
CHAPTER 3

Relations

In collaboration with René Doursat

1. Introduction

How can the same English relationship ‘in’ apply to scenes as different as
“the shoe in the box” (small, hollow, closed volume), “the bird in the tree”
(large, dense, open volume) or “the fruit in the bowl” (curved surface)? What
is the common ‘across’ invariant behind “he swam across the lake” (smooth
trajectory, irregular surface) and “the fly zigzagged across the hall” (jagged
trajectory, regular volume)? How can language, especially its spatial elements,
be so insensitive to wide topological and morphological differences among visual
percepts? In short, how does language drastically simplify information and
categorize?

The previous chapter addressed the basic concept of things and introduced
algorithms dealing with image segmentation, perceptual mereology and object
constituency. We now turn to the second major component of Langacker’s
trilogy, the relations between things. Relations clearly constitute the most
important problem at the core of all theories of language. Ultimately, different
theoretical perspectives on syntax will be distinguished on the basis of how they
construe relations. It is only after relations are expressed in a mathematical
form that processes can be modeled as temporal evolutions of relations and
events as changes occurring during these processes.

1.1. The gestaltic conception of relations

The various theoretical paradigms of language are broadly divided between
formal or symbolic conceptions of things and relations, on the one hand, and
what we here call “gestaltic” conceptions, on the other hand. In the formal
framework, things are comprised of autonomous, already individuated objects,
or “atoms”, and relations are represented by abstract links connecting these
atoms. This classical view, which has been extensively studied in the philo-
sophical literature (for an excellent discussion, see in particular Wittgenstein
[414] and Mulligan [240]), is nominalist and forms the basis of logical atomism
and set theory.
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In the gestaltic conception, by contrast, things and relations taken together
constitute wholes, i.e., they are part of higher-order complex objects, holistic
units or global configurations. First, things are separated and detached from
their common background by a segmentation process (see previous chapter).
Then, a mereological analysis can reveal what this “background” is made of,
both in the spatial relations between the objects and in their morphological fea-
tures. Here, relations between symbols are not taken for granted but emerge
together with the objects through mereological segmentations and transforma-
tions.

One of the best presentations of this key idea, already promoted in the early
beginnings of Gestalt theory and phenomenology, can be found in Husserl’s
1907 Ding und Raum [161]. In §59 Husserl tries to understand how object
configurations or “complexes” of objects are formed. Insisting that a typi-
cal feature of visual sensations is to constitute a field endowed with a spatial
format, he explains that everything having a perceptual unity is rooted in the
perceptual unity of the visual field (hence its temporal evolution, too). Individ-
uated objects can only exist inasmuch as they are detached and profiled against
their background. As a consequence, relations among objects are themselves
profiled against the same background of spatial unity. In this sense, objects
involved in relations can thus be conceived as being the parts of a higher-order
complex object, the global configuration. The relations making a configuration
of objects are therefore mereological and concern

the spatial order of parts at the core of the spatial whole. (p. 256)1

The main challenge is then to categorize these relations, and this constitutes a
genuinely difficult problem.

From Husserl to contemporary research on AI, human-machine interaction
and robotics, the interplay between perception and language in processing spa-
tial relations has always been a central issue. Let us cite two examples, among
many others. In his 1995 paper [151] “Coping with static and dynamic spatial
relations” (see also [152]), Gerd Herzog stresses that

(the) interplay between visual perception and natural language in human-

machine interaction receives growing attention since it constitutes a promi-

nent issue in many potential application areas. The aim of language-oriented

AI research in this context is to achieve an operational form of referential

semantics that reaches down to the sensoric level.

Going from visually accessible information to linguistic spatial descriptions is
a crucial challenge that requires modeling spatial relations

1 Independently of Husserl, it is well known in algebraic topology that the number of
blobs Xi embedded in an ambient plane W is coded by the homotopy group of the com-
plementary set W −{Xi}. This principle is widespread: the structure of a configuration

X embedded in an ambient space E can be analyzed by looking at its complementary
set W −X.
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as intermediate conceptual units between linguistic and sensory levels to

bridge from visual accessible three-dimensional geometric data to language-

oriented representations.

In much the same vein, Nikolaos Mavridis and Deb Roy from the Cognitive
Machine Group at the MIT Media Lab developed “grounded situation models
for robots” [226] to bridge the gap between perception, action, and language.

Our long-term objective is to develop robots that engage in natural language-

mediated cooperative tasks with humans. For example, the system can

acquire parts of situations either by seeing them or by “imagining” them

through descriptions given by the user: “There is a red ball at the left”.

These situations can later be used to create mental imagery, thus enabling

bidirectional translation between perception and language.

The gestaltic conception calls into question the traditional perceptual vs. lin-
guistic opposition. Visual perception is generally thought of as a faculty that
is exclusively concerned with the shapes of objects, while language is supposed
to be exclusively concerned with the abstract relations between those objects.
Interestingly, this assumption, which rules over mainstream linguistics and the
philosophy of language, is directly inherited from the classical gestaltic fig-
ure/background opposition. However, it starts losing its relevance when one
takes into account the fact that the so-called perceptual “background” is a true
figure in the eyes of language. As any figure, it is actively processed and or-
ganized by structuring principles—the grammatical elements (see below)—in
a spatial and morphological way that is radically different from mere symbolic
relationships. As we show in this chapter, the gestaltic conception of relations
was remarkably revived and further developed by the recent trends in cognitive
linguistics and cognitive grammars.

This conception is also very close to many psychological studies inspired
by the fundamental works of Albert Michotte in the 1940’s on the perception
of causality. Against the traditional Humian view, Michotte [234] showed that
apparently very high-level cognitive concepts such as causality are in fact deeply
rooted in the automatic and hardwired algorithms of perception. As explained
by Johan Wagemans ([399], p. 11):

Before Michotte, nearly all writers had treated causality as a high-level cog-

nitive concept, and tended to think of the currency of perception in terms of

only lower-level properties such as color, texture, and motion. Michotte, in

this context, demonstrated that even seemingly “cognitive” properties such

as causality may be processed in the visual system.

Michotte was inspired by Gestalt theory and claimed for instance that the
visual “inferences” explaining Kanizsa amodal completion phenomena are au-
tomatisms of low-level visual processing (see, e.g., [235]). We claim that this
central thesis is valid for geometric and kinematic relations in general.
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In cognitive psychology, the categorization of spatial relations in preverbal
conceptual thought has also been investigated extensively (see, e.g., Mandler
[222] and McDonough [227]).

In this chapter we want to apply this perspective to the analysis of the
topological contents of grammatical elements. We examine the link between
the spatial structure of visual scenes and their linguistic descriptions. Based
on a sampler of scene/description pairs, we attempt to reconstitute the toolbox
of basic dynamical routines that underlie the grammatical and spatial organi-
zation of these descriptions. We then derive effective algorithms from these
routines and propose a computational model explaining how the endless di-
versity of schematic visual scenes can be mapped to a small set of standard
semantic labels. We also show how these algorithmic principles naturally re-
late to new developments in the neuroscience of vision and spiking neurons
dynamics. In short, our proposal is that spatial and grammatical structures
are related to each other through image transformations that rely on diffusion
processes and wavelike neural activity.

To this aim we focus our attention on the remarkable work of Leonard
Talmy (Chapter 1, Section 3.3), unsurpassed in its precision, richness of details
and systematic ordering. Our intention is to use a few of the numerous examples
given by Talmy as the foundation for a new model based on gestaltic visual
routines.

In the remainder of this chapter, Section 2 applies an “active semantic”
approach to the analysis of spatial grammatical elements and draws a link
with visual processing routines. In Section 3 we discuss spatial invariance and
the notion of “linguistic topology” in the context of mathematical geometry,
which leads us to reaffirm the importance of transformation routines. Section 4
illustrates the specific difficulties raised by perceptual-semantic schemata with
a detailed example, the English preposition “across”. Modeling principles and
algorithms are then introduced in Section 5, while numerical simulations on
cellular automata are described in Section 6. Finally, we suggest a natural
and plausible neural implementation of expansion-based morphology, based on
waveform activity dynamics in spiking neural networks, in Section 7.

1.2. Scope of this study

Before proceeding further, however, we wish to avoid any misunderstanding by
pointing out the following important epistemological aspect: in this chapter,
we restrict our analysis of prepositional contents to their morphological and
perceptually rooted kernel. A full linguistic analysis of prepositional semantics
would be of a much more complex nature and will not be addressed here.

Contemporary theories of semantics have shown that terms with spatio-
temporal content are highly polysemous. For example, different uses of ‘in’
relate to qualitatively different spatial situations [150]:

(1) a. There is a cat in1 the house.
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b. There is a bird in2 the tree.
c. There is a spoon in3 the cup.
d. There is a crack in4 the vase.

Spatial prepositions typically form prototype-based radial categories (see Rosch
[326]). Here, ‘in1’ represents the most prototypical “containment” schema,
while ‘in2’ departs from it slightly by the texture and openness of the container.
Many top-down knowledge-based inferences are also constantly operating on
the data. For instance, the analysis of the ‘in3’ sentence must take into account
the instrumental function of the spoon and its mereological decomposition into
spoon head and spoon handle. The spoon handle is sticking out of the cup so
the complete spoon is not physically inside the cup but only metonymically,
via its head part.2 In the subcategorical island ‘in4’, the container is a surface,
not a volume, etc.

Another major departure from prototypical use comes from metaphors,
a pervasive mechanism of cognitive organization and categorization rooted in
the fundamental domains of space and time (see Lakoff [197], Johnson [173],
Lakoff-Johnson [201], Talmy [374], [375]). Metaphorically, the preposition ‘in’
grammaticizes a generalized “containment” schema that can be applied not
only to a great variety of concrete objects and scenes but also to highly abstract
situations:

(2) a. I am inA a committee.
b. I am inB doubt.

These uses of ‘in’ pertain to a virtual concept of space generalized from real
space, respectively:

(3) a. I am in5 a crowd.
b. I am in6 water.

In these examples, ‘inA’ metaphorically maps to an element of a discrete nu-
merable set exemplified by ‘in5’, while ‘inB ’ relates to an immersion into a
continuous ambient substance such as ‘in6’.

With these preliminary remarks in mind, we restrict the scope of this chap-
ter to relatively homogeneous subcategories or protosemantic features, i.e., low-
level compared to linguistic categories but high-level compared to local visual
features. Our goal is to categorize scenes into elementary semantic subclasses,
such as ‘in1’, or clusters of closely related subclasses, such as ‘in1-in2’. We will
not attempt to delineate the whole cultural complex formed by the English
preposition ‘in’ by a single (and non-existent) universal.

However, even without additional semantic operators, we are still faced
with the difficult problem of linking invariant semantic kernels to an infinite

2 Langacker also emphasized this point In [207]: “As shown by The flower in the vase,

where most of the flower protudes”, the semantic content of ‘in’ is not only topological
but also functional.
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continuum of perceptual shape diversity. Even in their most typical, physical
and concrete realizations taken independently, such as ‘in1’, in2’, etc., how can
these invariant semantic kernels apply to perceptual data?

This challenge will be at the core of the present chapter and the remainder
of this book. As mentioned above, contributing to its solution means focusing
on a collection of low-level topological and dynamical routines that structure vi-
sual scenes in a gestaltic fashion. We are not implying, however, that top-down
symbolic operations are not a full part of the cognitive act of language. After
all, linguistic productions are made of symbolic utterances. Moreover, there
must exist a higher-level control or “intentional” level of organization deciding
which low-level routines should be applied to the scene and in what sequence.
Yet, before these issues can be solved, the central interface between the lower
perceptual and protosemantic levels of language must first be addressed.

2. Talmy’s Gestalt semantics

As we have seen in Section 3.3 of Chapter 1, a fundamental thesis of Talmy
is that language involves a system of organizational elements that structure
the conceptual material in much the same way as visual elements structure the
perceptual material.3 He also shows that these elements are expressed gram-
matically, as opposed to lexically. The grammatical elements (prepositions ‘in’,
‘above’, etc.; declension and conjugation suffixes, and so on) form closed classes,
i.e., restricted sets that contain relatively few members and that almost never
expand in the course of a language’s evolution. By contrast, the lexical ele-
ments (‘bird’, ‘box’, etc.) are extremely numerous and continuously produced,
therefore creating open classes. Assuming that sentences evoke cognitive rep-
resentations (CRs) in the listener’s mind, Talmy claims that the grammatical
elements provide the conceptual structure or “scaffolding” of these CRs, while
the lexical elements provide their conceptual contents.

