273 
1271 

1100 
1091 

1502 
1479 

676 
668 

Icy Spot Tracking 1456 1566 3482 1632 136 
136 

170 
170 

481 
481 

150 
150 

343 
207 

182 
12 

481 
0 

150 
0 

Volocity Shortest Path 503 446 1235 920 336 
336 

223 
223 

782 
782 

749 
749 

389 
53 

256 
33 

921 
139 

845 
96 

Volocity Trajectory Variation 399 299 890 647 272 
272 

205 
205 

672 
672 

594 
594 

486 
214 

409 
204 

1264 
592 

1128 
534 

Amat et al. 2014 2543 3510 8495 4754 84 
84 

54 
54 

344 
344 

394 
394 

141 
57 

66 
12 

378 
34 

452 
58 

*times in hours post fertilization (hpf) –  
a
displayed rates are averages of four ratios, one per time interval centered in 4.36 hpf, 6.22 hpf, 8.08 hpf and 9.95 hpf  

b
wrong links, which connect a cell to a wrong target, contribute both to false positives (by creating new links that do not exist) and to false negatives (by missing the correct links) 

c
missing links, which correspond to a cell without any link, contribute only to false negatives  
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Supplementary Table 2 | Developmental table of the imaged embryos (3 species, 2 specimens for each species) 

 

 
 

Developmental stages for the different species as described in (Danio rerio)
6
, (Ciona intestinalis)

7
 and (Strongylocentrotus sp.)

8
.  
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Supplementary Table 3 | Description of parameters 

 

Parameters for the GMCF filtering method
*
 

Name Description 
Useful 

range 

Used 

values 

For noisy 

data 

K 

parameter in the “diffusivity” function g; a larger K means that 

edges are better respected (make stronger obstacles) and thus 

better preserved by the nonlinear diffusion process 

0.1 – 100 5.0 

 

2.5 

τ 

time step in the discretization of the nonlinear diffusion model; 

a larger τ means that more smoothing is applied in one time 

step 

1 – 1.0e-4 2.0e-4 

 

0.0016 

σ 

time step for the linear diffusion used to pre-smooth the image 

gradient (edge detector) in the “diffusivity” function g; 

a larger σ means more smoothing of the gradient inside the 

edge detector, thus the final result is less sensitive to noise 

1 – 1.0e-4 1.0e-4 

 

0.0001 

ε 

regularization parameter inside the GMCF model used to 

prevent zero gradients in the denominators of the numerical 

scheme 

1 – 1.0e-6 1.0e-4 

 

1.0e-4 

iter 
number of time steps; a small iter means less smoothing of the 

image; a larger iter means more smoothing 

5 – 15 

depending 

on τ 

5 

for Dr1 

nuclei, 

10 

for all 

others 

 

 

15 

*
A more detailed explanation of the method, the meaning and choice of the parameters can be found in

9
. 

 

 

Parameters for the FBLS center detection method
**

 

Name Description Useful range 
Used 

values 

For noisy 

data 

F speed of advection in the normal direction 1-5 1 1.5 

D strength of the mean curvature flow diffusion 1 – 1.0e-4 12.5e-4 0.003 

epsilonD 

regularization parameter in the advective part of the 

FBLS model used to prevent zero gradients in the 

denominators of the numerical scheme 

1-1.0e-6  1 

 

1.0 

epsilonF 

regularization parameter in the mean curvature part of 

the FBLS model used to prevent zero gradients in the 

denominators of the numerical scheme 

1 – 1.0e-6 1.0e-6 

 

1.0e-6 

τ 

time step of the FBLS center detection method; τ is 

restricted by the Courant-Friedrichs-Lewy (CFL) 

stability condition 

5 – 1.0e-4 

12.5e-4 for 

Dr2, 5e-4
 

for others 

 

0.001 

threshold 

the local maxima above this threshold are counted as cell 

centers at the current time step; a small threshold means 

that more centers (even inside one cell) are detected; a 

large threshold means that less centers are detected 

1 – 1.0e-2 8.0e-2 

 

0.06 

iter number of time steps 

4 – 50 

depending 

on τ 

15 (Dr1) 

4 (Dr2) 

10 (Pl1) 

16 (Pl2), 

30 (Pm) 

 

 

40 

**
A more detailed explanation of the method, the meaning and choice of the parameters can be found in

10,11
. 
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Parameters for the DoG center detection algorithm 

Name Description 
Useful 

range 

Used values (first  last time step) 

