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Abstract Generally, phenomena of spontaneous pattern

formation are random and repetitive, whereas elaborate

devices are the deterministic product of human design. Yet,

biological organisms and collective insect constructions are

exceptional examples of complex systems (CS) that are both

architectured and self-organized. Can we understand their

precise self-formation capabilities and integrate them with

technological planning? Can physical systems be endowed

with information, or informational systems be embedded in

physics, to create autonomous morphologies and functions?

To answer these questions, we have launched in 2009, and

developed through a series ofworkshops anda collective book,

a new field of research calledmorphogenetic engineering. It is

the first initiative of its kind to rally and promote models and

implementations of complex self-architecturing systems.

Particular emphasis is set on the programmability and

computational abilities of self-organization, properties that

are often underappreciated in CS science—while, con-

versely, the benefits of self-organization are often underap-

preciated in engineering methodologies. [This paper is an

extended version of Doursat, Sayama and Michel (2012b)

(Chapter 1, in Doursat R et al. (eds.) Morphogenetic engi-

neering: toward programmable complex systems. Under-

standing complex systems. Springer, 2012a).]
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1 Introduction

Classical engineered products (mechanical, electrical,

computer, civil) are generally made of a number of unique,

heterogeneous components assembled in very precise and

possibly complicated ways. They are expected to work as

deterministically and predictably as possible following the

specifications given by their designers (Fig. 1d). By contrast,

self-organization in natural systems (physical, biological,

ecological, social) often relies on myriads of identical agents

and essentially stochastic dynamics. Admittedly, here,

nontrivial patterns and collective behavior can emerge from

relatively simple agent rules—a fact often touted as the

hallmark of complex systems (CS) (Fig. 1a). Yet, the great

majority of these naturally emergent motifs (spots, stripes,

waves, clusters, and so on; Ball 1999) are essentially sto-

chastic and can be guided or reshaped only through external

boundary conditions. They are fully described with a few

statistical variables, such as order parameters, but do not

exhibit an intrinsic architecture like machines and industrial

systems do in their hardware and software.

There are, however, major exceptions that blur this

apparent dichotomy and show a possible path toward the

alliance of pure self-organization and elaborate architecture.
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1.1 Self-organized systems already showing

an architecture

Certain types of biological systems distinguish themselves

by strong ‘‘morphogenetic’’ properties (Fig. 1b), which are

much more sophisticated than texture-like pattern forma-

tion. This is especially the case with embryogenesis, the

self-assembly of myriads of cells into detailed anatomies. It

is also seen in insect colonies, where swarm collaboration

by ‘‘stigmergy’’ (communication via traces left in the

environment) create giant constructions. Multicellular

organisms are composed of organs and appendages finely

arranged in very specific ways, yet they entirely self-

assemble through a decentralized choreography of cell

proliferation, migration and differentiation. This unfolds

under the guidance of genetic and epigenetic information

spontaneously evolved over millions of years and stored in

every cell (Coen 2000; Carroll 2005). Similarly, but at a

higher scale, social insects such as termites, ants or wasps

are also capable of collectively building extremely com-

plicated and well organized nests (Bonabeau et al. 1999)

without the need for any overall blueprint or chief architect

directing them from the outside. They, too, are individually

guided by a diverse repertoire of local coordination rules

on how to respond to different types of visual, tactile or

chemical stimuli.

These natural cases trigger whole new questions: How

do biological populations (of cells or organisms) achieve

morphogenetic tasks so reliably? Can we export their self-

formation capabilities to engineered systems? What would

be the principles and best practices to create such mor-

phogenetic systems?

1.2 Architectured systems already showing

self-organization

Conversely, human-made artifacts already exhibit CS

effects on a large scale (Fig. 1c). For example, the explo-

sion in size and distribution (Tanenbaum and van Steen

2002) of information and communication technology (ICT)

systems over a multitude of smaller entities has become an

inescapable reality of computer science and engineering,

artificial intelligence and robotics at all scales—whether in

hardware (components, modules), software (objects,

agents), or networks (services, applications). Similarly,

human superstructures have become ‘‘naturally’’ self-

organized CS through their unplanned, spontaneous emer-

gence and adaptivity arising from a multitude of rigidly

designed individual structures: cities have emerged from

buildings, traffic jams from cars, Internet from routers,

markets from companies, and so on. Finally, ubiquitous

ICT capabilities, connecting human users and computing

devices in unprecedented ways, have also given rise to

complex techno-social ‘‘ecosystems’’ in all domains of

society. The old centralized oligarchy of providers (of data,

knowledge, applications, goods) is being gradually

replaced by a dense heterarchy of proactive participants

(patients, students, users, consumers).

In all these domains, the challenge is in fact comple-

mentary to the previous section: it is to regain some form of

guidance or control over collective effects, but without

reinstating a centralization that would compromise the

benefits of local interactions. We want to better understand

and steer these phenomena—although we will never again

place every part or participant, foresee every event, or

control every process.

1.3 Toward programmable self-organization

In sum, while certain natural CS seemingly exhibit all the

attributes of architectured systems, certain artificial sys-

tems have also become full-fledged objects of research on

self-organization. Such cross-boundary examples open two

opposite avenues converging toward a new central field,

which we call morphogenetic engineering (ME) and define

as follows:

ME explores the design, implementation, and control

(directly, by programming, and/or indirectly, by

learning or evolution) of the agents of CS capable of

giving rise autonomously and reproducibly to large

heterogeneous architectures that will support a set of

Fig. 1 Four families of systems representing various degrees of self-

organization (vs. design), and architecture (vs. randomness): a Most

natural complex systems are characterized by stochasticity, repetition

and statistical uniformity: activator-inhibitor pattern formation

(stripes and spots), traveling waves in chemical reaction, bird flocks,

slime-mold aggregation (all screenshots of NetLogo simulations).

d At another extreme, human-made devices (computers, programs,

vehicles, buildings) are centrally and precisely designed, leaving

almost no room for autonomy. There, self-organization and emer-

gence are much more of a nuisance than a desired outcome. b, c ME

is positioned in the middle. b On the one hand, ME strives to

understand how certain natural self-organized systems exhibit a

specific architecture, i.e. how physical systems can be endowed with

more information and sophisticated computational abilities. For this,

it proposes—and extends into the virtual domain of artificial life, i.e.

‘‘life as it could be’’—new models for biological cells, multicellular

organisms, nervous systems, and collective insect constructions.

c Conversely, ME also looks at architectured systems that have

reached unplanned levels of distribution and self-organization (urban

sprawl, open-source software, automatically designed processors,

techno-social networks), i.e. how informational and computational

artifacts can be embedded in the physical constraints of space and ‘‘in

materio’’ granularity. There, it pushes the envelope of ‘‘emergent

engineering’’ (Ulieru and Doursat 2011) by inventing new systems

that replace improvised with programmed complexification. See

Fig. 2 for a zoom into the ME domain

b
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desired functionalities, without relying on any central

planning or external drive.

Said otherwise, while the existing phenomena described

above testify to the possibility of programmable self-

organization, the challenge of ME is to tap into this vast

potential by inventing new ‘‘programmable complex sys-

tems’’ or, symmetrically, ‘‘self-organized engineered sys-

tems’’. Continuing with the two perspectives exposed

above, this can be achieved in two complementary, and

ultimately equivalent, ways:

• Endowing physical systems with information

(Fig. 1a?b): Starting from the scientific understanding

and modeling of ‘‘random’’ natural CS, such as patterns

and flocks, and ‘‘architectured’’ ones, such as embryo-

genesis and termitemounds—especially focusing onwhat

distinguishes them—ME aims to generalize the transition

from one to the other and push the envelope to obtain new

morphogenetic abilities from original systems. For exam-

ple, making bird flocks virtually heterogeneous by

diversifying their cohesion and alignment parameters, as

if mixing different species (‘‘swarm chemistry’’, Sayama

2009), can result in surprisingly complex and robust

morphologies. Similarly, giving virtual wasps a phero-

mone that they can lay down and follow like termites

(‘‘waspmites’’, Bullock et al. 2012) enhances their com-

putation abilities, and transforms their usually repetitive

nests into more elaborate constructions. In modern

biotechnological endeavors such as synthetic biology

(Endy 2005; Knight 2003), real-world genomic informa-

tion can also be tamperedwith in specific ways to steer the

emergent collective behavior of cellular populations

toward new outcomes, whether for biomedical applica-

tions (such as organ growth) or ‘‘natural computing’’

(Stepney et al. 2005) (such as organic processors).