Ronald Langacker [203] (see Section 3.2) also proposes that language essen-
tially revolves around categorization at all levels of cognitive organization—as
well among the things as among their relations (processes) or the temporal
evolution of these relations (events). From there, the notion of schematization
plays a central role in cognitive linguistics. Since its early Kantian origins, a
“schema” is a procedure that can transform the content of a concept into a
modus operandi for constructing its referents.

2.1. Active semantics

Talmy’s most compelling idea is that in a relational complex of objects where
a figure—Langacker’s trajector TR—is profiled against a ground—Langacker’s
landmark LM— the ground is not merely a passive frame for the figure, but
the ground’s geometry is also grammatically specified. In fact, the majority

3 All major articles of Len Talmy published between 1972 and 1996 have been collected
in the two volumes of his magnum opus Toward a Cognitive Semantics [374], [375].
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of spatial grammatical elements treat the figure TR as a mere point while
making various elaborate distinctions for the reference object LM. For example,
consider the following three sentences:

(4) a. The ball is in the box.
b. The ball is on the box.
c. The ball is 20ft away from the box.

Depending on the viewpoint, (4a) construes the box as a container volume,
whereas (4b) focuses on the top surface of the box and (4c) reduces the box
to a reference point. Thus, different grammatical elements scaffold reality in
conceptually different ways. A classical theory of syntax, by contrast, would
assimilate the box to a symbol irrespective of its actual geometrical shape or any
other perceptual features, and assume that all spatial meaning is encapsulated
in the abstract relationships ‘in’, ‘on’, and ‘away from.’

Now, by giving a new significance to the object’s geometry we are also chal-
lenged to find how this geometry varies with linguistic circumstances, i.e., how
prepositions actually select and process certain morphological features from the
perceptual data, while ignoring others. We propose that simple morphemes like
the spatial elements ‘in’, ‘above’ or ‘across’, correspond in fact to visual pro-
cessing algorithms that take perceptual shapes as input, transform them in a
specific way, and deliver a semantic schema as output. We call these algorithms
morphodynamical routines and the global structuring process active semantics.

If we take the tenets of cognitive linguistics seriously, we are therefore led
to the following postulate: given an input perceptual scene that is already the
outcome of low-level preprocessing tasks, such as boundary detection and ob-
ject segmentation (see Chapter 2), language semantics is an active process that
takes this scene to the next level of organization through a package of trans-
formations or “morphodynamical” routines. These morphodynamical routines
erase details and create new forms that evolve temporally.

• They enrich a visual scene with new virtual structures or singularities
(e.g., influence zones, fictive boundaries, skeletons, intersection points,
force fields) that did not originally belong to the scene but reveal the
meaning it conveys.
• To this goal, they select from the scene its appropriate morphological

features (surfaces, angles, segments, etc.) as the basic material to carry
out the said transformations.

In summary, according to this program, semantic schemata literally trigger
additional processing routines. We suggest below that these routines are akin
to object-centered and diffusion-like non-linear dynamics.

2.2. Basic structuring schemata

In this section we recall and adapt a representative sample of Talmy’s findings to
illustrate the basic structuring operations performed by grammatical elements.
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As explained above, our goal is to associate grammatical configurations with
data-reducing transformation algorithms essential to scene categorization.

2.2.1. Magnitude invariance → multi-scale analysis. We start with the linguis-
tic properties of invariance and neutrality with respect to the detailed shape
and dimensions of the perceptual data. One of Talmy’s major claims ([374],
p.28) is that:

the nature of [grammatical] structure is largely relativistic, topological, qual-

itative or approximative rather than absolute, Euclidean, quantitative or

precisional.

We will discuss the “topological” quality of grammar in more detail in Section 3.
For now, we retain the fact that grammatical elements are fundamentally scale-
or metric-invariant. Compare, for example (Talmy [374], p. 25):

(5) a. This speck is smaller than that speck.
b. This planet is smaller than that planet.

The above sentence pair shows that real distance and size do not play a role in
the partitioning of space carried out by the deictic words ‘this’ and ‘that’. The
relative notions of proximity and remoteness conveyed by these elements are
the same whether in millimeters or parsecs. This does not mean, however, that
grammatical elements are insensitive to metric aspects but rather that they can
uniformly handle similar metric configurations at vastly different scales. Multi-
scale processing therefore lies at the core of Gestalt semantics and, interestingly,
as we have seen in Chapter 2, has also become a main area of research in
computational vision (see, e.g., Mallat [219], Perona-Malik [257], Whitaker
[401], Morel-Solimini [239]).

2.2.2. Morphology invariance. Numerous examples collected by Talmy show
that grammatical elements are largely indifferent to the morphological details
of objects or trajectories of moving objects, and that these details are mostly
entrusted to lexical elements. This invariance of meaning points to the exis-
tence of underlying visual-semantic routines that perform a drastic but targeted
simplification of the geometrical data.

Data-reducing routines fall into a few different categories, partly listed
below. They are crucial to the faculty of scene categorization.

3 Bulk-neutrality → skeleton routines
Another form of magnitude invariance appears in the selective rescaling of

specific spatial dimensions. This is the case of thickness or bulk invariance.
For example (Talmy [374], p. 31):

(6) a. The caterpillar crawled up along the filament.
b. The caterpillar crawled up along the flagpole.
c. The caterpillar crawled up along the redwood tree.
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These sentences show that ‘along’ is indifferent to the girth of LM and focuses
exclusively on its main axis or skeleton, parallel to the direction of TR’s tra-
jectory. Like multi-scale analysis, skeleton transforms are widely used in com-
putational vision and implemented using various algorithms (see the previous
chapter). Studied by Blum [38] under the name “medial axis transform” and by
others as “cut locus”, “stick figures”, “shock graphs” or “Voronoi diagrams”
(see, e.g.,, Marr [224], Siddiqi et al. [345], Zhu-Yuille [419]), morphological
skeletonization plays a crucial role in theories of perception and is considered
a fundamental structuring principle of cognition by Leyton [212]. Skeletons
indeed conveniently simplify and schematize shapes by getting rid of unneces-
sary details, while at the same time conserving their most important structural
features. As we have seen in the previous chapter, there is also experimen-
tal evidence that the visual system effectively constructs the symmetry axis of
shapes (see, e.g., Kimia [179] and Lee [209]).

3 Continuity-neutrality → expansion routines
Sentences such as:

(7) a. The ball is in the box.
b. The fruit is in the bowl.
c. The bird is in the cage.

are good examples of active-semantic analysis showing the neutrality of the
preposition ‘in’ with respect to the morphological details of the container. We
therefore propose that the active-semantic effect of ‘in’ is to trigger routines that
transform individual objects and their composition in a scene in the following
manner:

• The container LM (‘box’, ‘bowl’, ‘cage’) is closed by adding virtual
structures to complete its missing parts: the ‘bowl’ becomes a sphere,
the ‘cage’ a continuous surface of similar shape, etc. Generally, this type
of closing process replaces objects by continuous spherical or blob-like
occupation domains.
• The contained object TR (‘ball’, ‘fruit’, ‘bird’) expands, for example

by a contour diffusion process, irrespective of its detailed shape until it
collides with the boundaries of the closed LM. In fact, these two phases
of the ‘in’ routine, the closing of LM and the expansion of TR, can run
in parallel.
• Both TR and LM expand simultaneously until they encounter each

other’s boundaries. In this case, the expansion of LM naturally cre-
ates its own closing while at the same time providing an obstacle to the
expansion of TR.

Therefore, we propose the following active-semantic definition of the pro-
totypical “containment” schema (corresponding to the ‘in1-in2’ cluster of ex-
amples (1) and their closely related variants):
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A domain A lies ‘in’ a domain B if an isotropic expansion of A is
stopped by the boundaries of B’s closing or own isotropic expansion.

Although simple, the double expansion process that we propose for the “con-
tainment” schema is not trivial and leads us to introduce the following general
principles of active-semantic morphodynamics:

(i) each object has a global tendency to occupy the whole space,
(ii) objects are obstacles to each other’s expansion.

Through the action of structuring routines, the common space shared by the
objects is divided into influence zones in an isotropic or anisotropic fashion.
Image elements cooperate to propagate activity across the field and inhibit
activity from other sources. Thus, the preposition ‘in’ involves an isotropic
obstacle, whereas for example ‘over’ involves an obstacle in the lower half of
the scene preventing a vertical expansion of the TR from reaching the bottom
edge of the visual field.

In summary, within the general framework that all perceptual objects share
the same surrounding space, we suggest that spatial interrelations between ob-
jects are inferred from the boundaries created by their territories (wave front
collision curves and singular points on these curves) and the dynamical evolu-
tion of these boundaries. A directly measurable consequence of this definition
is the fact that no TR-induced activity will be detected on the boundaries of
the visual field. The final boundary between the domains is approximately
equal to the skeleton of the complementary space between the objects, also
called skeleton by influence zones or SKIZ (see Prewitt [316] and Serra [341]).
In the case of the “containment” schema, the SKIZ surrounds TR and no re-
gion on the boundaries of the image will be encompassed in TR’s expanded
domain. The sheer absence of TR activity on the boundaries is a robust fea-
ture that contributes to categorize the scene as ‘in’. It illustrates a typical
morphodynamical routine at the basis of our perceptual-semantic classifier.

3 Shape-neutrality → singularities
Other examples by Talmy clearly show that salient aspects of shapes are

simply not taken into account by grammatical elements. In the following sen-
tences (Talmy [374], p. 27):

(8) a. I zigzagged through the woods.
b. I circled through the woods.
c. I dashed through the woods.

the actual trajectory of the moving object TR (the first person), whether made
of segments, curves or a single straight line, ultimately connects two opposite
(and possibly virtual) sides of the extended domain LM (the woods). In our
active-semantic view, this shows that the element ‘through’ creates a drastic
schematization of TR in two steps:
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• the trajectory is “convexified” or “tubified”, again by outward expansion
(yet, here, to a limited extent) and becomes what is called in geometry
a tubular neighborhood ; then
• the main axis of this tube is extracted through a skeletonization process

that is basically a reverse inward expansion eroding the object down to
its medial symmetry axis.

At the same time, it does the same with LM: the texture is first erased,
then the domain is skeletonized. In short, the grammatical perspective enforced
by the English preposition ‘through’ reduces the detailed original trajectory of
TR and texture of LM to mere fluctuations around their medial axes. Finally,
the characteristic feature of the ‘through’ schema lies at the intersection of the
two skeletons.

As already mentioned above, skeleton transforms are widely used in com-
putational vision and implemented using various algorithms. They offer a con-
venient way to simplify and schematize shapes by getting rid of unnecessary
morphological details, while at the same time conserving their most important
structural features. For this reason they are also well suited to the analysis of
relations. We will further develop this point below (see Section 4).

In this example, the spatial relation between the objects is inferred from
virtual singularities in the boundaries of the objects’ territories. These sin-
gularities and their dynamical evolution are important clues that constitute
the characteristic “signature” of the spatial relationship (Petitot [261]). Trans-
formation routines considerably reduce the dimensionality of the input space,
literally “boiling down” the input images to a few critical features. A key idea
is that singularities encode a lot of the image’s geometrical information in an
extremely compact and localized manner.

In summary, after the morphodynamical routines have transformed the
scene according to the expansion principles (i) and (ii), several types of char-
acteristic features can be detected to contribute to the final categorization:

(iii) presence or absence of activity on the boundaries,
(iv) intersection of skeletons,
(v) singularities in the SKIZ boundary.

Our active-semantic approach proposes a link between the “things, relations,
events” trilogy of cognitive grammar (Langacker [203]) and the “domains, sin-
gularities, bifurcations” trilogy of morphodynamical visual processing (Petitot
[261]). We further suggest in Section 7 that the brain might rely on dynamical
activity patterns of this kind to perform invariant spatial categorization.