Dr1 Dr2 Pl1 Pl2 Pm1 Pm2 

Std Small 
standard deviation of one Gaussian in m, 

related to the smallest possible nucleus size 
1 – 3.1 

2.4 

 
1.6 

2.4 

 
2.2 

2.2 

 
1.2 

1.8 

 
1.2 

2.8 

 
1.6 

2.6 

 
1.6 

Std Big 
standard deviation of one Gaussian in m, 

related to the largest possible nucleus size 
10 – 20 16 18 12 

12  

14 

12  

16 

12  

18 

Threshold normalized threshold of signal intensity 1 – 9e-2 
3  

4e-2 

4  

3e-2 

2  

4e-2 

2  

4e-2 
3e-2 1e-2 

 

 

Parameters for the Simulated Annealing (SimAnn) cell tracking algorithm 

Name Description 
Useful 

range 

Used values 

Dr1 Dr2 Pl1 Pl2 Pm1 Pm2 

p1 

proportion of cells where SimAnn is applied; cells 

are sorted by decreasing cost and only the ones 

with the highest costs are processed 

0.2 – 1 0.5 0.5 0.4 0.5 0.5 0.4 

p2 number of repetitions in the entire SimAnn run 1 – 10 3 3 3 4 3 3 

p3 
number of nearest cells selected to modify the 

links from a given cell 
1 – 5 1 2 3 2 2 2 

p4 

number of iterations by cell: if n cells are being 

processed, SimAnn will perform np4 tentative 

link modifications 

1 – 20 11 10 10 9 10 11 

p5 

the initial temperature T is computed to make the 

probability of accepting a move (when the cost 

increases by an amount equal to the average of the 

100 highest costs in the population) equal to p5. 

0 – 0.3 0.1 0.1 0 0.1 0.1 0.1 

p6 same as p5 in determining the final temperature 0 – 0.01 1e-3 1e-3 1e-3 0 1e-3 1e-3 

p7 

coefficient of the cost associated to the 

deformation of the tissue between times t and t+1 

(this deformation depends on the choice of links) 

1 – 3 1 1 1 1 1 1 

p8 
coefficient of the cost associated with enforcing 

symmetric behaviors of daughter cells 
0 – 10 5 5 5 4 3 5 

p9 
coefficient of the cost associated with enforcing 

some amount of inertia (to cope with noise) 
0 – 10 1 1 1 1 1 1 

p10 
coefficient of the cost penalizing the end of a 

lineage branch (i.e. the disappearance of a cell) 

100 – 

200 
190 200 190 200 200 200 

p11 
coefficient of the cost penalizing the sudden 

appearance of a cell out of any former lineage 

100 – 

200 
140 150 160 150 150 150 

p12 
coefficient of the cost penalizing divisions 

occurring too early after a previous division 
0 – 10 2 3 2 2 2 2 

p13 coefficient of the cost penalizing acceleration 0 – 7 2 2 2 1 2 3 

p14 
coefficient of the cost penalizing speeds above a 

certain threshold (the threshold is hardcoded) 
0 – 10 3 4 2 3 3 4 

p15 
coefficient of the cost penalizing a cell at time t+1 

not linked to its closest neighbor at time t 
0 – 50 20 20 15 20 20 20 

p16 

coefficient favoring sisterhood of simultaneously 

born cells; p16 is used only when external 

information about division is available 

0 – 50 10 15 15 15 15 15 
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Parameters for the nucleus and membrane segmentation SubSurf method
***a

 

Name Description Useful range Used values 

K 

parameter in the edge detection function g; a larger K 

means that edges (but also noisy structures) are better 

respected by the segmentation process 

1 – 10e+3 1e+3 

V_adv speed of advection in the SubSurf model 1 – 20 10 

V_curv 
strength of the mean curvature flow regularization in 

the SubSurf model 
0.1 – 5 0.2 

τ 

time step for the segmentation method; τ is restricted 

by the Courant-Friedrichs-Lewy (CFL) stability 

condition in the advective part of the SubSurf model 

and should not be larger than 1/V_adv 

0.05 – 1 0.1 

σ 

time step for the linear diffusion used to pre-smooth 

the segmented image gradient (edge detector); a larger 

σ means more smoothing of the gradient inside the 

edge detector, thus the final result is less sensitive to 

noise but it can be oversmoothed as well 

1 – 20e-4 1e-4 

epsilon 
regularization parameter to prevent zero gradients in 

the denominators of the numerical scheme 
1e-6 1e-6 

edge_power 
parameter inside the function g; the norm of gradient is 

raised to the power edge_power 
1 – 6 1 

convolutionU 

if equal to 1, the linear diffusion smoothing 

(convolution) with parameter σ is applied to the 

segmented image; if equal to 0, the linear diffusion is 

not applied 

0 or 1 1 

convolutionPMC 

if equal to 1, the linear diffusion smoothing 

(convolution) with parameter σ is applied to the 

pixelwise output of the edge detection function g; 

if equal to 0, such linear diffusion is not applied 

0 or 1 0 

iter number of time steps in the segmentation process 

200 – 500 

for nuclei, 

1000 – 2000 

for membranes 

250 

for nuclei, 

1200 

for 

membranes 

embryo_type 

if equal to 1, the method is tuned for small and packed 

cells (i.e. Dr1-2 datasets); if equal to 2, then it can be 

used for large cells (i.e. Pl1-2 and Pm1-2 datasets)
 b
 

1 or 2 

1 

for Dr1, Dr2, 

2 

for the others 
***

A more detailed explanation of the method, the meaning and choice of the parameters can be found in
11,12