• Embedding informational systems in physics

(Fig. 1d?c): In the other direction, the de facto and

ever increasing trend for technical systems to comprise

a heterarchy of numerous small components, as in

parallel computing, swarm robotics, multi-agent soft-

ware, or peer-to-peer networks, should be amplified,

not fought, and taken to new levels of programmable

complexity. Engineers will have to abandon top-down

imposed design and rethink their devices in terms of

natural complex systems, approaching them rather by

bottom-up ‘‘meta-design’’, i.e. the generic mechanisms

allowing their self-assembly, self-regulation and evo-

lution. The project of embedding ICT systems in the

physical constraints of space and ‘‘in materio’’ granu-

larity has been pioneered by innovative fields such as

amorphous computing (Abelson et al. 2000), spatial

computing (Giavitto and Michel 2002; Beal and

Bachrach 2006; Beal et al. 2012), organic computing

(Würtz 2008), CS engineering (Minai et al. 2006) or

emergent engineering (Ulieru and Doursat 2011). ME,

for its part, focuses on the strong architectural and

complex functional properties of these emergent sys-

tems, and how these properties can be influenced or

programmed at the microlevel.

As the works reviewed here will show or hint at (Sect. 4),

themanypotential applications ofME in artificial systems and

hybrid ‘‘techno-natural’’ systems include self-assembling

mechanical components and robots, self-organizing builder

robots, self-morphing particle swarms, self-coding software,

self-balancing pervasive services, but also, in a not-so-distant

future, self-constructing buildings, self-configuring manu-

facturing lines, self-managing energy grids, or self-architec-

turing enterprises. They are all based on a multitude of

components, modules, software agents, devices and/or human

users creating their own network and collective dynamics

solely on the basis of local rules and peer-to-peer interactions.

The new core challenge posed by ME is then a reverse

engineering one: How can the agents’ micro-rules be

inferred from the system’s macro-objectives? In a way, the

paradox that must be solved is ‘‘directing the decentral-

ization’’, i.e. preparing the conditions favorable to a non-

random, reliable self-organization of a highly distributed

system. At the same time, it is also letting the parameters of

this process freely evolve in order to generate innovative

structures and functions. Finding useful ME systems will

require matching loose selection criteria with productive

variation mechanisms. The first point concerns the open-

ness of meta-designers to ‘‘surprising’’ outcomes; the sec-

ond point concerns the intrinsic ability of CS to create a

‘‘solution-rich’’ space (Minai et al. 2006) by combinatorial

tinkering on highly redundant parts.

In any case, the rallying call toward meta-design is:

Don’t build a system directly, but shape its building blocks

in such a way that they build it for you—and can also come

up with new systems you hadn’t thought of.

2 Endowing physical systems with information

2.1 Natural complex systems

Complex systems are generally defined as large sets of

elements that interact locally, among each other and with

their nearby environment, to produce an emergent collec-

tive behavior at a macroscopic scale. They are character-

ized by a high degree of decentralization, and the ability to

self-assemble and self-regulate. Most CS are also adaptive,

and named CAS (Holland 1992) for that matter, in the

sense that they are able to learn or evolve by themselves on

the longer term toward further innovation. In general, this
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happens by feedback from their external fitness, i.e. overall

level of success in their environment, onto their internal

structure and the behavior of their elements—whether

directly via internal learning mechanisms, or indirectly via

external selection mechanisms.

The elements or ‘‘agents’’ composing CS follow local

rules that can be more or less sophisticated. Often, these

rules are themselves internally structured as networks of

smaller entities. For example, one cell can be modeled as a

self-regulatory network of genetic switches; one social

agent (ant, software process) as a decision graph or finite

state machine. On the other hand, agents can also interact

more collectively at the level of local clusters or subnet-

works that combine in a modular fashion to form larger

structures, and so on. Thus, from both perspectives, CS can

often be described as ‘‘networks of networks’’ on several

levels. Generally, the higher levels connecting elements or

clusters of elements are spatially extended (cell tissues,

cortical areas, ant colonies, computer networks), whereas

the lower levels inside elements are nonspatial (gene net-

works, neural assemblies, rulesets). Elements follow the

dynamics dictated by their inner network and, at the same

time, influence neighboring elements through the emission

and reception of signals (chemical, electrical, software

packets).

2.2 Augmented complex systems

In this vast interdisciplinary field of complex systems, a

less addressed, yet critical, research ambition is to look

beyond the usual fascination for ‘‘free-range’’ order or

unstructured patterning (Fig. 1a), and explore the interplay

of programmability with self-organization (Fig. 1b, c). It is

an often underappreciated ability of CS to be controllable

at the same time that they are self-organizing. Too often,

the emergent patterns and behaviors of CS are construed as

‘‘homogeneous’’, ‘‘monolithic’’, or ‘‘random’’ aggregates

of micro-level components, especially in statistical physics

and other analytical research areas. Yet, CS can contain a

wide diversity of agents and heterogeneity of patterns, via

positions; they can be modular, hierarchical, and archi-

tecturally detailed at multiple scales; they can also consist

of reproducible structures arising from programmable

agents.

With the goal of ‘‘re-engineering emergence’’, the most

important challenge is not simply to observe how any kind

of self-organization can happen, but to understand how

self-organization is, and can be, guided. Thus models rel-

evant to ME will not be found in the traditional statistical

approaches to natural CS (Fig. 1a), such as random pat-

terning (Gierer and Meinhardt 1972; Pearson 1993), uni-

form flocking (Vicsek et al. 1995), or undirected

networking (Barabási and Albert 1999; Newman 2006;

Barrat et al. 2008), but rather in virtual, extrapolated ver-

sions of these models, where homogeneous, stateless

agents are replaced with heterogeneous, stateful and com-

putational ones. Other models will come directly from

naturally morphological CS, such as embryogenesis and

collective insect constructions (Fig. 1b). In both cases, ME

resides in (i) the relative sophistication and variety of the

elements and (ii) their ability to combine together in many

different ways to form precise and reproducible

architectures.

Naturally, this ambition seems to lead to paradoxical

objectives: Can autonomy be planned? Can decentraliza-

tion be directed? The answer lies in a change of scale:

instead of a top-down enforcement of macroscopic struc-

tures, the new ME controls take the form of microscopic

instructions inside every agent of the system. These

instructions should also diversify as they vary with the

agent’s current type and position, creating subtypes that

will in turn trigger new rules, and so on. This process

introduces the required degree of heterogeneity in order for

a system to exhibit a new range of behaviors, more

sophisticated than simple random patterning, flocking or

clustering.

3 Embedding informational systems in physics

3.1 Artificial life designs

The interdisciplinary field of artificial life (Alife) is chiefly

concerned with the simulation of life-like, organismal

processes through computer programs, robotic devices, or

even new uses of biotic components. Researchers in Alife

attempt to design and construct systems that have the

characteristics of living organisms or societies of organ-

isms out of nonliving parts, whether virtual (software

agents) or physical (electromechanical parts, chemical

compounds, etc.). Alife is therefore a bottom-up synthetic

attempt to recreate biological phenomena in order to pro-

duce adaptive and intelligent systems. In this sense, it can

be contrasted with the historical top-down analytical

approach of artificial intelligence (AI), which was based on

symbolic systems. Alife actively promotes biology-

inspired engineering as a new paradigm that would com-

plement or replace classical physics-based engineering.