3. What is “cognitive topology”?

The core invariance of spatial meaning reviewed above is sometimes referred
to as the “linguistic form of topology” (Talmy [374]), or “cognitive topology”
(CT) (Lakoff [199]), and is often compared to mathematical topology (MT).
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Section 2.2 showed that, just like MT, CT is magnitude- and shape-neutral.
Yet, CT is also more abstract and less abstract than MT at the same time
(Talmy [374], p. 30):

• In some areas, CT has a greater power of generalization than MT. For
example, the invariant “containment” schema extracted from ‘in the
box’, ‘in the bowl’ or ‘in the cage’ (see 2.2.2) shows that incomplete
or disconnected parts can be equivalent to a single continuous surface
through a closing process.
• In other areas, however, CT also preserves metric ratios and limits dis-

tortions in a stricter sense than MT. For example, the lexical elements
‘cup’ and ‘plate’ have distinct spatial semantic properties and uses, al-
though a plate is nothing more than a flattened version of a cup (they
are homeomorphic in the mathematical sense). As we will later see in
Section 4, the grammatical element ‘across’ also exhibits subtle metric
constraints in its applicability.

In reality, because of all these discrepancies, CT has actually little to do
with true MT. In the mathematical sense, topology refers only to a certain
level of structural description of spatial objects. Let us give a brief reminder
of this topic.

In mathematics, structural levels go from the least constrained (sets) to the
most constrained (Euclidean metric) and each level is associated to a particular
class of mappings or structure morphisms preserving that level:

Level 0 corresponds to pure set structures. Points are independent from each
other and mappings can be any set applications.

Level 1 is the topological level. Points are “glued together” through qualitative
neighborhood relationships and mappings are continuous applications,
which can be for example fractal.

Level 2 is the differentiable level. Objects are “smooth” and can be approxi-
mated by tangent linear objects. Mappings are infinitely differentiable.
Fractals are typical examples of objects from Level 1 that do not belong
to Level 2.

Level 3 is the conformal level and corresponds to the existence of “complex”
structures, in the sense of complex numbers. Mappings are holomorphic,
which means in the 2D case that they preserve angles.

Level 4 is the metric level and introduces the concept of distance. Several sub-
categories can be distinguished here: In Riemannian spaces, metric is
non-homogeneous (it is local and can vary from point to point); in Eu-
clidean or non-Euclidean spaces (hyperbolic, Minkowskian, etc.) metric
is homogeneous and mappings are isometric transformations.

Level 5 is both metric and linear. This is the level of vectorial spaces with a
norm (Euclidean spaces, Hilbert spaces).
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We want to address again the question of a cognitive topology within this
mathematical context. Levels 2 and 3, which lie between the malleable topo-
logical level and the rigid metrical level, are both “soft” in the sense that they
allow stretching, and are at the same time more constrained than Level 1. At
first sight, these qualities would make Levels 2 and 3 good candidates for the
sought-after cognitive level of representation of CT. However, we think that
this view is misleading. In our sense, if there is such a thing as a cognitive
topology, it does not correspond to any of the levels (or intermediate levels) in
the above mathematical hierarchy.

3.1. Convexification

In reality, the active semantics conception presented in Section 2.1 leads us
to consider inter-level transformations, i.e., processes starting at one level and
going up or down the hierarchy. For example, a convexification routine, which
makes objects smoother and “rounder”, is a true schematization in the sense
that it discards a great amount of the objects’ metric properties and yields
only a small number of blob-like shape categories. To the limit of spherical
convexification, all objects become equivalent to a unique ‘sphere’ class. This
makes convexification appear to go down the level hierarchy, towards the “soft”
topological levels. Yet, at the same time, the convex shapes it creates are more
“rigid” than the original objects because, precisely, mappings acting within
these shape classes are constrained to preserve convexity. Therefore, convex
shapes somehow also belong to the higher metric levels.

This example illustrates the subtle and complex interplay between a pro-
cess of impoverishment of details and a process of rigidification of structures.
On the one hand, CT is “neutral” toward certain structural aspects (magni-
tude, continuity, shape, bulk, etc., see 2.2), which seems to imply that it lies in
the lower range of the hierarchy of mathematical levels. However, on the other
hand, active-semantic or morphodynamical routines essentially transform ob-
jects into new objects that are categorical prototypes and, precisely because
they are prototypical, by nature more rigid and metrically constrained. For
example, by transforming the topological and differentiable “amoeboid” forms
of levels 1 and 2 into regular, prototypical spheres we are in fact going up the
level hierarchy, towards the metric levels.

In short, one could say that schematization and categorization replace “soft
complex” forms with “rigid simple” ones. Here lies the puzzling apparent
paradox of cognitive topology.

3.2. Skeletonization

Another remarkable example of this phenomena is skeletonization (seen in Sec-
tion 2.2.2). Like convexification, skeletonization performs a drastic simplifica-
tion of objects, yet it is also highly sensitive to their metric details. An inter-
esting problem is then to find out what transformations preserve the topology
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of the skeleton. If we denote by Sk(X) the skeleton of a shape X, the skeleton-
based relation of equivalence ∼= between two shapes

(1) X ∼= Y ⇐⇒ Sk(X) ' Sk(Y )

where ', is much weaker than an isometry. Yet, it is also much more rigid than
conformal isomorphisms and, a fortiori, diffeomorphisms and homeomorphisms.

In summary, active semantics is first and foremost a matter of processes,
transformations, representations and re-coding. It does not correspond to any
of the elementary levels of mathematical structures. As we will see below, it
nevertheless corresponds to a family of operations that can be called morpho-
logical and it is in that sense that one may, somehow incorrectly, speak of a
“morphological level” for cognitive topology.

Thesis: What is generally called “topology” in Gestalt semantics and
cognitive grammar actually corresponds to the action of morphological
operators.

4. Operations on schemata: the ‘across’ puzzle

In order to illustrate the richness and difficulty of the problem raised by
perceptual-semantic schemata, even leaving out their metonymic or metaphor-
ical extensions and restricting ourselves to invariant perceptual kernels (see
Section 1.2), we want to study here the example of the preposition ‘across’ in
greater detail.

4.1. Invariant of transversality

The main geometrical concept underlying all uses of ‘across’ is the concept
of “transversality”, It is a natural and intuitive concept that was clarified for-
mally only recently within the framework of modern differential geometry, in
particular by the works of Hassler Whitney and René Thom. Let us start with
a few simple considerations:

• Intuitively, two distinct lines L1 and L2 in the plane R2 are transverse
if they intersect, i.e., L1 6= L2 and L1 ∩ L2 6= ∅. This is a stable or
“generic” situation in the sense that small perturbations cannot make
transverse lines parallel.

• By extension, two (smooth) curves C1 and C2 in the plane R2 are trans-
verse if they intersect at points where their tangent lines L1 and L2 are
transverse.

• Two lines L1 and L2 in the space R3 are never transverse when they are
coplanar, because this would not be a generic situation: any infinitesimal
perturbation could bring them apart.

• On the other hand, a line L and a plane P such that L 6⊂ P in the space
R3 are transverse if they intersect.
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• By extension, a (smooth) curve C and a (smooth) surface S in the
space R3 are transverse if they intersect at points where their tangents,
respectively a line L and a plane P , are transverse in the previous sense.
• Two distinct planes P1 and P2 of the space R3 are transverse if they

intersect.
• By extension, two (smooth) surfaces S1 and S2 are transverse at one of

their intersection points if their tangent planes P1 and P2 at that point
are transverse.

Extracting an invariant kernel from these various instances of transversal-
ity, one comes up with the following formal definition:

• Two (smooth) subspaces U and V of an ambient space M , for example
R2 or R3, are said to be transverse at one of their intersection points x if
their tangent spaces at x, Tx(U) and Tx(V ), generate the whole tangent
space of M at x, i.e., if Tx(U) + Tx(V ) = Tx(M).

4.2. Variants of transversality

Several archetypical schemata of transversality can be developed around
this general conceptual kernel. One of them is the rather simple “crossing”
schema, in the sense of road-crossing, and involves two 1D curves intersecting
in a plane. Another schema, more complex, corresponds to the English prepo-
sition ‘across’ and will be examined in the rest of this section. It involves a
domain D (the LM) delimited by boundaries, and a path C (the TR) traversing
this domain. More precisely, the ‘across’ schema is in fact characterized by a
double transversality and can be tentatively described as follows:

Across 1: A path C is going across a domain D if (a) it enters D
at a point x1 where it intersects the boundary ∂D of D transversally,
(b) it lies inside D, and (c) it exits D at a point x2 on an “opposite”
segment of ∂D where it intersects ∂D transversally again

Therefore, the particular perceptual-semantic schema conveyed by ‘across’ in-
cludes a notion of transversality between a 1D curve and a 2D domain of the
plane, itself defined as a double transversality between the curve and the do-
main’s boundary. The rigid prototypical form of this schema corresponds to a
line intersecting a rectangle perpendicularly (Figure 1).

4.3. Plasticity of perceptual-semantic schemata

Talmy identified a great number of different uses of the ‘across’ schema.
These examples are typical of the high degree of plasticity displayed by percepto-
semantic schemata.

4.3.1. Topological plasticity. First, the path C and the boundary ∂D can be
considerably deformed without affecting the ‘across’ property, as long as the
three criteria in the above Across 1 definition are preserved (Figure 2).
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Figure 1. The ‘across’ prototype: a line intersecting a rectangle perpendicu-
larly

Figure 2. The ‘across’ prototype is plastic and can be greatly deformed up
to a certain limit without losing its meaning.

Figure 3. A bad instance of ‘across’: the exit point x2 is not on the boundary
“opposite” to the entry point x1

However, this necessary condition is not sufficient. It is easy to show that,
although they can be deformed to a great extent, neither C nor ∂D can be
completely arbitrarily deformed as they would be in a purely topological sense,
while preserving the ‘across’ property. In fact, identifying these limits precisely
constitutes the core difficulty of the ‘across’ puzzle, as we will see below. For
example, Figure 3 is not a good instance of ‘across’, because x2 is not on the
boundary “opposite” to x1—but, again, what is an “opposite” boundary?

4.3.2. The concrete/virtual dialectics. Talmy gives numerous examples showing
that the schema does not need to be complete and that one or more of its
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components can be virtual or missing. They span an entire range between two
extreme cases:

(9) a. The tumble weeds are swept across the prairie.
b. The snail crawled across the car.

In (9a) the boundary ∂D of the ‘prairie’ LM domain is virtual, and therefore
x1 and x2 too, whereas in (9b) it is the path C of the ‘snail’ TR that is virtual.

4.3.3. The 2D/3D ambiguity. Talmy also gives adaptive examples of applica-
bility of schemata. The following pair of sentences:

(10) a. He flew across/over the plateau.
b. He walked across/through the wheat field.

In (10a), ‘across’ takes the sense of ‘over’: the ‘plateau’ domain is 2D and the
condition of transversality applies to two curves in a plane, the path C and the
boundary ∂D. In (10b), by contrast, ‘across’ takes the sense of ‘through’: the
‘wheat field’ domain is now a 3D volume and its boundary a 2D surface. Here,
transversality occurs between a curve C and a surface in a 3D ambient space.

4.3.4. Constraints on distortion. We just saw that there were additional con-
straints to the plasticity of a schema and that it cannot be of a purely topologi-
cal nature, allowing free-range deformations. To further appreciate the problem
in all its subtlety, let us take the example of a lake:

• A path that penetrates the domain of the lake only slightly, within its
outer margin and then follows the shore to eventually exit on the same
side (Figure 4a) does not really constitute a situation of transversality.
It is rather an approximatively “tangential” situation.
• A path that penetrates the domain of the lake, goes almost all the way

through to the other side but then turns around and comes back to exit
on the entrance side poses a more delicate problem (Figure 4b). One
can argue that it is not a good case of transversality either, because the
second crossing x2 is not on the “other side” of x1—which again raises
the question of a definition of the “other side”.