. 

 
a
The result of the segmentation process is in the form of VTK files containing integer values between 0 and 255 in every voxel. 

The segmented object can be rendered as triangulated surface by choosing a suitable isosurface value in the resulting VTK 

file (usually 128, but other values should be tried to obtain the best fit with the raw data). By choosing a larger isosurface 

value, one can obtain smaller segmented objects; by choosing a smaller isosurface value, larger segmented objects. 

 
b
The choice of 1 or 2 for embryo_type is related to the initial condition of the SubSurf segmentation process. The usual 

procedure is to construct a certain initial shape around the cell center, which is then evolved by the SubSurf method. This 

initial condition should be chosen according to the size of the cells and their expected shape. For different types of data and 

species, one can either try choices 1 or 2 or then customize the code of the procedure used to construct the initial condition. 

For user support, please contact: mikula@math.sk 
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Supplementary Note 1 | Computational speed and scalability. Typical image datasets processed here contain 512512120 

voxels and 2 channels (e.g. Dr2 dataset). Approximate computational cost of the algorithms:  

 The filtering step with the GMCF method and 10 iterations takes 5 minutes for each 3D volume using 8 processors 

(communicating by MPI). 

 The cell center detection step by FBLS runs for 20 iterations and takes 200 seconds for one 3D volume using 8 

processors (communicating by MPI). 

 The cell center detection step by DoG (combining filtering and detection processes) takes on average 5.5 seconds per 

time step, while time steps can be processed in parallel on several processors. 

 For nucleus segmentation using SubSurf, it takes on average 0.75 second to process each nucleus. With 6,000 nuclei, 

a single 3D volume is segmented in 1.25 hours 

 The computation time for the membrane segmentation is 6 seconds per cell (10 hours for a 3D volume containing 

6,000 cells). 

 Whole embryo shape segmentation can also be operated in parallel. 

 The cell-tracking algorithm SimAnn takes 4 hours on 8 processors to process a dataset with 360 time steps and an 

average of 6,000 cells per 3D volume. 

In sum, reconstructing the cell lineage tree (e.g. with DoG and SimAnn) from a typical zebrafish dataset (512512120 voxels 

with in average 6,000 cells over 360 time steps) with the standalone version of the BioEmergences workflow takes less than 5 

hours on a local computer with 8 cores. Performing the complete reconstruction (e.g. lineage tree and shapes from a two 

channels dataset) in the web service mode with computation on EGI (European Grid Infrastructure) can take 48 hours 

including data transfer and job queuing until execution. But it should be noted that a number of datasets can be processed in 

parallel during this period. 

 

 

Supplementary Note 2 | In silico fate mapping can be performed in three different ways. For the ascidian embryos, the 

state-of-the-art fate map proposed at the 110-cell stage
13

 is implemented by defining distinct cell populations with the Mov-IT 

visualization software, and assigning them specific colors. The fate map is then propagated along the reconstructed cell 

lineage. It is this propagation across cohorts of specimens that can tell us whether the lineage is invariant, as it is traditionally 

assumed. It should be noted that a similar strategy led our colleagues working with C. elegans to revise their ideas about 

lineage invariance in this species
14

. 

Alternatively, and without a priori, cell fate can be assessed as in classical embryology studies, i.e. by following cell 

clonal history long enough to be able to conclude about the contribution of progenitors to organs, and also about cell 

differentiation in specific cell types defined by their shape, position and neighborhood. The limitation here is the duration of 

the time lapse and the evolution of image quality, hence of tracking accuracy. We now know that beyond 15 hpf, it becomes 

very difficult to resolve individual nuclei in ubiquitously stained zebrafish embryos, even when zooming in on a specific 

compartment. In this case, mosaic or rainbow type staining is required to decrease image complexity and improve tracking 

accuracy. The methods provided here are expected to perform well at any stage of development with mosaic staining of nuclei. 

Finally, there is also the possibility to backtrack cells from their location at a late stage when compartments or 

presumptive organs are morphologically recognizable. This is achieved with Mov-It by using the “cell selection” function and 

back-propagating along the cell tracking. 
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