This opens entirely new perspectives in software, robotic,

electrical, mechanical or civil engineering: Can a device or

edifice construct itself from a reservoir of components?

Can a robot rearrange its parts and evolve toward better

performance without explicit instructions? Can software

agents collectively innovate in problem-solving tasks?

Among the great variety of biological systems that

inspire and guide Alife research, three broad areas can be
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distinguished by the scale of their components: (a) at the

micro-scale, chemical, cellular and tissular systems; (b) at

the meso-scale, organismal and architectural systems; and

(c) at the macro-scale, population and societal systems.

Artificial molecular and cellular models focus on the

spontaneous organization of complex chemical and organic

structures, such as DNA/protein self-assembly (Rothemund

2006), or embryonic development (Eggenberger 1997).

Applications are linked to nanotechnologies for biomedical

or integrated electronic purposes (‘‘smart materials’’,

MEMS). On the anatomical and functional level, robotic

parts (limbs, sensors, actuators) and local behavioral

modules are coupled to produce a global behavior in a

single autonomous device, aiming toward adaptivity and

nonsymbolic intelligence. This is the scope of reactive,

behavior-based (Brooks 1986) or embodied robotics (Pfe-

ifer et al. 2006), exemplified by insect-like robots and

evolving or reconfigurable mechanical morphologies (Sims

1994; Lipson and Pollack 2000). Entire populations of

virtual or robotic creatures also constitute important objects

of interest for their unique properties of collective self-

organization and diversity-inducing evolution. Generically

termed ‘‘swarm intelligence’’, new methodologies such as

ant colony optimization (ACO) (Bonabeau et al. 1999;

Dorigo and Stützle 2004) or particle swarm optimization

(PSO) (Kennedy and Eberhart 1995) were derived from the

observation of animal societies and applied to problem-

solving tasks. Finally, these three scales can be integrated

in different ways to create complete systems.

3.2 Artificial life complexity

Generally, but not always, Alife devices are of a distributed

nature and operate on a multitude of interacting compo-

nents. From its origins in cellular automata (CA), and by its

very definition, Alife covers or intersects several other

paradigms of distributed systems, which are the rule in

biotic systems: neural networks (learning, sensorimotor

faculties), complex networks (from gene regulation to

ecosystems), swarm intelligence (insect colonies, collec-

tive motion), generative and developmental systems

(embryogenesis, morphogenesis). Yet, despite the inherent

propensity of Alife to study decentralized and self-orga-

nized processes, a great number of researchers in bio-

inspired engineered disciplines such as artificial neural

networks (ANNs) or evolutionary computation (EC, which

comprises genetic algorithms) have generally taken a rather

different course and, in contrast with natural systems, have

shifted their focus to classically designed, centralized and

nondevelopmental systems. Their efforts have been mainly

invested in optimization problems, where ‘‘emergence’’ is

no more a desired property to be exploited. For example, it

is striking that a large class of ANN models have never

included population coding, recurrent connections or tem-

poral correlations, despite the fact that Hebb’s cell

assemblies (Hebb 1949) and Hopfield’s distributed attrac-

tor dynamics (Hopfield 1982) have pioneered the field.

Similarly, today’s EC conferences include only a minority

of CS topics, despite the fact that the inventor of genetic

algorithms, John Holland (and a long-time affiliate of the

Santa Fe Institute) has always referred to evolutionary

search within the framework of complex adaptive multi-

agent systems (Holland 1992). Therefore, just as we saw in

Sect. 2 that there was little engineering thinking in the CS

community, there is also surprisingly little CS thinking in a

sizeable part of the bio-inspired community.

Can we put back the ‘‘bio’’ into the design of genuinely

decentralized and self-organized artifacts? Although

themselves emerging from a hundred billion neurons, our

human cognitive faculties create the illusion of a central

consciousness or viewpoint, which must make great

efforts to comprehend truly parallel processes. We are

strongly biased toward identifying central causes, and

spontaneously tend to ascribe the generation of order and

meaning to a single entity equipped with a lot of infor-

mation (one gene, one cell, one neuron, one individual).

Even when we know that this entity does not have

intentions or does not even exist as such, we cannot help

but follow anthropomorphic stereotypes such as control-

ler, organizer, manager, or leader. This is why we tradi-

tionally refer to systems containing multiple, intricate

causal and influence links as ‘‘complex’’—whereas in fact

those so-called CS might well turn out to be ‘‘simpler’’

than our familiar contraptions with their uniquely exact

arrangement. This is also why we so irresistibly pull back

our objects of study and technologies toward the cen-

tralized paradigm, to the detriment of the distributed

paradigm, even in bio-inspired disciplines.

Heteronomous human-designed order is probably the

most sophisticated of all forms of organization, as it

requires an external intelligence to come to existence. In

natural living systems, by contrast, autonomously evolved

and decentralized order is the natural norm because it is the

most cost-effective: information is distributed over a large

number of relatively ignorant agents, making it easier to

create new states of order by evolving and recombining

their local interactions. To imitate Ulam’s famous quip

about nonlinear systems being the ‘‘non-elephant species’’

of physics (i.e. the overwhelming majority), the perva-

siveness of self-organized systems (as opposed to designed

ones) make them, too, the non-elephant species of systems

science—yet they are still today the least familiar. Bio-

logical systems are not engineered and human-made sys-

tems could learn much more from them.
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4 A review of ME approaches

There are many research works that incarnate the ME

manifesto presented in Sects. 1–3, whether they were

developed before we launched this field or they were

intended as contributions to the workshops and edited book

that we have organized (starting in 2009). In any case, we

chose to group them for this review into four main cate-

gories according to the type of dynamical process charac-

teristic of their morphogenetic models (Table 1, Fig. 2).

They can be summarized as follows:

• Category I: constructing (or assembling, fitting): a

small number of mobile agents or components attach to

each other or assemble blocks to build a precise ‘‘stick-

figure’’ structure.

• Category II: coalescing (or synchronizing, swarming): a

great number of mobile agents flock and make together

dense clusters, whose contours adopt certain shapes.

• Category III: developing (or growing, aggregating): the

system expands from a single initial agent or group by

division or aggregation, forming biological-like pat-

terns or organisms.

• Category IV: generating (or rewriting, inserting): the

system expands by successive transformations of

components in 3D space, based on a grammar of

‘‘rewrite’’ rules.

Here, ‘‘agent’’ refers to a robot (physical or simulated), a

biological model (molecule, cell or insect), or an abstract

dot in virtual space, while ‘‘component’’ refers to a struc-

tural piece (physical or simulated). Naturally, this four-part

division is neither canonical nor clear-cut; it is only one

among various alternatives. Not only do certain studies

include several models belonging to more than one

category, but they also intersect or differ along several

other dimensions including: physical versus virtual agents,

biologically motivated versus engineering-based approa-

ches, cell-inspired versus insect-inspired algorithms, 2D/

3D Euclidean space versus network topologies, degree of

robustness and self-repair capabilities, and so on. Other

terms such as ‘‘swarm’’ and ‘‘self-assembly’’ are used

extensively in the majority of publications, hence do not

constitute clearly distinguishing features. The above cate-

gorization, however, appeared to be one of the most

meaningful and to best highlight the diversity of ME sys-

tems types.

4.1 Category I: Constructing

In this first category, which could also be named

‘‘Assembling’’ or ‘‘Fitting’’, ME systems are characterized

by relatively few robots or components (possibly origi-

nating from a larger, ambient pool) that create precise

formations by either attaching to each other or bringing

blocks together. The built structures are coarse-grained and

often look like ‘‘stick figures’’, i.e. combinations of chains

and crosses made of 1-unit wide segments. The space is the

2D plane, with occasional vertical elevation into 3D by

stacking or folding. Most works in this category feature

physical and/or virtual morphogenetic robotic systems,

while others distinguish themselves by the mechanical self-

assembly of inert pieces (e.g. by shaking).