These difficulties are characteristic of the morphological nature of percep-
tion and cannot be simply resolved by using some kind of metric template
matching (levels 4 and 5 of the mathematical hierarchy evoked in Section 3)
or, on the other end of the spectrum, by using free-range topological defor-
mations (levels 1 and 2). On the one hand, template matching would be an
unpractical task because of the sheer number of templates necessary to cover
the combinatorial complexity of typical and subtypical configurations. On the
other hand, a more flexible template matching allowing greater deformations
would in fact accept bad configurations and yield a lot of false positives.
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Figure 4. The difficulty of the ‘across’ puzzle and a proposal for a solution.
(a) A path that is too “tangential” to the boundary cannot be described by
‘across’. (b) A path that is sufficiently transverse to the boundary but exits
on the “same” side cannot be described by ‘across’ either. (c) To be a good
example of ‘across’, a path must intersect transversally the medial axis (cut
locus) an odd number of times (see below).

4.4. Virtual structures

To find a way out of the misleading topological vs. metric dilemma, the solution
we propose involves creating virtual structures that embody metric information
without being themselves metric. The ‘across’ schema contains an implicit par-
titioning of the domain D into ‘this side’ and ‘that side’ (see 2.2.1), equivalent
to the partitioning performed by ‘here’ and ‘there’. This qualitative difference
can be geometrically implemented by a virtual intermediate boundary CD ap-
proximately located in the middle of the domain. Before the boundary CD, we
are on ‘this side’ of the domain and after CD we are on ‘that side.’

An interesting property of the virtual boundary CD is that it is both of
a metric nature, since it lies in the “middle” of D, and at the same time of a
qualitative nature, since its only purpose is to divide D into two subdomains.
The position of CD is quantitatively precise (at maximal distance from the
borders of D) but its function is really to discretize the underlying continuum.
This is similar to the origin point on a coordinate axis: both precisely located
and qualitatively arbitrary, present only to separate two half-lines.

The virtual structure CD we need naturally corresponds to the “cut lo-
cus” (or “skeleton”, “symmetry axis”, etc.) already mentioned in Section 2.2
about the magnitude and morphology invariance of grammatical elements. A
simple skeletonization of the domain D solves the problem rather easily, albeit
partially, and the above criterion can be modified in the following manner:

Across 2: A path C is going across a domain D if (a) it lies inside D,
(b) is transverse to the cut locus CD of the domain in one or an odd
number of points, and (c) intersects the boundary ∂D of the domain
in two points: x1 on one side of CD when C enters D, and x2 on the
other side of CD when C exits D (Figure 4c).
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Figure 5. Ambiguity between ‘across’ and ‘along.’ Left: ‘across’ the swim-
ming pool lane. Right: ‘along’ the swimming pool lane.

Therefore, we find again the pure invariant of transversality applied this time
to the intersection between the cut locus CD and the path C. The transver-
sality archetype also operates on transformed shapes, giving the schema all its
plasticity. For example, the path C can zigzag around the cut locus as long as
the net result is a crossing from one side to the other.

In summary, this example clearly illustrates the fact that obtaining the
right type of constraints, in order to characterize perceptual-semantic schemata,
requires taking into account additional virtual structures.

4.4.1. Across vs. along. Another compelling demonstration of the idea that
morphological analyzers such as the cut locus can help solve cognitive-topologi-
cal puzzles is given by the following two sentences (Figure 5):

(11) a. I swam across the swimming pool lane.
b. I swam along the swimming pool lane.

Looking at Figure 5, the conditions for using ‘across’ seem to be satisfied
in both cases according to the first definition Across 1 above. Yet, in the
situation depicted by (11b) ‘across’ is obviously incorrect in English and should
be replaced by ‘along’. Why is this the case? To resolve this issue, one could try
to amend Across 1 by introducing an additional ad hoc metric constraint that
can discriminate between (11a) and (11b). This constraint could rely on the
ratio of the lane edges with respect to the direction of the path: the edge parallel
to the path should be shorter than the edge perpendicular to the path, i.e., their
ratio should be less than 1. But this kind of metric criterion is not satisfactory
because it is in fact too metrical (Euclidean). It is applicable only to a small
number of well-defined configurations, i.e., regular rectangle pool lanes in which
the swimmer’s path can be “parallel” to one edge and “perpendicular” to the
other. It also loses the link with the topological invariant of transversality.
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Figure 6. A solution to the ‘across’/‘along’ ambiguity. Left: ‘across’ applies
because the path is transverse to the cut locus. Right: ‘along’ applies because
the path is not transverse to the cut locus (here, parallel).

Instead, by introducing the cut locus CD of the domain and applying the
modified definition Across 2, the discrimination between (11a) and (11b) be-
comes natural and immediate. Whereas in case (11a) the path is transverse to
CD, in case (11b) it is not (here, parallel to CD) (Figure 6).

However, this rather simple and elegant criterion also has limits in special
cases: for example, if the path in (11a) was too close to one of the short edges
of the pool lane, it would not intersect CD anymore. Nevertheless, we believe
that this kind of criteria involving basic virtual structures are able to bridge
the gap between perception and semantics.

4.5. Other examples of virtual structures: fictive motion

The introduction of virtual, fictive, or subjective structures is crucial to
Gestalt semantics. Len Talmy uncovered and categorized a wealth of linguistic
instances in which fictive structures are grammatically embodied in language.
In particular, his unified system of “fictive motion” (Talmy [373], [374], chap.2),
a semantic phenomenon creating a sense of motion without physical realization,
displays one of the most overt types of such structures. To illustrate this point,
we give here a short sample of fictive motion categories identified by Talmy.

• Emanation paths. A finger pointing at an object draws a virtual line
through space linking it to the object, and beyond:

(12) I pointed him toward/past/away from the lobby.

• Shadow paths. An object’s shadow is perceived as moving from the object
to a background surface:
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(13) a. The tree cast its shadow down into the valley.
b. The pillar’s shadow fell onto the wall.

• Virtual processes. In many cases, a static situation is construed as the result
of a virtual dynamical process:

(14) a. The palm trees clustered together around the oasis.
b. Mountains are scattered all over this region.

• Virtual fronts. Any object defines a “front” comprising a virtual plane and
a path emanating perpendicularly from this plane. This virtual structure is
present in demonstrative paths, sensory paths, and radiation paths.

5. Modeling principles and algorithms

5.1. Gestalt computation

The family of problems that we examined in the previous sections constitute
Gestalt-type problems in the strong technical sense of the term. They involve
global structures, virtual organizer elements, dialectics between the quantita-
tive and the qualitative, the metric and the categorical, along with properties
of topological and morphological plasticity. They amplify the classical Gestalt
phenomena (such as virtual contours or the Prägnanz of right shapes). At the
algorithmic level, they also raise an arduous local/global dilemma: how to strike
a balance between global Gestalts on the one hand, and local computation on
the other hand.

The main issue is the following: what kind of computational procedures
are able to generate (through a “scanning” process) the aforementioned virtual
organizing structures? The core difficulty is that global (holistic) elements
containing infinite information have to be processed by purely local algorithms
only using informationally finite procedures. From this perspective, cognitive
grammars are not satisfactory: they rely on rather mysterious and holistic
properties of vision without attempting to create explicit models and work out
algorithms that could explain these properties.

Moreover, those local procedures must derive from principles that are gen-
eral enough to successfully explain how any unsupervised learning of the closed
grammatical classes, with all their fascinating perceptual-semantic nuances, can
even be possible.

5.2. Spreading activation

In fact, the structuring operations that we sketched in Section 2 all point toward
a specific type of process. To be able to generate global structures using local
mechanisms, the only possible solution is to trigger diffusion-propagation or
expansion processes from the salient features of the original image, in particular
the contours. These contours become active (excitatory or inhibitory) and
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trigger “activity waves”. In turn, these waves create wave front singularities
and, with multiple sources, wave front collisions.

To recapitulate, the routines that we gathered in our exploration of nu-
merous linguistic examples are: convexification, tubification, skeletonization,
cut-locus, triggering contours and obstacle contours, etc. Drawing from these
observations, we propose the two following key ideas toward the foundation of
an active morphological semantics:

Key idea 1: Contours are active elements that either trigger processes
of diffusion-propagation activity, or inhibit such processes coming from
other sources.

Key idea 2: Diffusion-propagation processes generate in turn new ge-
ometrical entities, in particular singularities, that act as virtual struc-
turing elements.

5.3. Links with other works

5.3.1. Terry Regier. In his 1988 article [320] Recognizing Image-schemata Us-
ing Programmable Networks (see also Harris [144]), Terry Regier also used a
contour diffusion routine for analyzing the cognitive (perceptual-semantic) con-
tent of prepositions such as ‘in’, ‘above’, etc. He starts from the hypothesis
that

recognizing an image-schema for a given preposition amounts to recognizing

that the particular spatial configuration named by the preposition holds

between the entities focused on in the current field of view. (p. 315)

In order to organize the scene, he uses Ullman’s local visual routines, and then
algorithms of “Bounded Spreading Activation”, that is, contour diffusion.

The basic idea is that activation spreads out from the copies of object A

that were placed in the working image nets, and stops when it encounters

units that correspond to the borders of the object in the B-net. (p. 318)

After this first model, Terry Regier refined his theory and, with Laura Carlson
[51], introduced the role of attention: when processing spatial relations, geo-
metrical information is mixed through attention with functional information
provided by the mereological decomposition of objects into functional parts.4

Taking into account mereology allowed him to develop a finer model, the AVS
(Attentional Vector-Sum) model [322] in which projective prepositions such as
‘above’ are

grounded in the process of attention and a vector-sum coding of overall

direction.

The idea is to look at the functional parts LMi of the LM , to weight the
subrelations LMi/TR by the attentional focus, and to take the weighted sum.

4 See above, Section 1.2, the example of the spoon in the cup. It is the functional part
“spoon’s head” (not the handle) that is in the cup.
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5.3.2. Seibert and Waxman. In their article [338] ‘Spreading Activation Layers,
Visual Saccades, and Invariant Representations for Neural Pattern Recognition
Systems”, Michael Seibert and Allen Waxman have built a model, the NADEL
model—“Neural Analog Diffusion-Enhancement Layer”—for bottom-up pat-
tern recognition. They have shown that a spreading activation network—a 2D
diffusion—including a detection of local maxima

can quickly perform a large number of early vision tasks (...) in a completely

data-driven manner. (p. 9)

One of the main interest of their work is to have introduced a feed-back of the
detection of critical points (maxima) on the diffusion itself.

This feed back pattern provides a short-term memory reverberation between

the levels, sharper peaks, and automatic gain control. (p. 14)

5.4. Morphological algorithms

The above hypotheses about Gestalt semantics must be empirically verified by
computational synthesis. However, practical technical difficulties arise when
trying to implement the standard differential equations of non-linear systems,
such as reaction-diffusion or traveling waves. These equations require a sig-
nificant amount of computing power and parameter tuning, therefore they are
not the fastest way to model the elementary mechanisms of expansions and
obstacles at work in perceptual semantics.We will come back to “dynamical
systems” type of implementations in Sections 6 and 7, through cellular au-
tomata and spiking neurons, but for now we adopt a “functionalist” approach
(still within the framework of dynamical models) and model these physicalist
algorithms with more abstract counterparts found in mathematical morphology
(MM). This domain of mathematics was developed in the 1970’s at Ecole des
Mines de Fontainebleau, France, by Georges Matheron and his colleagues Jean
Serra [341], M. Schmitt, J. Mattioli and others. MM is a branch of image
processing that focuses on the geometric structure of shapes and textures. We
present here a review of the main concepts developed by MM (for an intro-
duction see also Dougherty [87]) and draw a link to Gestalt semantics. Next,
in Section 6, we present a series of numerical simulations of MM-based active
semantics implemented in cellular automata (CA).

Lastly, in Section 7, we explore the deeper, physicalist, microstructure of
active semantics. Specifically, we will establish a link between MM and spiking
neural networks, which can play the role of excitable media supporting com-
plex waveform dynamics. Dynamical events of an intrinsically spatio-temporal
nature that are critical for the emergence of virtual structures and singulari-
ties cannot be captured by MM and can be realized only at this finer level of
resolution.

5.4.1. Morphological operations on binary images. The main idea is to analyze
images by using structuring elements and Boolean set operations. Let X be
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Figure 7. To illustrate the algorithms of mathematical morphology we use
this picture of the celebrated Scythian Deer from the State Hermitage Museum
in Saint Petersburg, Russia. Left: the original image. Right: its binary outline.

a 2D binary image defined on a window W of R2 centered around the origin
O. X is defined by a characteristic function ϕX : W → {0, 1}, such that
the figure corresponds to the inverse image X = ϕ−1

X (1) and the background
against which it is profiled to ϕ−1

X (0) (Figure 7).
We now introduce a basic structuring element B in the form of a small

disk of radius r centered around O. Element B should be viewed not just as
a geometric element but also a dynamical element resulting from a “binary
diffusion” of O during a characteristic period of time. However, an important
difference between binary diffusion and real PDE-based diffusion is that the el-
ement B remains black and white without any “smoothing” of its boundaries.
It remains discrete on the range of image values and is defined by its charac-
teristic function ϕB : a ∈ B ⇐⇒ ϕB(a) = 1. Binary diffusion is a simplified
version of real diffusion especially well suited to binary morphological analysis.

3 Dilation
Considering each point of the image X as an elementary source of binary

diffusion, we can define the dilation of X by B as follows (Figure 8):

(2) X ⊕B = {u |u = x+ a, x ∈ X, a ∈ B}.

The effect of the dilation of X by disk B is to regularize the image. It connects
components inside X that are sufficiently close, fills up small gaps (“close” and
“small” with respect to B’s size) and globally increases the linear size of X by
B’s radius, r. The exact result depends of course on B’s shape and size, and
on the various ways of implementing this continuous formalism in a discrete
lattice, e.g., the type of neighborhood (4-neighbor square, 8-neighbor square,
6-neighbor hexagonal, etc.).

If we denote by Bu the translation of B by u, we get

(3) Bu = {v | v = a+ u, a ∈ B},
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Figure 8. A dilation of the deer image after 20 steps. Holes are gradually
filled.

and we can then define the operation of dilation as follows:

(4) X ⊕B = {u |Bu ∩X 6= ∅} =
⋃
x∈X

Bx =
⋃
a∈B

Xa.

Morphological dilation has interesting algebraic properties, such as com-
mutativity and associativity:

X ⊕B = B ⊕X
(X ⊕B)⊕B′ = X ⊕ (B ⊕B′),(5)

and partial distributivity with respect to set operations:

X ⊕ (B ∪B′) = (X ⊕B) ∪ (X ⊕B′)
X ⊕ (B ∩B′) ⊂ (X ⊕B) ∩ (X ⊕B′).(6)

It is also an increasing function:

(7) X ⊂ X ′ ⇒ (X ⊕B) ⊂ (X ′ ⊕B),

and is translation invariant:

(8) Xu ⊕B = (X ⊕B)u.

Starting from dilation, we can now define other basic morphological rou-
tines, such as erosion, closing and opening.

3 Erosion
The erosion of X by B is the dual operation of dilation by set complemen-

tation. If the complement of X is denoted by

(9) Xc = W −X = {u |u /∈ X},

then erosion corresponds to the dilation of the complement in the following
manner (Figure 9):

(10) X 	B = (Xc ⊕ (−B))c .

Image erosion obviously has the inverse effect of image dilation: it disconnects
components linked by narrow strips, erases small spots (again, “narrow” and
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Figure 9. Two stages (20 and 50 steps) during the erosion of the deer image.
Holes gradually disappear, while the shape contracts toward its skeleton.

“small” with respect to B’s size) and globally decreases the size of X by B’s
radius, r.

As in (4) it is easy to deduce alternative definitions of erosion based on
translated sets:

X 	B = {u |u+ a ∈ X, a ∈ B}
= {u |Bu ⊂ X}(11)

=
⋂
a∈B

X−a,(12)

including the following algebraic property:

(13) X 	 (B ⊕B′) = (X 	B)	B′,

and set-theoretic properties:

X 	 (B ∩B′) ⊃ (X 	B) ∪ (X 	B′)
X 	 (B ∪B′) = (X 	B) ∩ (X 	B′).(14)

Like dilation, erosion is an increasing function:

(15) X ⊂ X ′ ⇒ (X 	B) ⊂ (X ′ 	B),

and is translation invariant:

Xu 	B = (X 	B)u
X 	Bu = (X 	B)−u.(16)

3 Closing
The closing of X by B consists of a dilation followed by an erosion:

(17) X •B = (X ⊕B)	B.

Like dilation, closing connects segments and fills-in gaps but it also renormalizes
the size of X and therefore has a global effect of regularizing or “smoothing”
the image without changing its size (Figure 10).

Closing is a natural match for continuity-neutral schemata like the prepo-
sition ‘in’ (see 2.2.2): it transforms a group of disconnected segments into a
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Figure 10. Closing the deer image (30 steps).

Figure 11. Opening the deer image (30 steps).

continuous curve (or surface in 3D). Note that closing is idempotent, i.e., it
does not further modify an already closed shape:

(18) (X •B) •B = X •B

3 Opening
The opening of X by B is the dual operation of closing and consists of an

erosion followed by a dilation (Figure 11):

(19) X ◦B = (X 	B)⊕B.

Just like erosion corresponds to the dilation of the complement, opening corre-
sponds to the closing of the complement:

(20) X ◦B = (Xc • (−B))c ,

and, like closing, is also idempotent:

(21) (X ◦B) ◦B = X ◦B.

5.4.2. Skeletonization of binary images.
3 Medial axis skeleton
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Figure 12. The morphological skeleton of the Scythian deer.

Using morphological routines it becomes easy to compute the skeleton
Sk(X) of a shape X, an otherwise complicated task when using partial dif-
ferential equations. As we saw in Chapter 2, Sk(X) is made of the centers of
all the maximal disks included in X (Figure 12).

Let us formalize this notion. For any subset X, we denote by
◦
X its topo-

logical interior (the union of all open sets contained in X) and X its topological
closure (the intersection of all closed sets containing X).5 To avoid patholog-
ical cases, we assume in the remainder of this section that X is already an
open set, is connected, has an arc-wise differentiable boundary ∂X, and that
its topological closure X is compact. We denote by B(x, r) the open disk of
center x and radius r, and B(x, r) its topological closure:

B(x, r) = {u | d(x, u) < r}
B(x, r) = {u | d(x, u) ≤ r},(22)

where d is the distance in the ambient space. The disks centered around the
origin are denoted B(r) = B(0, r) and B(r) = B(0, r). A disk B(x, r) is said
to be maximal in X if it verifies

(23) ∀x′∀r′B(x, r) ⊂ B(x′, r′) ⊂ X ⇒ x′ = x and r′ = r,

i.e., if no larger disk can be inserted between B(x, r) and the boundary of X.
If we now consider the erosion transformation of X by B(r), we get:

X(−r) = X 	B(r)

X(−r) = X 	B(r) .(24)

5
◦
X and X are classical topological objects and should not be confused with the morpho-

logical operations of opening, X ◦ B, and closing, X • B. Reminder in 1D: if X is the

interval [−1, 1), including −1 but not 1, then X = [−1, 1] and
◦
X= (−1, 1).
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it is easy to prove that a disk B(x, r) is maximal in X if and only if x belongs
to X(−r) but not to any morphological opening of X(−r) by any closed disk
B′(ε). In other terms, if we also introduce the intermediate concept of the
r-skeleton Sk(X, r) of a shape X:

(25) Sk(X, r) =
⋂
ε>0

(
X(−r)

(
X(−r) ◦B′(ε)

))
,

then we can rewrite the above property as follows:

(26) B(x, r) maximal in X ⇐⇒ x ∈ Sk(X, r).

Finally, from the union of all r-skeletons we obtain the formula for the central
skeleton Sk(X) (Lantuéjoul [208]):

Sk(X) =
⋃
r>0

Sk(X, r)

=
⋃
r>0

⋂
ε>0

(
X(−r)−

(
X(−r) ◦B′(ε)

))
.(27)

3 Shape reconstruction
An important property of the skeleton Sk(X) is the ability to reconstruct

the shape X and all its morphological transforms, if we also know how the
radius varies along Sk(X).

• The shape X can be reconstructed from its r-skeletons by dilating them
with corresponding disks of radius r:

(28) X =
⋃
r>0

Sk(X, r)⊕B(r).

• Similarly, the skeleton of the eroded shape X(−r′) is made of the r-
skeletons for r > r′:

(29) Sk(X(−r′)) =
⋃
r>r′

Sk(X, r),

so that X(−r′) can be reconstructed from the r-skeletons with r > r′

by dilating them with corresponding disks of radius r − r′:

(30) X(−r′) =
⋃
r>r′

Sk(X, r)⊕B(r − r′).

• The same holds for dilations, if we define X(r) := X ⊕B(r), then:

(31) X(r′) =
⋃
r>0

Sk(X, r)⊕B(r + r′).

• For openings, we get:

(32) X ◦B(r′) =
⋃
r>r′

Sk(X, r)⊕B(r).
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Figure 13. The SKIZ of a configuration of objects (3 black disks in a frame)
is the skeleton of its complementary set (here in white). The external part of
the SKIZ is induced by the frame.

Under the assumptions of regularity of X stated at the beginning of Sec-
tion 5.4.2, it can be proved that the skeleton Sk(X) is a closed set of dimension
1, i.e., a graph, composed of regular curve segments that have termination
points and are connected at a few independent vertices of finite order. Note
that, on the other hand, the skeleton is also an unstable structure that is very
sensitive to noise. As we have already emphasized in the previous chapter,
small bumps in X’s boundary suffice to create extra segments and vertices in
Sk(X). This problem can be overcome by multi-scale skeletonization methods.

3 Skeleton by influence zones
The idea of skeleton becomes especially interesting when applied to the

complement Xc = W −X of a configuration of objects X = {Xi} in a domain
W . The shapes Xi are the components of X, and we assume that they are
closed, regular, well separated from each other and that Xc is connected. The
skeleton Sk(Xc) is then pruned by removing secondary segments emanating
from the singularities of Xi’s boundaries. This yields the skeleton by influence
zones or SKIZ (see 2.2.2), i.e., the subset of W containing the points bounding
the Xi’s influence zones (Figure 13).

Formally, the influence zone of Xi denoted by Z(Xi) is the set of points
that are closer to Xi than to any other Xj for j 6= i:

(33) Z(Xi) = {x ∈W | d(x,Xi) < d(x,X −Xi)},

and the SKIZ of X denoted by Z(X) is the critical set of boundaries where
these zones meet, i.e., the complement of the union of all influence zones:

Z(X) = W −
⋃
i

Z(Xi) = W − Z(X) = Z(X)c.

Note that when the components Xi are points, the SKIZ corresponds to the
well-known Voronoi diagrams.
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Figure 14. In this example of an external SKIZ, the triple point to the left
codes the fact that there exist locally three parts in interaction. But these
three parts are not the three objects: two parts of them are parts of the same
non-convex object, while the third object that is ‘inside’ has no influence on the
triple point. The existence of a loop in the right branch of Sk codes the relation
of “insideness” and explains the global relational structure of the configuration.

The concept of SKIZ ascribes a morphological content to the gestaltic no-
tion of relations, as exposed at the beginning of this chapter (see Section 1).
The SKIZ offers a morphological coding of the background Xc and, therefore,
of the spatial relations between the Xi components. Relations emerge from the
global pattern in the same space as the objects. And such a genesis of relations
is valid for complex relations, as it is clear from Figure 14.

Finally, it is easy to see the relation of inclusion between the medial axis
skeleton and the skeleton by influence zones:

(34) Z(X) ⊂ Sk(Xc),

since for any x ∈ Z(X) there exists i, j such that x is on the boundary between
Xi and Xj , which means that d(x,Xi) = d(x,Xj) = r and therefore that
B(x, r) is a maximal disk of Xc. However, the reverse relation does not hold
because the medial axis skeleton Sk(Xc) contains centers of maximal disks that
are in contact with only one of the Xi components.

5.4.3. Implementation. In Chapter 2, Section 9.2, we have seen Hugh Belle-
mare’s implementation of the cut locus algorithm in a neural network. Figure
15 shows the SKIZ of a complex configuration of five objects as an external
CL. We present a more sophisticated neural implementation in Section 7.
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Figure 15. The SKIZ of a complex configuration of 5 objects as an exter-
nal CL. Bellemare’s implementation in a neural network with 5 layers (see
Chapter 2, Section 9.2).

6. Numerical simulations based on cellular automata

To give a concrete illustration of the above principles and validate our hypothe-
ses empirically we conducted a series of numerical experiments.