In a review of morphogenetic robotics, Jin and Meng

(2011, 2012, Fig. 2:3) examine methodologies for design-

ing self-organizing, self-reconfigurable and self-adaptive

robots inspired by biological morphogenesis. They cate-

gorized these systems into three main areas: swarm

robotics, modular robots and body-brain co-design, and

Table 1 Taxonomy of ME works presented in this review, Sect. 4.1 to 4.4
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discuss their relationships with epigenetic robotics, which

deals with cognitive development, and evolutionary

robotics, which is concerned with the automated design of

controllers. We follow in this section the same broad dis-

tinction between ‘‘swarm’’ and ‘‘modular’’ robots, keeping

our focus on morphogenetic abilities, and with the addi-

tional limitation to small-scale and exact-fit construction

systems. In a third subgroup, we look at nonrobotic block

structures, whether made by external ‘‘worker’’ robots or

arising spontaneously from physical interactions.

4.1.1 Self-rearranging robotic parts

In self-reconfigurable modular robotics, the issue is how an

overall structure made of interconnected components can

change itsmorphology.Components are relatively autonomous

Fig. 2 The ME continent: we show here the 18 chapters of our book

(Doursat et al. 2012), after its introduction, taken as a sample

illustrating the landscape of ME-minded or ME-contributing publi-

cations. They were schematically grouped into four main parts

according to their typical dynamics. Part I: constructing (blue region,

Chaps. 2–7): a few agents attach to each other or assemble blocks to

build a precise structure. Part II: coalescing (yellow region, Chaps.

8–10): many agents flock together into dense clusters creating shapes.

Part III: developing (pink region, Chaps. 11–15 and part of Chap. 3):

agents divide or aggregate around an initially small core, forming

patterns or organisms. Part IV: generating (green region, Chaps.

16–19): components are iteratively transformed into architectures by

repeated application of a grammar. Other, less distinguishing features

that were not retained: (dot-dashed blue line) robotic models or

applications, virtual or physical; (big-dashed black line) actual

physical implementations with robots or mechanical components;

(solid red line) emphasis on various patterns, textures, or symmetrical

shapes, rather than complicated morphologies; (small-dashed green

line) biological models based on real data, such as fruit fly and rye

grass (2: O’Grady et al. 2012, 3: Jin and Meng 2012, 4: Liu and

Winfield 2012, 5: Werfel 2012, 6: Arbuckle and Requicha 2012, 7:

Bhalla and Bentley 2012, 8: Sayama 2012, 9: Bai and Breen 2012, 10:

Winfield and Nembrini 2012, 11: Doursat et al. 2012c, 12: Beal 2012,

13: Kowaliw and Banzhaf 2012, 14: Cussat-Blanc et al. 2012, 15:

Montagna and Viroli 2012, 16: Spicher et al. 2012, 17: Lobo et al.

2012, 18: von Mammen et al. 2012, 19: Verdenal et al. 2012). (Color

figure online)
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but not completely independent as in swarms (reviewed

below). Rus and Vona (2000) proposed one of the first self-

reconfigurablemodular systems. Their robotic unitwas called a

‘‘crystalline atom’’, a square or cubic device whose side faces

could expand or contract, changing its effective volume. An

interesting feature of their architecture was that it did not

involve any rotational movement. They also developed a

physical implementation of those robots, demonstrating simple

self-reconfiguration and movement. The M-TRAN system

(Murata et al. 2002) is a well-known self-reconfigurable

modular robot that can showvery complex self-reconfiguration

and locomotion tasks. The shape of their robotic unit is aniso-

tropic with two rotational degrees of freedom, but its

mechanical design was simpler and yet capable of more com-

plex movements than other models such as crystalline atoms.

The authors fully implemented the physical robots and suc-

cessfully demonstrated intriguing behaviors, including snake-

like locomotion, caterpillar track, quadruped walk, obstacle

avoidance, and dynamic self-transformation among those

shapes/behaviors.

Lipson and his lab (Zykov et al. 2005; Grouchy and

Lipson 2012) have developed modular robots that can

demonstrate complex behaviors including self-reconfigu-

ration and self-reproduction. Their robotic unit, called

‘‘molecube’’, is a cubic module with only one rotational

degree of freedom that swivels two halves of the cube

around a diagonal axis. This makes the architecture of the

system even simpler and more programmable than earlier

models. Using this framework, they demonstrated self-

reproduction and self-repair of simple morphologies, as

well as evolutionary acquisition of novel forms in a sim-

ulated universe. Detweiler et al. (2007) designed self-

reconfigurable modular robot systems that consisted of a

mixture of simple, passive structural modules and active

robotic modules. While the robotic modules were still

complicated and centrally controlled, the distinction

between active constructors and passive structural materi-

als is a promising approach that can be incorporated into

other morphogenetic engineering systems. It also has some

interesting similarities with von Neumann-style construc-

tion models, in which a small number of active parts can

construct a much larger passive structure.

4.1.2 Self-assembling mobile robots

In swarm robotics, the emphasis is shifted from the ensemble

to the individual unit. Robots are self-propelled, run sepa-

rately, and have the ability to autonomously dock to (and

undock from) each other to form a larger robotic system.

Baldassarre et al. (2006) explored behavioral coordination

mechanisms for a group of ‘‘swarm-bots’’ that were physi-

cally linked to each other. They elaborated robust, distrib-

uted coordination mechanisms using evolutionary search

and neural networks. This is in contrast to the coordination

mechanisms adopted in the modular robot models reviewed

above (in which control mechanisms are generally designed

and sent to each module in a top-down manner), making an

important step toward truly bottom-up, self-organizing

morphogenetic systems.

The ‘‘s-bots’’ designed by Dorigo and colleagues for

their Swarmorph and Swarmanoid projects (Christensen

et al. 2007, O’Grady et al. 2012, Fig. 2:2) have the

capacity to assemble into appropriate morphologies and

operate as a single entity when physically connected to one

another (using clamps). A low-level control logic allows

inter-robot connections to be formed at particular angles,

and a higher-level control logic dictates the sequence of

these connections so as to form desired morphologies and

make appropriate collective responses to different tasks.

Arbuckle and Requicha (2012, Fig. 2:6) propose active

self-assembly, a specific approach for constructing arbitrary

shapes with swarms of identical and identically pro-

grammed robots. They identify important, open questions

toward achieving full-fledged active self-assembly. Much

of their discussion is centered on the fundamental problems

of how to control a swarm to ensure that the structures it

builds are self-repairing, and how to assess the perfor-

mance of self-assembling swarms. Liu and Winfield (2012,

Fig. 2:4) present distributed morphogenesis control strate-

gies in a swarm of mobile robots able to autonomously

disassemble and reassemble into different 3D symbiotic

organisms. Their idea is to combine the advantages of

swarm and self-reconfigurable robotic systems in order to

investigate novel principles of evolution for ‘‘robotic

organisms’’ from bio-inspired and evolutionary perspec-

tives. Robots initially form a 2D planar structure, then the

aggregated organism must lift itself to a 3D morphology,

move and function as a macroscopic whole.

The grand challenge of engineering a self-organized

morphogenetic robotic collective, whether considered

‘‘modular’’ or ‘‘swarm’’ (the distinction between the two

tending to fade), was epitomized by the five-year European

projects Symbrion and Replicator (Kernbach et al. 2008),

each involving a dozen institutional partners. Their ambi-

tion was to design new collective robotic systems using

principles derived from natural symbiosis, such as dem-

onstrated by bacteria and fungi. When it is advantageous to

do so, these swarm robots would dynamically aggregate

into one or many symbiotic organisms and collectively

interact with the physical world, sharing energy and com-

putational resources as a single ‘‘artificial-life-form’’.

Considerable effort was dedicated to the design and man-

ufacturing of novel robotic hardware, however, which

eventually assumed the shape of large cubes equipped with

sophisticated sensors and actuators, in particular for precise

docking. Thus, as the other works described in this section,
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these platforms permit so far only a relatively small num-

ber of units arranged in exact formations such as chains and

crosses.

4.1.3 Block constructions

Social insects build large, complex structures, which

emerge through the collective actions of many simple

agents acting with no centralized control or preplanning.

These natural systems inspire the research topic of col-

lective construction, in which the goal is to engineer arti-

ficial systems that build in a similar way, characterized by

swarms of simple robots producing desired structures. The

work of Werfel (2012, Werfel and Nagpal 2006, Fig. 2:5)

investigates the design and implementation of such sys-

tems, for example based on LEGO Mindstorms. There,

robots act independently, using only local information and

no explicit communication; the system takes only a high-

level design as input and is guaranteed to produce a

structure matching that design.

Bhalla and Bentley (2012, Bhalla et al. 2007, Fig. 2:7)

examine how natural, nonrobotic self-assembly can be

directly dictated by the morphology and properties of the

components, and by environmental conditions. The process

of self-assembly is equivalent to a physical computation,

through the interaction and transformation of physically

and chemically encoded information. They propose a three-

level design approach, which specifies a set of simple self-

assembly rules, models and simulates these rules in soft-

ware, then translates them to a physical system of plastic

pieces with magnets. Their objective is to provide a bot-

tom-up design methodology to create scalable self-assem-

bling systems. In a similar vein, Virgo et al. (2012)

developed a physical model of self-replicating patterns

made of simple passive plastic pieces with embedded

magnets that float on an air-hockey table and agitated by

wind coming from external fans. They created a very

intricate design of the shape of plastic pieces, which

allowed template-based self-replication of chains made of

those pieces. Moreover, the inevitable stochasticity in the

physical world naturally introduced ‘‘mutation’’ in those

chains, demonstrating one of the first instances of evolu-

tionary processes using macroscopic physical objects.

4.2 Category II: Coalescing

This second category of ME systems, which could also be

subsumed under ‘‘Synchronizing’’ or ‘‘Swarming’’ (were it

not for the ambiguity about the swarm’s size and precision;

see previous category), deals with a great number of mobile

agents that are all simultaneously present (as opposed to

being added one by one as in developing systems; see next

category) and form a dense mass or network. Without

literally attaching, they exhibit heterogeneous flocking

behavior by staying near each other as they continuously

move to maintain neighbor-to-neighbor communication,

whether of the visual/infrared or wireless/radio type. Motion

dynamics is often inspired by chemical concepts such as

‘‘pheromones’’ (as in ant colonies) or ‘‘morphogens’’ (as in

multicellular tissues), which create concentration gradients

that individual agents use to guide themselves by ‘‘chemo-

taxis’’. Together, they arrange themselves into fine-grained

clusters that assume certain ‘‘fluid’’ yet stable shapes. For

understandable reasons, most contributions in this category

show simulated systems, as large-scale robotic swarms are

still too costly to build with today’s technology, and pro-

grammable flocking nano-particles are still unheard of.

Some studies, however, are directly motivated by practical

robotic applications, and remain close to their source.

4.2.1 Robotic agents

Mamei et al. (2004) proposed one of the first morphogenetic

swarm models based on ‘‘coalescing’’ mechanisms. They

assumed a finite number of autonomous mobile robots that

could communicate indirectly by sensing morphogen gra-

dients, and demonstrated in computer simulation that various

spatial structures, such as circles, rings, lobes or polygons,

could be produced in their framework. Theirmodel uses only

simple robots with minimal computational capabilities,

which illustrate the strengths of design principles based on

crowds. Winfield and Nembrini (2012, Winfield et al. 2005,

Fig. 2:10) describe decentralized control algorithms that link

local wireless connectivity to low-level robot motion control

for maintaining both swarm aggregation and connectivity, or

‘‘coherence’’. They investigate the potential of both first- and

second-order connectivity information (i.e. around a node

and this node’s neighbors), showing that the number of

shared neighbors acts as an adhesion parameter controlling

the area coverage of the swarm, its taxis behavior toward a

beacon, and its obstacle avoidance abilites. Adding more

heterogeneity can also lead to an emergent segregation of

sub-groups and the formation of specific axial morphologies.

Alonso-Mora et al. (2011) present Display Swarm, another

application of coalescing morphogenetic systems with a dif-

ferent flavor—aesthetics. In their model, each robotic module

is given a pre-determined goal location, and its trajectory is

calculated a priori to be smooth and oscillation-free for visu-

ally pleasing reasons. Although not as bottom-up as other ME

models, the fact that collective robots’ trajectories are an

objective in themselves can find important applications in the

animation industry. Finally, in theKilobot project, Rubenstein

et al. (2012) precisely address the issue of system size, noting

that for technical reasons of hadware cost and complexity,

most so-called robot ‘‘swarms’’ or ‘‘collectives’’ in fact con-

tain at best a few tens of robots.To reach greater numbers, they
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designed robot units made of cheap parts and quick to

assemble. The Kilobot platform enables testing algorithms

and control methods for groups of decentralized cooperating

robots at least an order of magnitude larger than what exists

today. This group’s research interests are also oriented toward

morphological formations.

4.2.2 Software particles

Sayama (2009, 2012, Fig. 2:8) created an original swarm

chemistry framework for morphogenetic artifacts that grow

and self-organize in a fully decentralized manner. His

swarms comprise multiple types of simple, interacting

mobile particles with no elaborate connection or computa-

tion capabilities. They are essentially akin to flocks of birds

(‘‘boids’’) that were made heterogeneous and, from there,

can produce surprisingly complex dynamic structures and

behaviors. Features of emergent patterns are implicitly

encoded, via interactive evolutionary design, into a set of

kinetic parameter values, or ‘‘recipe’’. Diverse and robust

morphological patterns can self-assemble by local informa-

tion transmission, and self-repair by particle re-differentia-

tion. The swarm chemistrymodelwas also recently extended

to evolutionary and 3D versions (Sayama 2011, 2012).

Motivated by the ability of living cells to form specific

structures, Bai and Breen (2012, Fig. 2:9) also investigated

chemotaxis-inspired cellular primitives for self-organizing

shape formation. In their case, cells emit a chemical into their

environment and move in the direction of the gradient of the

cumulative chemical field from other cells. This behavior is

modeled by so-called ‘‘morphogenetic primitives’’ (MPs),

software agents that may be programmed to self-organize

into user-specified 2D shapes. Genetic programming is used

to discover the particular chemical fields of individual MPs

that are needed to produce macroscopic shapes from simple

aggregation behaviors.

4.2.3 Programming matter, computing in space

Programmable matter refers to various concepts and potential

technologies that revolve around the physical instantiation of

computing environments into a fine-grained substratemade of

computing elements, also called ‘‘artificial atoms’’ (e.g. of a

nanotechnological or biochemical sort), which could com-

municate by nearest neighbor interactions. It means creating

‘‘intelligent’’ materials with sensing/actuating and informa-

tion-processing capabilities that would allow them to change

their physical properties, such as shape, conductivity or

reflection, as a function of external input. Toward the goals of

programmable matter, Goldstein et al. (2005) introduced

Claytronics, a 3D hardware technology that is intended to

bring the objects of virtual reality into the realworld to create a

‘‘synthetic reality’’. His system is composed of autonomous

units containing a CPU and equipped with networking, loco-

motion, and docking mechanisms, so that they can organize

themselves into the shape of any object and reproduce its

surface and overall visual appearance. The endeavors of

Claytronics are typically ME, as a major goal is morphology

control without global motion planning but, instead, by local

motion via displacement of holes in the 3D atom packing.