Our material consists of simple 100 × 100-pixel gray-level images, derived
from artificial data. They contain various geometrical figures in the style of
“contour sketches”, e.g., circles, polygons, irregular curves, etc. We assume
that they represent a typical outcome of the early stages of visual processing,
essentially low-level segmentation and schematization processes. We also as-
sume that each picture is composed of two objects that are already segmented
and appropriately tagged by the system: the trajector (TR) and the landmark
(LM), respectively acting as figure and background. In most cases, simple con-
tour connectedness is enough to distinguish object domains from each other.

We now describe a perceptual-semantic machine, whose goal is to answer
“yes” or “no” given one picture in input and one question about this picture,
such as: “Is TR in LM?”, or “Is TR above LM?”, or “Does TR go across LM?”,
etc. As said above, the main idea is that a specific question triggers a specific
chain of transformation routines, eventually yielding a categorical answer. The
boundaries are active since they constitute the main triggering features of the
routines. Generally, the TR plays the center role in the sense that it tends
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Figure 16. Schematic representation of “the ball in the box”. TR (the circle)
is the ball, LM (the rectangle), the box. We code TR in black and LM in gray.
The image frame is a square of size 100× 100.

to expand, whereas the LM tends to block this expansion, either as a passive
obstacle or by counter-expansion.

6.1. Example 1: “the ball in the box”

The first example deals with the “containment” schema. Consider a very
simple scene where TR and LM are two closed objects and TR is enclosed inside
LM. For example, Figure 16 is a sketch representing “the ball in the box”.

6.1.1. Heat diffusion. According to our morphological interpretation of ‘in’,
asking whether “TR is in LM” means checking whether LM blocks TR’s dif-
fusion, i.e., whether activity from TR can spread out of LM and reach the
boundary ∂W (the horizon) or the visual frame W 6 in a time t ≤ tmax where
tmax is the characteristic travel time across W .

A first possibility is to rely on a simple diffusion process such as the heat
equation

(35) −µ∂a
∂t

= ∆a,

where a(x, y, t) is the activity rate at point (x, y) at time t, and µ a small
coefficient. In the absence of specific boundary conditions, this diffusion process
relaxes towards a flat landscape a = a0, where a0 is an arbitrary constant. In
our case, we clamp the activity on the contours of TR and LM at two different
constant values. At any time t, we set: a(∂LM, t) = 0 and a(∂TR, t) = 1,
where ∂LM and ∂TR represent the set of points (x, y) belonging to LM’s
and TR’s contours, respectively. To simplify, the initial state is also set to 0
everywhere else, although this has no influence on the final equilibrium state.
Metaphorically, TR plays the role of an expanding “heat source” (spreading
around positive values) and LM a “cold obstacle” (maintaining zero values).

6 The definition of “visual frame” depends on the context. Generally, it is the visual field
but it can also be larger. We will not address this issue here.
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Figure 17. Heat diffusion process applied to “the ball in the box.” (a) Initial
state t = 0; (b) iteration t = 100; (c) iteration t = 300; (d) iteration t = 2000.
With activity values ranging from 0 to 1, the gray-level code is periodic to make
diffusion fronts visible (values 0, .4, .8 coded in white; values .2, .6, 1 coded in
black). The contour of TR (the ball) is clamped at 1 and the contour of LM
(the box) at 0 (exceptionally coded in gray to keep it visible). The interior of
the ball rapidly converges towards 1, the gap between the ball and the box is
filled with a gradient (decreasing values from 1 to 0), and the outside of the
box remains uniformly 0.

Thus, we postulate that the question “Is TR in LM?” activates the bound-
aries of TR and LM in a specific way. As a result, the activity landscape relaxes
towards a smooth gradient stretching between TR and LM (decreasing from
1 to 0) and, since TR is entirely included in LM, the activity outside of LM
remains uniformly 0 (Figure 17).

Thus, the fact that no activity transpires outside of LM’s domain and
reaches the image boundary ∂W can be considered as a characteristic categor-
ical clue that TR is ‘in’ LM. Two counter-examples are shown in Figure 18:
the ball is not in the box, whether crossing it or outside of it, and the diffu-
sion process soon reaches the top border of the image frame, where it creates
positive activity values.

Again, irrespective of the metric shapes of TR and LM, this type of ana-
lytical process reduces the applicability of ‘in’ to a purely binary (i.e., discrete)
categorical criterion: is there or not noticeable activity on the boundary ∂W
before tmax?

6.1.2. Morphological transformations. As mentioned above, diffusion processes
governed by PDEs are rather computationally expensive and not well adapted
to practical applications. For example, concretely, it is difficult to estimate
how long they take to reach a satisfying state of equilibrium.

We saw in Section 5.4 that more convenient algorithms can be derived
from mathematical morphology (MM). The two basic processes of dilation and
erosion offer a range of interesting transformations. Shape dilation is simply
done by “aggregation”: the shape is progressively padded with additional layers
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Figure 18. Heat diffusion process applied to counter-examples of “the ball
in the box”. (a) “crossing” example at t = 0 and (b) iteration t = 500;
(c) “outside” example at t = 0 and (d) iteration t = 300. Boundary conditions
and periodic gray-level code are the same as in the previous figure. In both
cases, the activity on the top border of the image frame is rapidly increasing
from zero to positive values.

Figure 19. Dilation routine applied to “the ball in the box”. (a) Initial state
t = 0; (b) iteration t = 6; (c) iteration t = 24; (d) stopping at iteration t = 60.
Black pixels aggregate onto TR’s contour, i.e., wherever at least one of their 4
nearest neighbors is black. LM’s contour is clamped on white (although made
visible in gray) and eventually stops TR’s expansion after a small number of
iterations. TR’s activity remains entirely confined in LM.

of non-zero pixels, as if each pixel emitted a small disk around itself. Shape
erosion does the opposite: non-zero pixels are homogeneously removed from the
border, layer after layer. Note that the erosion of a shape is equivalent to the
dilation of its complementary. In the simplest version of these routines, images
are binary (shape in black, background in white) and a black pixel is added to
(or removed from) the shape domain if at least one of its 4 nearest neighbors is
black (respectively, white). All pixels are visited once per iteration, so that the
number of iterations is roughly equal to the increase (or decrease) in thickness.

Figure 19 shows the dilation process applied to the ball in the box, where
LM, the “box”, again acts as an obstacle. Similarly to the heat diffusion, the
obstacle is created simply by clamping all its pixels on white (although we make
it visible in gray for the figures).
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Figure 20. Cut-locus created by the simultaneous dilation of TR and LM,
applied to “the ball in the box”. (a) Initial state t = 0; (b) iteration t = 6;
(c) iteration t = 11; (d) stopping after iteration t = 21. As in previous figures,
TR is coded in black and LM in gray. Black pixels aggregate on TR only if
they are not in LM’s domain, and conversely. The routine stops when TR stops
growing.

Since pixels belonging to the obstacle ∂LM are not allowed to change
to black, the expansion process eventually stops. The number of iterations re-
quired to yield an answer is finite and small, making this kind of transformation
more practical than physical diffusion. In any case, both algorithms model the
same phenomenon—the active expansion of an object against a passive obsta-
cle. Here too, TR is said to be in LM if no activity can be detected on the
image frame (categorical binary criterion).

6.1.3. Influence zones and cut-locus. An interesting alternative to the previous
scenario is to let LM play an active role, too, and create a counter-expansion
toward TR. The resulting figure shows a boundary where the two expansion
areas meet (Figure 20). The areas stretching on either side of this boundary are
the influence zones of the objects. Here too, the “containment” criterion must
distinguish between two types of activity, one coming from TR, the other from
LM, and check that TR’s activity is not detected on the image boundaries.

Note that TR’s contour after expansion (the boundary) constitutes a good
approximation of the external cut-locus of the scene, which is the generalized
symmetry axis of the background (the complementary zone between the ball
and the box). This cut-locus (here, looping back on itself) can also be revealed
by a skeletonization of the background (Figure 21).

Technically, skeletonization algorithms gradually erode the black domain
while preserving local pixel configurations of thickness 1. In a cellular automa-
ton implementation, each one of the 256 possible neighborhoods of 3× 3 pixels
around a black pixel is associated with an update rule: removing (i.e., chang-
ing to white) or not the center pixel. Additionally, white pixels always remain
white, independently of their neighborhood. On the other hand, the true cut-
locus contains all the points that are equidistant from TR and LM (Blum [38]).
Figure 22 compares three different methods generating a boundary between T
and LM: double dilation, skeletonization, and exact cut-locus.
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Figure 21. Skeletonization of the background external to TR and LM, applied
to “the ball in the box”. (a) Initial state t = 0; (b) iteration t = 6; (c) iteration
t = 16; (d) stopping after iteration t = 64. Image values are reverted through
x 7→ 1−x with respect to the previous figure. Note the small internal cut-locus
of the ball, reduced to a quasi-point (3-pixel domain).

Figure 22. The boundary between TR and LM (shown in black) can be com-
puted in three different ways, applied to “the ball in the box.” (a) Approxima-
tion obtained by double dilation. (b) Approximation obtained by skeletoniza-
tion of the complementary area. (c) Exact cut-locus computed by equidistance.

Finally, we will favor the double dilation method as it is faster and less
ad hoc than the other two. It also naturally corresponds to the expansion
phenomena that we are emphasizing. Figure 23 shows an application of this
routine to the two counter-examples of “the ball in the box” seen previously
(Figure 18).

6.2. Example 2: “the bird in the cage”

Consider now a more complicated case, “the bird in the cage”, in which the
container LM (the cage) has openings. We saw in Section 2 that the English
preposition ‘in’ is neutral with respect to this type of modification. Within the
framework of active semantics, such an invariance property is not given but is
constructed through a preprocessing of LM.

6.2.1. Preprocessing of LM. The difficulty here is that the LM’s contour is
discontinuous. One solution is to perform a preliminary closing of LM before
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Figure 23. Double dilation applied to two counter-examples of “the ball in
the box”. TR’s activity (in black) reaches the image boundary after 25 and 34
time steps, in (b) and (d) respectively.

Figure 24. Detection of the “containment” schema by preliminary closing
of a lacunary LM, applied to “the bird in the cage”. (a) Initial state t =
0; (b) dilation of LM after iteration t = 8; (c) skeletonization of (b) in 18
additional iterations; (d) expansion of TR (here, by diffusion).

expanding TR (whether by diffusion or dilation). The simplest way to treat
any arbitrary contour is to compute a dilation followed by a skeletonization,
instead of an erosion (Figure 24).

6.2.2. Global processing by SKIZ. However, here too, it appears simpler to
trigger a double expansion of both TR and LM in parallel, which will reveal
the external cut-locus (Figure 25).

Note that, as desired, morphological details of TR have only little influence
on the outcome of the dilation. They are erased within a few iterations and,
given any original shape, the dilated domain quickly reaches an undifferentiated
“blob”.

6.3. Remarks

To develop a complete morphological analysis of a preposition seemingly as
simple as ‘in’, we would need much finer and more efficient algorithms than the
ones just outlined. For example, to take into account situations where LM is
not only lacunary but is also not completely surrounding TR, e.g., as in “the
fruit in the bowl”, a spherical completion LMS of LM can be used, or a “solid”
expansion of TR that blocks as soon as the diffusion front reaches LMS .
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Figure 25. Detection of the “containment” schema by double dilation, applied
to “the bird in the cage.” (a) Initial state t = 0; (b) iteration t = 6; (c) iteration
t = 14; (d) iteration t = 27.

In even more complex cases, e.g., metonymic cases such as “the spoon in
the cup” (where only the spoon head is in the cup, while the spoon handle sticks
out; see Section 1.2), higher-level cognitive preprocessing must intervene—here,
a stored mereological decomposition of the spoon into two functionally different
parts. As the head is considered more central than the handle, ‘in’ is applied
preferentially and metonymically to the head. The reverse situation, in which
the handle is inside and the head outside, is a much less good example of “the
spoon in the cup.”

6.4. Example 3: “the lamp above the table”

Let us consider now a different example: the English preposition ‘above’.