Similar to programmable matter, but from another per-

spective, ‘‘spatial computing’’ relies on a multitude of

devices arranged or scattered in space, where communica-

tion between devices is strongly dependent on their geo-

metric distance. Examples include sensor/actuator networks,

mobile ad-hoc networks, or robotic swarms. In this context,

Beal and Bachrach (2006) designed Proto, a domain-specific

language that uses a continuous space abstraction called the

amorphous medium (Beal 2005) to view any spatial com-

puter as an approximation of a space-time manifold with a

computing device at every point. Information flows through

this manifold with a bounded velocity, and each device has

access to the recent past state of other deviceswithin a nearby

neighborhood. Proto primitives are operations on fields

(Hammarlund and Lisper 1993) and come in four types:

pointwise computations, neighborhood operations, feedback

operations, and restriction operations. Although not dedi-

cated to ME, spatial computing is certainly conducive to

morphogenetic tasks. The same medium can also be the site

of processes more akin to growth than synchronization. This

was the origin of ‘‘amorphous computing’’ (Abelson et al.

2000), which is reviewed in the next category. Other spatial

computing languages such as MGS (Spicher et al. 2010)

rather follow the paradigm of grammar-based, generative

systems, which will be seen in the last category.

4.3 Category III: Developing

The inspiration for this category, equivalent to ‘‘Growing’’

or ‘‘Aggregating’’, is situated closer to cell-based models of

biological morphogenesis. Here, systems start from a single

agent or small group of agents, and grow to a relatively

large size by repeated, yet differential, division or aggre-

gation. Mechanisms underlying this development involve

one or several biological features such as gene regulation,

molecular signaling and chemotaxis. As a consequence, the

resulting structures exhibit properties of biotic patterns or

tissues, such as vascularization and segmentation, or entire

organisms, such as arthropods or branched creatures.

Potential applications range from synthetic biology and

collective robotics to computer networks.

4.3.1 Evo-devo: from biology to computation

One of the greatest challenges of biology is to create a

generic model of multicellular development, in order to
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unify what Darwin called nature’s ‘‘endless forms most

beautiful’’ (Carroll 2005), and construe them as variants

around a common theme. The variants are the unique

genetic (and epigenetic) information of each species; the

common theme is the developmental dynamics that this

information guides and ‘‘parametrizes’’. While the ‘‘mod-

ern synthesis’’ of genetics and evolution focused most of

the attention on selection, it is only during the past decade

that analyzing and understanding variation by comparing

the developmental processes of different species, at both

embryonic and genomic levels, became a major concern of

evolutionary development, or ‘‘evo-devo’’. To what extent

are organisms also the product of self-organized physico-

chemical developmental processes not necessarily or

always controlled by complex underlying genetics? Before

and during the advent of genetics, the study of develop-

mental structures had been pioneered by the ‘‘structuralist’’

school of theoretical biology, which can be traced back to

Goethe, D’Arcy Thompson, and Waddington. Later, it was

most actively pursued and defended by Kauffman (1993,

2008) and Goodwin (1994, Webster and Goodwin 1996)

under the banner of ‘‘self-organization’’, argued to be an

even greater force than natural selection in the production

of viable diversity. In particular, the strong morphological

properties of biological organisms can be effectively cap-

tured by the paradigm of positional information introduced

by Wolpert (1969). At an abstract level, the key idea is

simply that cells must establish a long-range communica-

tion system that allows them to create different parts of the

organism in different locations. It is inevitable that some

form of positional information should be at work in mul-

ticellular organism development, embodied in various

ways, be it through passive diffusion of morphogens

spreading throughout the tissue and/or cell-to-cell inter-

mediate-messenger signaling.

Now, looking at the full evolutionary and develop-

mental picture should also be a primary concern of systems

engineering and computer science when venturing into the

new arena of autonomous, distributed architectures. Evo-

lutionary computation (EC) techniques such as genetic

algorithms or genetic programming, have just like their

modern-synthesis model principally focused on selection

and relied for the most part on ‘‘direct representations’’, i.e.

parametric mappings from genotypes to phenotypes. One

important goal of a new field of ‘‘artificial-life evo-devo’’ is

to provide the computational foundation for a virtual re-

engineering of the strongly morphogenetic CS spontane-

ously produced by nature, such as biological development.

New EC avenues need to stress the importance of funda-

mental laws of developmental variations as a prerequisite

to selection on the evolutionary time scale of artificial

systems. Because indirect mappings promote compact

encodings, modularity and combinatorial reuse, fine-

grained multi-agent architectures similar to multicellular

organisms might be in a unique position to provide the

‘‘solution-rich’’ space needed for successful selection and

emergent innovation—through developmental modularity

and composition.

4.3.2 Artificial development

Putting in practice this theoretical ambition, a new class of

systems collectively called artificial embryogeny (AE,

sometimes ‘‘artificial ontogeny’’ or simply ‘‘artificial

development’’) appeared recently, among others through

the works and reviews of Bentley and Kumar (1999),

Miller and Banzhaf (2003), or Stanley and Miikkulainen

(2003). Inspired by the biological development of multi-

cellular organisms, AE systems realize the indirect map-

ping from genotype to phenotype via more or less complex

developmental stages. Instead of coding directly for mac-

roscopic features of the phenotype (the system), the

parameters of the genotype code for microscopic features

of the cells (the agents), i.e. their abilities to communicate,

their propensity for motion, and their affinities for assem-

bly with other cells. Like biological cells, the agents of an

AE system generally share the same genotype, i.e. the same

set of developmental and behavioral rules. Imitating cell

division, differentiation and self-positioning, an agent

spawns other agents, follows its own execution path within

the common program—which may diverge from its

neighbors’ path depending on its position—and creates

specific links with other nodes according to its fate.

Created independently, the embryomorphic engineering

framework of Doursat (2006, 2008, Doursat et al. 2012c,

Fig. 2:11) also explores the causal and programmable link

from genotype to phenotype at these two levels simulta-

neously: it consists of genetic engineering and functional

shape engineering, based on a common playground made

of a multitude of small agents capable of self-assembling

into a particular organism. An embryomorphic model

combines three key principles of multicellular biological

development: chemical gradient diffusion (providing

positional information to the agents), gene regulatory net-

works (triggering their differentiation into types, thus pat-

terning), and cell division (creating structural constraints,

hence reshaping). Therefore, agents are guided by the

genetic instructions they carry, which parametrize and

modulate the fundamental laws of mechanical-like

assembly and biochemical-like signaling that they obey.

Embryomorphic engineering is illustrated in various

spaces: 2D/3D swarms with potential applications in col-

lective robotics, and graph topologies with potential

applications in peer-to-peer device/user networks.
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4.3.3 Developmental animats

In robotics (virtual or real), the integration of development

with animation shows great promise toward faster and

more innovative methodologies of automated design.

Under the name of brain–body co-evolution, a recently

emerging trend of evolutionary computation, it is argued

that structure and function should not be predefined and

optimized separately, but rather simultaneously as a whole.

Like in animals, both the morphology and control of the

organism should be encoded by the same genome, thus

evolve and function together. From there, it is only a short

and natural step to adding development to the equation and

calling it ‘‘brain–body co-evo-devo’’. In this spirit, Sano

and Sayama (2006) designed the Wriggraph system, a

model of kinetic graph-based virtual creatures whose

behaviors are controlled by local rules that combine exe-

cution of program codes and simulation of reaction-diffu-

sion systems. A unique feature of this model was that

development and movement of the organism were uni-

formly represented without clear-cut separation. The

authors created several illustrative examples, including the

growth of a truss, simple self-replication, movement, target

chasing and self-repair behaviors.

Taking after an earlier developmental model by Eggen-

berger (1997), Joachimczak andWróbel (2008, Joachimczak

et al. 2012) also elaborated a model of parallel co-evolution

of development and motion control in multicellular, soft-

bodied animats. Development is first guided by an artificial

gene regulatory network (GRN), then embryos are converted

into animat structures by connecting neighboring cells

through elastic springs. Outer cells, which form the external

envelope, are affected by drag forces in a fluid-like envi-

ronment. Both the developmental program and locomotion

controller are encoded into a single genomic sequence,

which consists of regulatory regions and genes expressed

into transcription factors and morphogens. A genetic algo-

rithm is applied to evolve individuals able to swim in the

simulated fluid, where the fitness depends on distance trav-

eled during the evaluation phase. A similar work has been

realized by Schramm et al. (2011) with worm-like 2D

spring-mass animats. Arguing that artificial developmental

creatures are generally limited to a few hundred cells,

Cussat-Blanc et al. (2012, Fig. 2:14) want to create larger

and more complete organisms containing different organs

and high-level functionalities. To this end, they propose a

three-layer developmental framework called Cell2Organ. It

is made of a chemical layer, where cells can divide and

metabolize substrates, a hydrodynamics layer simulating

substrate flows, and a physics layer that allows cells to

change shape and organisms to move. Additionally, a new

method based on L-systems without molecular morphogens

is also introduced (see Sect. 4.4).

4.3.4 Morphogenetic patterning

Other models inspired by development have essentially

focused on pattern formation, with little or no motion of

the agents. In physics, as mentioned in the introduction,

patterns generally refer to statistically regular but sto-

chastic motifs emerging in a quasi-continuous and initially

homogeneous 2D or 3D substrate. By contrast, pattern

formation of the morphogenetic type must also exhibit

specific and reproducible spatial arrangements—even

though it is still ‘‘painting’’ a fixed backdrop and not

‘‘sculpting’’ its own space, in the absence of mechanical

interactions. For example, Montagna and Viroli (2012,

Fig. 2:15) have examined how pattern formation in bio-

logical morphogenesis is regulated by gene expression. For

them, modeling and simulating the developmental

dynamics of living organisms at multiple scales can prove

useful in the design of engineered products that manifest

spatial self-organizing properties. To this aim, they

describe a computational framework capable of supporting

both the study of biological systems, such as patterning in

the Drosophila morphogenesis, and the design of artificial

systems that can autonomously develop a spatial structure,

such as in pervasive computing and service scenarios.

These involve sensing and actuating devices (RFID tags,

PDAs, GPS, etc.) that densely populate our everyday

environment with digital information about users and

locations, in tightly integration with the Web. A pervasive

service can then be ‘‘injected’’ like a morphogen in one

location and ‘‘diffuse’’ around, interacting and competing

with other services in a context-dependent manner inside

each node of the network.

The goal of the amorphous computing initiative launched

by Abelson et al. (2000) is also to identify organizational

principles and create programming technologies for obtain-

ing intentional, pre-specified behavior from the cooperation

of a myriad of unreliable parts arranged in unknown,

irregular, and time-varying ways. Under this umbrella, the

Growing Point Language (GPL) designed by Coore (1999)

from a botanical metaphor expresses topological structures

in terms of points that build a pattern by incrementally

passing the locus of activity through space. ‘‘Tropisms’’

attract or repel the motion of growing points through sim-

ulated chemical signals. The Origami Shape Language

(OSL) by Nagpal (2001, 2002) is another amorphous com-

puting language for constructively describing global shapes

as a sequence of straight folds performed on a square sheet

of paper, with no cuts or glue (the folds are always flat and

3D structures are created by opening the flat structure in the

end). Macroscopic fold lines are compiled into microscopic

particle-based programs such that, given an initial identifi-

cation of edges, the local interactions will compute the

desired folds, eventually producing the specified shape. Both
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GPL and OSL are robust and tolerant of changes in their

conditions of execution, with distorted initial conditions

producing a similarly distorted final pattern.

Another subclass of morphogenetic patterning concerns

branching growth systems, among which vasculogenesis is

a prime example. For Beal (2012, Fig. 2:12), the engi-

neering of development poses fundamentally different

challenges than static designs. Growth certainly offers

much greater potential for adaptation to changes in the

environment, but a growing system must also be capable of

surviving every intermediate stage, despite internal stresses

due to the uneven scaling of its subsystems (e.g. muscles

and bones must grow together). His work considers a new

engineering approach based on functional blueprints, under

which a system is specified in terms of desired performance

and means of incrementally correcting deficiencies by

following trajectories in a viability space. It is demon-

strated on models of tissue growth and vasculogenesis.

Kowaliw and Banzhaf (2012, Kowaliw et al. 2004,

Fig. 2:13) also consider the means by which morphoge-

netic growth can lead to CS design. The evolvability of a

difficult design space can be enhanced through mecha-

nisms such as regularities and adaptive feedback. He adapts

a concrete example to a simplified simulation of vasculo-

genesis. Here, the focus is on the feedback mechanism: by

requiring viability during growth, the organism gains

awareness of its interim success. A ‘‘local fitness’’ is used

as a drive during the development of the final design. This

approach is shown to improve the efficiency of the learner,

and to eliminate the problem’s hardness associated with the

complexity of the environment.

4.4 Category IV: Generating

In this last category, in effect very similar to development but

with a different origin and formalism, morphogenetic sys-

tems are generated by successive transformations of com-

ponents in 2D or 3D space, based on substitution-based

rewrite rules, which have the effect of inserting (or deleting)

components. These rules are formally expressed as ‘‘gram-

mars’’ designed by hand or evolved. The resulting archi-

tectures have potential applications as diverse as natural

computing, robotics, computer graphics or plant biology.

4.4.1 Biologically inspired grammars

Probably the earliest and most famous class of geometric

generative models, called L-systems, was designed by the

biologist A. Lindenmayer to give a formal description of

the cellular development of filamentous plants (Prus-

inkiewicz and Lindenmayer 1991). It is a powerful for-

malism that represents systems by strings of symbols with

a hierarchical structure, in which bracketed groups of

symbols corresponds to parts, embedded groups to sub-

parts, and contiguous groups to neighboring parts. The

morphogenetic development of the system is carried out by

parallel rewrite rules that select symbols to be replaced by

new groups. Driven in part by the work of Prusinkiewicz

(Coen et al. 2004), this framework has become popular in

the modeling and simulation of growth processes, espe-

cially in botany. As a consequence, the graphical inter-

pretation of L-systems generally (and quite literally)

produces tree-like, branching structures, which also make

them particularly suited to the vascular and respiratory

systems of animal models. To diversify the morphogenetic

abilities of L-systems beyond self-similar fractal topolo-

gies, rewrite rules can also be made probabilistic and/or

context-dependent. Verdenal et al. (2012, Fig. 2:19) have

applied L-systems to forage grass morphology, which

emerges from the combination of many interrelated

dynamical processes. Although a plant’s architecture con-

tains an intrinsic, genetically determined part, its mor-

phogenesis also exhibits very high plasticity with respect to

environmental conditions. This could be mediated by a

self-regulatory process, e.g. where leaf length is affected by

preceding leaves. The authors present a functional-struc-

tural 3D model of ryegrass based on this hypothesis,

showing that architectural development can result from a

collaboration between genetic programmability and self-

organization, instead of a centralized control of each trait.

Spicher et al. (2012, Fig. 2:16) advocate a domain-

specific language approach to overcome the difficulties of

modeling and simulating morphogenetic processes. To this

aim, they present an experimental programming language

called MGS. The declarative approach of MGS is based on

the notion of topological collection, which originates from

algebraic topology and arises naturally when trying to

model ‘‘dynamical systems with a dynamic structure’’

(DS2) (Giavitto et al. 2002). The evolution function of such

systems is specified by transformations made of sets of

rewrite rules, where each rule defines a local interaction.