6.4.1. Preprocessing of LM. The ‘above’ localizer fundamentally involves an
up-down gradient. Its semantics is not only geometric (positional) but, in a
qualitative sense, physical. At first, the morphological analysis of the spatial
“superiority” schema could thus use an anisotropic expansion of TR along the
vertical axis, along with detection of activity on the inferior image boundary
∂W (Figure 26a-b). If the TR finds itself ‘above’ LM, then LM will block
TR’s expansion and no activity should reach the bottom (this idea was also
developed by Regier [320]). However, to properly handle problematic cases of
translation (Figure 26c-d), a preliminary horizontal expansion of LM can be
necessary (Figure 26e-g).

6.4.2. Global processing by SKIZ. Here again, the simultaneous and isotropic
expansion of both TR and LM participants seems to offer a good solution
in most situations. As before, the influence zones and their boundary Z are
barely sensitive to variations around the prototypical configuration. In the case
of ‘above’ the categorical binary criterion depends on the intersection of Z with
the image boundary ∂W and the fact that this intersection should not be on
the bottom border (Figure 27).
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Figure 26. Detection of the “superiority” schema by sequential anisotropic
expansion, applied to “the lamp above the table”. (a)-(b) Prototypical case of
TR ‘above’ LM. (c)-(d) Marginal case involving a problem due to translation.
(e)-(g) Solving the translation problem by preliminary horizontal expansion of
LM.

Figure 27. Detection of the “superiority” schema by double isotropic expan-
sion, applied to “the lamp above the table.” (a)-(b) Standard configuration.
(c)-(d) Shifted configuration.

Generally, the intersection of Z with ∂W also provides critical information
on the relative location of TR and LM. For example, in the case of ‘above’, it
allows to distinguish among similar cases that different languages conceptualize
by different grammatical elements (Figure 28).
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Figure 28. Different subtypes of “TR above LM”, distinguished by the shape
of the boundary Z and the location of its two intersection points with the image
boundary ∂W . The two blobs represent TR and LM from top to bottom,
respectively. The SKIZ boundary Z was computed exactly by equidistance.
(a) Small TR above big LM: Z shows a positive curvature of paraboloid type.
(b) TR and LM have similar size: Z is approximately flat. (c) TR is shifted to
the side of LM: Z is paraboloid again but tilted so it also intersects a vertical
side of the frame. (d) Big TR above small LM: Z has a negative curvature
(corresponding to ‘par-dessus’ in French).

6.4.3. Toward a solution to cognitive linguistic challenges. The previous ex-
ample clearly shows the possibility of a discrete categorization on the basis
of continuously varying spatial relations. They provide a solution to the deep
perceptual-semantic problems posed by cognitive linguistics.7 Another illustra-
tion of these principles is given by Figure 29, in which the TR is a disk hovering
above a triangle LM. As TR is continuously shifted from left to right, it cre-
ates a smooth transition between the concurrent schemata “TR above LM”
and “TR beside LM”. Once more, the SKIZ boundary Z proves to be useful
to extract a categorical criterion from the morphological analysis of this family
of scenes. In the ‘above’ case, Z intersects the image boundary ∂W only on
the top-top border (or, possibly, left-top, top-right, or even left-right), whereas
in the ‘beside’ situation the intersection points are top-bottom (or, possibly,
left-left, or right-right).8 Therefore, the bifurcation from one class to another
can be detected when Z reaches (or leaves) the bottom boundary of the image.

6.5. Links with Kosslyn’s works

This “above vs. aside” example shows how a morphological approach can
solve difficult problems in the relation between perception and language. One
of these problems is the difference between categorical and metric processing

7 See, e.g., Berkeley’s L0 and NTL (Neural Theory of Language) projects launched in the
1990’s by Jerome Feldman and George Lakoff. See [104].

8 In the case where ∂W is circular (closer to the real visual field), it can still be divided into

top, right, bottom, and left by considering an embedded square. These four directions
find natural cues in our universal sense of gravitation and bilaterality.
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Figure 29. Continuous transition from (a) ‘above’ to (b) ‘beside.’ The bifur-
cation happens when the SKIZ Z touches the bottom boundary of W .

of spatial relations. It has been thoroughly investigated by Stephen Koss-
lyn [191], who showed that they correspond to hemispheric lateralization. In
a special issue of Neuropsychologia (44, 2006) dedicated to “New insights in
Categorical and Coordinate Processing of Spatial Relations”, S. Kosslyn [193]
summarizes his theory concerning the “division of labor” of complex cognitive
tasks into many simple sub-tasks. The occipital retinotopic areas implement a
visual buffer where edge detection and segmentation are processed (see Chap-
ter 2). The ventral “What” pathway goes from the occipital lobe to the inferior
temporal cortex and processes the properties of objects. The dorsal “Where”
pathway goes from the occipital lobe to the posterior parietal cortex and pro-
cesses the properties of location. Additionally, a long-term associative memory
processes spatial relations between objects and parts of objects. Now, just as
the adumbrations of a single object can be infinitely many, the spatial relations
in a configuration of objects can vary in a continuous manner, are also infinitely
many, and must therefore be categorized. Hence, the necessity of a categorical
processing of their continuous information.

In a series of papers, David Kemmerer [178] (see also [176], [177]) took into
account cross-linguistic studies over more than 6,000 languages and looked for

neuroanatomical correlates of linguistically encoded categorical spatial rela-

tions.

He found that such correlates exist and are located in the left supramarginal
and angular gyri.

Representations of coordinate spatial relations involve precise metric specifi-

cations of distance, orientation, and size; they are useful for the efficient vi-

suomotor control of object-directed actions such as grasping a cup; and they

are processed predominantly in the right hemisphere. In contrast, represen-

tations of categorical spatial relations involve groupings of locations that are

treated as equivalence classes; they serve a variety of perceptual functions,

such as registering the rough positions of objects in both egocentric and al-

locentric frames of reference; and they are processed predominantly in the

left hemisphere.



6. NUMERICAL SIMULATIONS BASED ON CELLULAR AUTOMATA 161

Figure 30. Kemmerer’s and Damasio’s results on the localization of the pro-
cessing of categorical spatial relations in the left supramarginal gyrus. The
letter I (resp. D) indicate blood flow increases (resp. decreases). (From [178],
adapted from Damasio et al. [77])

Figure 30, from [178], shows (F = figure and G = ground)

results from a PET study in which English speakers viewed drawings of

spatial relations between objects (e.g., a cup on a table) and performed

two tasks: naming F, and naming the spatial relation between F and G

with an appropriate preposition. When the condition of naming objects was

subtracted from that of naming spatial relations, the largest and strongest

area of activation was in the left supramarginal gyrus.

Our morphological model can explain how a categorical perception of spatial
relations can emerge from continuous variations: the cut locus of the config-
uration can bifurcate from one criterium (‘above’) to another (‘aside’), and
bifurcation is categorical.

6.6. Example 4: “zigzagging across the woods”

As our last example, we return to ‘across’, which was already examined
in Section 4. In the case of the “transversality” schema, the morphological
analysis has different requirements. As we saw previously, it mostly consists
of a tubification of the trajectory of TR (dilation followed by a skeletoniza-
tion), while extracting the cut-locus of LM, irrespective of the complexity of
its texture (Figure 31). The latter can also be carried out by dilation and skele-
tonization. What remains is to detect the presence of a quadruple singularity
point, instead of mere activity on the boundaries. This point signals somewhere
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Figure 31. The “transversality” schema illustrated by “zigzagging across the
woods’.’ (a) The input image; (b)-(c) preprocessing of TR by dilation and
skeletonization; (d)-(e) similar preprocessing of LM. Notice in (e) the quadruple
intersection point between Sk(TR) and Sk(LM), typical of ‘across’.

on the image the crossing between two boundaries of different origins (TR and
LM)9.

Note the drastic simplification of the data performed by morphological
schematization and how the virtual structures they create allow to extract the
“transversality” invariant. Morphological algorithms reveal the typical crossing
pattern ×, which can later be easily accessed to produce the desired categorical
criterion. Our thesis is that the “TR across LM” predication becomes possible
only on the basis of this preliminary morphological schematization.

7. Wave dynamics in spiking neural networks

7.1. Dynamic pattern formation in excitable media

Elaborating upon this first morphodynamical model, we now establish a
parallel with neural modeling. Our main hypothesis is that the transition from
analog to symbolic representations of space might be neurally implemented by
traveling waves in a large-scale recurrent network of coupled spiking units, via

9 This condition is important. Quadruple points of intersection between Sk(TR) and

Sk(LM) must be distinguished from mere bifurcation points inside Sk(TR) and Sk(LM)
respectively (these are generically triple points).
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the expansion processes discussed above (see Figure 33 for a preview). There is
a vast cross-disciplinary literature, revived by Winfree [412], on the emergence
of ordered patterns in excitable media and coupled oscillators. Traveling or
kinematic waves are a frequent phenomenon in non-linear chemical reactions
or multicellular structures (see, e.g., Swinney-Krinsky [366]), such as slime mold
aggregation, heart tissue activity, or embryonic pattern formation. Across var-
ious dynamics and architectures, these systems have in common the ability to
reach a critical state from which they can rapidly bifurcate between random-
ness or chaos and ordered activity. To this extent, they can be compared to
“sensitive plates”, as certain external patterns of initial conditions (chemical
concentrations, food, electrical stimuli) can quickly trigger internal patterns of
collective response from the units.

We explore the same idea in the case of an input image impinging on a
layer of neurons and draw a link between the produced response and categorical
invariance. In the framework proposed here, a visual input is classified by
the qualitative behavior of the system, i.e., the presence or absence of certain
singularities in the response patterns.

7.2. Spatio-temporal patterns in neural networks

During the past two decades, a growing number of neurophysiological
recordings have revealed precise and reproducible temporal correlations among
neural signals and linked them with behavior (see, e.g., Abeles [2], Bialek et al.
[33], O’Keefe-Recce [247]). Temporal coding in the sense introduced by von der
Malsburg [397] is now recognized as a major mode of neural transmission, to-
gether with average rate coding. In particular, quick onsets of transitory phase
locking have been shown to play a role in the communication among cortical
neurons engaged in a perceptual task (Gray et al. [131]).

While most experiments and models involving neural synchronization were
based on zero-phase locking among coupled oscillators (e.g., Campbell-Wang
[49], König-Schillen [186]), delayed correlations have also been observed (Abeles
[2], [3]). These nonzero-phase locking modes of activity correspond to repro-
ducible rhythms, or waves, and could be supported by connection structures
called synfire chains (Abeles [2], Ikegaya et al. [165]). Elie Bienenstock [35]
construes synfire chains as the physical basis of elementary “building blocks”
that compose complex cognitive representations: synfire patterns exhibit com-
positional properties (Abeles et al. [4], Bienenstock [36]), as two waves prop-
agating on two chains in parallel can lock and merge into one single wave by
growing cross-connections between the chains (in a “zipper” fashion). In this
theory, spatio-temporal patterns in long synfire chains would thus be analogous
to proteins that fold and bind through conformational interactions.

In the present work, we construe wave patterns differently: we look at their
emergence on regular 2D lattices of coupled oscillators to implement the ex-
pansion dynamics of our morphodynamical spatial transformations. Compared
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to the traditional blocks of synchronization, i.e., the phase plateaus often used
in segmentation models, we are also more interested in traveling waves, i.e.,
phase gradients.

7.3. Wave propagation and morphodynamical routines

A possible neural implementation of the morphodynamical engine at the
core of our model relies on a network of individual spiking neurons, or local
groups of spiking neurons (e.g., columns), arranged in a 2D lattice similar to
topographic cortical areas, with nearest-neighbor coupling. Each unit obeys
a system of differential equations that exhibit regular oscillatory behavior in
a certain region of parameter space. Various combinations of oscillatory dy-
namics (relaxation, stochastic, reaction-diffusion, pulse-coupled, etc.) and pa-
rameters (frequency distribution, coupling strength, etc.) are able to produce
waveform activity, however it is beyond the scope of the present work to discuss
their respective merits. We want here to point out the generality of the wave
propagation phenomenon, rather than its dependence on a specific model.