These notions allow to easily describe a variety of models

in a uniform setting (Spicher et al. 2011) focusing on the

interacting parts of the model. In this sense, it also belongs

to the spatial computing paradigm mentioned at the end of

Sect. 4.3

4.4.2 Graph and swarm grammars

With graph automata, Tomita et al. (2002) proposed a new

class of spatio-temporal developmental processes using

rewrite rulesets applied to 3-regular graphs. They demon-

strated that complex developmental processes such as self-

reproduction of Turing machines can be expressed by

simple, straightforward formalism. It was among the first

models to extend discrete lattice-based dynamical systems
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(such as CA) to a more generative, topologically flexible

domain. Sayama (2007) proposed generative network

automata (GNA), another graph rewrite framework for

modeling generative processes, similar to graph automata.

GNA is unique in that it can model any kind of network

topologies, and also that it formulates dynamical processes

in two separate algorithmic phases: extraction and

replacement. He showed that both traditional dynamical

networks and more recent complex network growth models

could be represented in this framework. Computational

exploration of different classes of model behaviors were

also conducted.

Von Mammen et al. (2012, von Mammen and Jacob

2007, Fig. 2:18) have introduced swarm grammars to

model swarm-based generative and developmental sys-

tems. In swarms, as in CS, large numbers of individuals

locally interact and form nonlinear, dynamic interaction

networks. Ants, wasps and termites, for instance, are nat-

ural swarms whose individual and group behaviors have

been evolving over millions of years. The emergent

effectiveness of their behaviors is most striking in their

intricate nest constructions. Swarm-grammar-based com-

putational simulations capture the corresponding principles

of agent-based, decentralized, self-organizing models.

Rieffel et al. (2009) proposed a framework for automati-

cally creating tensegrity structures, where the morpholog-

ical design of a structure was represented in a generative

form so that evolutionary search could easily discover and

evolve physically meaningful patterns. Tensegrity is suit-

able for designing ‘‘soft robots’’, i.e. robots that exhibit

flexibility and adaptive balance in their morphology. The

authors demonstrated physical realization of automatically

generated designs, indicating the possible connections

between simulated and physical worlds.

4.4.3 Evolutionary grammars

The combination of morphogenetic generative systems and

evolution was best exemplified by the automated genera-

tive design system of Hornby and Pollack (2001). From the

viewpoint of evolutionary computation, a generative

transformation is considered an ‘‘indirect representation’’,

as it creates a mapping from the genotype to the phenotype.

Despite the apparent complexification that they bring to

evolutionary algorithms, indirect representations have

recently come under close scrutiny as they are also thought

to allow long-term evolvability via accumulated elabora-

tions and emergent, unplanned features—hence open-

ended and more scalable genotypes. In contrast, ‘‘direct

representations’’ are not capable of open-ended elaboration

because they restrict genotype space to predefined features.

Accordingly, in Hornby and Pollack (2001), it is not the

objects (here, tables) but their grammar-based designs

which are evolved, creating an order of magnitude more

parts than previous generative systems. The authors show

that a generative representation can achieve better fitness

(here, the tables’ proportions and physical robustness) by

reusing successful elements from the design space and

allowing large-scale, yet viable mutations in the phenotype.

Lobo et al. (2012, Lobo and Vico 2010, Fig. 2:17) have

also worked on evolutionary morphogenetic algorithms of

the generative kind to automate the design of ‘‘organic’’

morphologies and controllers with the goal of solving

certain functional problems. They point out that evolution

has shaped a remarkable diversity of multicellular organ-

isms, whose complex forms are self-made by robust

developmental processes, and that this ‘‘evo-devo’’ com-

bination can inspire novel computational methodologies to

overcome the scalability problems of classical top-down

design. In their systems, performance is tested on optimi-

zation challenges not based explicitly on morphological

and structural constraints, however, but on solving abilities

and functional efficiency, such as behavior-finding in ani-

mated structures (e.g. moving along a path).

5 Perspectives

Biological organisms are the pure products of ‘‘undesigned

evolution’’ (UDE) through random variations (expressed

via the physical constraints of self-organization) and non-

random natural selection. By contrast, artificial structures

will (hopefully) always possess a causal link originating

from their human makers, while at the same time this link

should become less and less visible. Traditional engineer-

ing has always followed a ‘‘directly designed construction’’

paradigm, in which architects plan and build entire systems

top-down. ME proposes a gradual shift toward the bio-

logical paradigm, via stages that could be called ‘‘meta-

designed development’’ (MDD) and ‘‘meta-designed evo-

lution’’ (MDE)—stopping short of pure UDE. In MDD,

meta-designers will focus on creating local mechanisms

that allow small agents or components to assemble, coa-

lesce, grow, or generate architectures by themselves. In

MDE, even more ‘‘disengaged’’ meta-designers will only

create laws of variation and selection of the parameters of

these local mechanisms (or the mechanisms themselves),

prepare a few primitive ancestor systems, then step back to

let evolution and development invent the rest.

In sum, ME consists of designing a programmable and

reproducible two-way indirect mapping between the local

rules of self-assembly followed by the elementary agents at

the microscopic level, on the one hand (the genotype G),

and the collective structure and function of the system at

the macroscopic level, on the other hand (the phenotype P).

Calculating the transformation from G to P corresponds to
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developing an organism, while solving the inverse problem

of finding an appropriate G given a desired P (or family of

P’s) is the challenge of MDD and MDE, which can itself be

goal-oriented or open-ended, or a mix of the two.

Whether in 2D/3D physical devices, in software or in

techno-social networks, emergent architectures and decen-

tralized automation create exciting new perspectives. To

obtain novel and unplanned behavior, engineers, the old

enforcers of passive matter, should now guide bottom-up

interactions among a multitude of active components by

endowing themwith certain rules and parameters—or, better

still, with some metaheuristic (such as learning or evolution)

giving them the generic capability to fine-tune or acquire

these rules and parameters by themselves. Morphogenetic

engineers need to design for emergence, i.e. for systems that

fundamentally and continually adapt and evolve. The appeal

of ME resides in the many beneficial ‘‘self-x’’ properties that

this new attitude could bring, by improving, complementing

or even replacing human-led design and planning efforts. For

example, it could allow remote operations in hostile places,

faster organization without the usual delays tied to a central

command node, greater robustness and reactivity to new

events or environments, and better scalability if the system

needs to grow.

More broadly, as we have shown in the review above,

ME endeavors are closely related and intersecting with

those of many other innovative fields that have emerged

during the last decade, essentially during the 2000s, and

could be subsumed altogether under the overarching con-

cept of Engineering and Control of Self-Organization

(ECSO). With ME, we hope to be contributing to a larger

movement of emerging cross-disciplinary topics that all

attempt to solve, at their core, the paradoxes of ‘‘organizing

self-organization’’ and ‘‘planning autonomy’’ in various

ways—and not only toward shapes or architectures. In

recent years, it has become increasingly apparent that a

whole new generation of innovative researchers and pro-

jects cannot find an appropriate home in traditional ven-

ues—established conferences or journals, even university

departments or schools—as they are torn between scientific

domains focused on the observation and models of natural

CS (in which they appear too ‘‘artificial’’ and disconnected

from ‘‘real data’’) and engineering domains more interested

in top-down design and optimization of perfectly reliable

‘‘complicated systems’’ than complexity per se (in which

these meta-designs appear too ‘‘soft’’ or ‘‘bio-inspired’’ and

not sufficiently ‘‘proven’’). ECSO should therefore be a

unifying pole between two big families: CS and engi-

neering, which are traditionally not communicating, yet

have witnessed the rise of a new, unofficial intersection

populated with numerous original ideas (Table 2).

Within the larger ECSO federation, ME, for its part,

focuses on the strong architectural and complex functional

properties of systems, and how these properties can be

influenced or programmed at the microlevel.
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