For practical purposes, we use Bonhoeffer-van der Pol (BvP) relaxation
oscillators (FitzHugh [108]). Each unit i is located on a lattice point xi and
described by a pair of variables (ui, vi). Unit i is locally coupled to neighbor
units j within a small radius r and may also receive an input Ii:

(36)

{
u̇i = c(ui − u3

i

3 + vi + z) + η + k
∑
j(uj − ui) + Ii

v̇i = 1
c (a− ui − bvi) + η

where η is a Gaussian noise, d(xi, xj) < r and Ii = 0 or a constant I. Parame-
ters are tuned as in Figure 32, so that individual units are close to a bifurcation
in phase space between a fixed point and a limit cycle, i.e., one spike emission.
They are excitable in the sense that a small stimulus causes them to jump
out of the fixed point and orbit the limit cycle, during which they cannot be
disturbed again.

Figure 33b shows waves of excitation in a network of coupled BvP units
created by the schematic scene “a small blob above a large blob”. Block im-
pulses of spikes trigger wave fronts of activity that propagate away from the
object contours and collide at the SKIZ boundary between the objects. These
fronts are “grassfire” traveling waves, i.e., single-spike bands followed by refrac-
tion and reproducing only as long as the input is applied. Under the non-linear
dynamics, waves annihilate when they meet instead of adding up. Figure 33a
shows the same influence zones obtained by mutual expansion in a cellular
automaton, as seen in Section 6.4. Again, there is convincing perceptual and
neural evidence for the significant role played by this virtual SKIZ structure
and propagation in vision (Kimia [179]).
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Figure 32. Typical firing modes of a stochastic BvP relaxation oscillator.
Plots show u(t) with a = .7, b = .8, c = 3, η > 0, k = 0, I = 0. (a) Sparse
stochastic firing at z = −.2 (spikes are upside-down). (b) Quasi-periodic firing
at z = −.4. At critical value zc = −.3465 without noise, there is a bifurcation
from a stable fixed point u ≈ 1 to a limit cycle.

7.4. Two wave categorization models

We now show how wave dynamics can support the categorization of spatial
schemata by proposing two models based on the principles discussed previously.
In both models, waves implement the expansion-based transformations stated
in principles (i)-(ii) (see 2.2.2), then the detection of global activity or of sin-
gularities created by the wave collisions is based on principles (iii)-(v). One
wave model implements the boundary detection principle (iii) used in the “con-
tainment” and “superiority” schemata. The second model focuses on the SKIZ
singularities and “signature” detection principle (v), which can be used as a
complement or alternative to boundary detection. In this case, we illustrate
SKIZ detection with the same ‘above’ schema as in boundary detection.

7.4.1. Boundary detection with cross-coupled lattices. Detecting the presence
or absence of TR activity on the boundaries of the image, as for ‘in’ or ‘above’,
is not possible in the single lattice of Figure 33b because the waves triggered by
TR and LM cannot be distinguished from each other. However, as discussed
above and in Chapter 2, a number of models have shown that lattices of cou-
pled oscillators can also carry out segmentation from contiguity by exploiting
a simpler form of temporal organization in the lattice: zero-phase synchroniza-
tion or “temporal tagging”. We take here these results as the starting point
of our simulation and assume that the original input layer is now split into
two distinct sublayers, each holding one component of the scene. Thus, after
a preliminary segmentation phase (not presented here), TR and LM are for-
warded to layers LTR and LLM , where they generate wave fronts separately
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Figure 33. Realizing morphodynamical routines in a spiking neural net-
work. (a) SKIZ obtained by diffusion in a 64× 64, 3-state cellular automaton.
(b) Same SKIZ obtained by traveling waves on a 64 × 64 lattice of coupled
BvP oscillators in the sparse stochastic regime with η = 0, connectivity radius
r = 2.3 and coupling strength k = .04. Activity u is shown in gray levels,
brighter for lower values, i.e., spikes u < 0. Starting with uniform resting po-
tentials u ≈ 1 (or weak stochastic firing with noise η > 0), an input image is
continuously applied with amplitude I = −.44 in both TR and LM domains.
This amounts to shifting z toward a subcritical value z = −.3467 < zc, thus
throwing the BvP oscillators into a quasi-periodic firing mode. This in turn
creates traveling waves in the rest of the network.

(Figure 34). Mutual wave interference and collision is then recreated by cross-
coupling the layers: unit i in layer LTR is not only connected to units j in
LTR inside a neighborhood of radius r, but also to units j′ in LLM inside a
neighborhood of radius r′. The modified dynamics is therefore

u̇i
TR = F (uTRi ) + k

∑
j

(uTRj − uTRi ) + k′
∑
j′

(uLMj′ − uTRi ) + ITRi(37)

where F (u) is the right hand side of Eq. (36) without k and I terms. A
symmetrical relation holds for uLMi , swapping TR and LM. Variables vi are not
coupled and obey equation (36) as before. The net effect is shown in Figure 34:
the spiking wave fronts created by TR are canceled by LM’s wave fronts and
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Figure 34. Detection of the ‘above’ schema by mutually inhibiting waves.
Two 64 × 64 lattices of BvP units, LTR and LLM , are internally coupled and
cross-coupled with r = r′ = 2.3, η = 0, k = .03, k′ = −.03. (a) Single wave
fronts obtained by injecting a pulse input I = −.44 in TR and LM for 0 ≤ t < 2
(10 time steps dt = .2). (b) Multiple wave fronts obtained by applying the same
input amplitude indefinitely. In both cases, no spike reaches the bottom of
LTR.

never reach the bottom border of LTR, while hitting the top and partly the
sides. This can be easily detected by external cells receiving afferents from
the border units and linked to an ‘above’ response (not shown here). Again,
the invisible collision boundary line is the SKIZ, which we now examine more
closely in the next network model.

7.4.2. SKIZ signature detection with complex cells. As previously mentioned in
Section 6.4.2, detection of boundary activity provides a simple categorization
mechanism but is generally not sufficient. Alone, it does not allow to distin-
guish among similar but non-overlapping proto-schemata, such as the ones in
Figure 28. This is where the properties of the SKIZ can help: for example,
the concave or convex shape of the SKIZ is able to separate Figure 28a and
Figure 28d. As we already emphasized in Chapter 2, Section 9.3, a cut locus is
a dynamical structure, and one should also take into account the flow velocity
along the SKIZ. Indeed, the dynamics of coupled spiking units (Figure 33b) is
richer than the morphological model (Figure 33a) because it contains specific
patterns of activity that are absent from a static geometric line. In particu-
lar, the wave fronts highlight a secondary flow of propagation along the SKIZ
line, which travels away from the focal shock point with decreasing speed on
either branch. The focal point (where the bright band is at its thinnest in
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Figure 33b, t′ = 32) is the closest point to both objects and constitutes a local
optimum along the SKIZ. While a great variety of object pairs produce the
same static SKIZ, the speed and direction of flow along the SKIZ vary with the
objects’ relative curvature and proximity to each other. For example, a vertical
SKIZ segment between a pair of bracketed contours resembling (|) flows inward
when facing their concave sides, whereas it flows outward when facing the con-
vex sides of reversed brackets )|(. This refined information can be revealed by
wave propagation.

In order to detect the focal points and flow characteristics (speed, direc-
tion) of the SKIZ, we propose in this model to introduce additional layers of
detector neurons similar to the so-called “complex cells” of the visual system.
These cells receive afferent contacts from local fields in the input layer and
respond to segments of moving wave bands, with selectivity to their orienta-
tion and direction. More precisely, the spiking neural network presented in
Figure 35 is a three-tier architecture comprising: (a) two input layers, (b) two
middle layers of orientation and direction-selective “D” cells, and (c) four top
layers of coincidence “C” cells responding to specific pairwise combinations of
D cells. (These are not literally cortical layers but could correspond to func-
tionally distinct cortical areas.) As in the previous model, TR and LM are
separated on two independent layers (Figure 35a). In this particular setup,
however, there is no cross-coupling between layers and the waves created by
TR and LM do not actually interfere or collide. Rather, the regions where
wave fronts “coincide vertically” (viewing layers LTR and LLM superimposed)
are captured by higher feature cells in two direction-selective layers, DTR and
DLM (Figure 35b), and four coincidence-detection layers, C1...4 (Figure 35c).
Layer DTR receives afferents only from LTR, and DLM only from LLM . Layers
Ci are connected to both DTR and DLM through split receptive fields: half of
the afferent connections of a C cell originate from a half-disc in DTR and the
other half from its complementary half-disc in DLM .

In the intermediate D layers, each point contains a family of cells or “jet”
similar to multi-scale Gabor filters. Viewing the traveling waves in layers L as
moving bars, each D cell is sensitive to a combination of bar width λ, speed
s, orientation θ and direction of movement ϕ. In the simple wave dynamics of
the L layers, λ and s are approximately uniform. Therefore, a jet of D cells
is in fact single-scale and indexed by one parameter θ = 0, . . . , 2π, with the
convention that ϕ = θ + π/2. Typically, 8 cells with orientations θ = kπ/4
are sufficient. Each sublayer DTR(θ) thus detects a portion of the traveling
wave in DTR (same with LM). Realistic neurobiological architectures generally
implement direction-selectivity using inhibitory cells and transmission delays.
In our simplified model, a D(θ) cell is a “cylindrical” filter, i.e., a temporal stack
of discs containing a moving bar at angle θ (Figure 35b, center of D layers): it
sums potentials from afferent L-layer spikes spatially and temporally, and fires
itself a spike above some threshold.
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Figure 35. SKIZ detection in a three-tier spiking neural network architecture.
(a) Input layers show single traveling waves as in the previous figure, except that
cross-coupling between TR and LM is removed and potentials are thresholded
to retain only spikes u < 0. (b) Orientation and direction-selective cells. Each
D layer is shown as 8 sublayers (smaller squares) of cells selective to orientation
θ = kπ/4, with k = 8 . . . 1 from the top, clockwise. (c) Pairwise coincidence
cells. Each cell in C1(θ) is connected to a half-disc neighborhood in DTR(θ) and
its complementary half-disc in DLM (θ − π), rotated at angle θ. For example:
a cell in C1(0) (illustrated by the icon in center of C1) receives afferents from
a horizontal bar of DTR(0) cells in the lower half of its receptive field, and a
bar of DLM (π) cells in the upper half. Same for C2(0), swapping TR vs. LM
and upper vs. lower. Similarly, C3(θ) cells are half-connected to DTR(θ) and
half to DLM (θ−π/2), via orthogonal bars (swapping TR/LM for C4). The net
output is sparse activity confined to C1(π), C2(0), C3(3π/4) and C4(−π/4).
Note that we use only global Ci activity: in reality, C1 cells fire first when the
two wave fronts meet, then C2 cells when they separate again, and finally C3

and C4 cells in rapid succession when the arms cross. This precise rhythm of
Ci spikes could also be exploited in a finer model.

Among the four top layers (Figure 35c), C1 detects converging parallel wave
fronts, C2 detects diverging parallel wave fronts, and C3 and C4 detect crossing
perpendicular wave fronts. Like the D layers, each Ci layer is subdivided
into 8 orientation sublayers Ci(θ). Each cell in C1(θ) is connected to a half-
disc neighborhood in DTR(θ) and the complementary half-disc in DLM (θ−π),
where the half-disc separation is at angle θ. The net output of this hierarchical
arrangement is a signature of coincidence detection features providing a very
sparse coding of the original spatial scene. The input scene ‘above’ is eventually
reduced to a handful of active cells in a single orientation sublayer Ci(θ) for
each Ci: C1(π), C2(0), C3(3π/4) and C4(−π/4) (Figure 35c).
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In summary, the active cells in C1 and C2 reveal the focal point of the SKIZ,
which is the primary information about the scene, while C3 and C4 reveal the
outward flow on the SKIZ branches, which can be used to distinguish among
similar but non-equivalent concepts. This sparse SKIZ signature is at the same
time characteristic of the spatial relationship and largely insensitive to shape
details. For example: ‘below’ yields C1(0) and C2(π); ‘on top of’ yields C2(0)
like ‘above’ but no C1 activity because TR and LM are contiguous (wave fronts
can only separate at the contact point, not join); the French preposition ‘par-
dessus’ with a convex SKIZ facing up (Figure 28d) yields C3(π) and C4(−π/2),
etc. Note that the actual regions of Ci(θ) where cells are active (e.g., the
location of the SKIZ branches in the south-west and south-east quadrants of
Figure 28d) are sensitive to translation and therefore are not good invariant
features.




