
2005 Special Issue

Dynamical systems and cognitive linguistics:

toward an active morphodynamical semantics

René Doursata,*, Jean Petitotb

aGoodman Brain Computation Lab, University of Nevada, Reno, Reno, NV 89557, USA
bCREA, Ecole Polytechnique, 1, rue Descartes, 75005 Paris, France

Abstract

We propose a novel dynamical system approach to cognitive linguistics based on cellular automata and spiking neural networks1. How can

the same relationship ‘in’ apply to containers as different as ‘box’, ‘tree’ or ‘bowl’? Our objective is to categorize the infinite diversity of

schematic visual scenes into a small set of grammatical elements and elucidate the topology of language. Gestalt-inspired semantic studies

have shown that spatial prepositions such as ‘in’ or ‘above’ are neutral toward the shape and size of objects. We suggest that this invariance

can be explained by introducing morphodynamical transforms, which erase image details and create virtual structures or singularities

(boundaries, skeleton), and call this paradigm ‘active semantics’. Singularities arise from a large-scale lattice of coupled excitable units

exhibiting spatiotemporal pattern formation, in particular traveling waves. This work addresses the crucial cognitive mechanisms of spatial

schematization and categorization at the interface between vision and language and anchors them to expansion processes such as activity

diffusion or wave propagation.
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1. Introduction

How can the same English relationship ‘in’ apply to

scenes as different as ‘the shoe in the box’ (small, hollow,

closed volume), ‘the bird in the tree’ (large, dense, open

volume) or ‘the fruit in the bowl’ (curved surface)? What is

the common ‘across’ invariant behind ‘he swam across the

lake’ (smooth trajectory, irregular shape) and ‘the fly

zigzagged across the hall’ (jagged trajectory, regular

volume)? How can language, especially its spatial elements,

be so insensitive to wide topological and morphological

differences among visual percepts? In short, how does

language drastically simplify information and categorize?
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This study examines the link between the spatial

structure of visual scenes and their linguistic descriptions.

We propose a spiking neural model aimed at mapping the

endless diversity of schematic visual scenes to a small set of

standard semantic labels (Doursat & Petitot, 2005). Our

suggestion is that spatial and grammatical structures are

related to each other through image transformations that

rely on diffusion processes and wavelike neural activity.
1.1. Toward a protosemantics

Contemporary theories of semantics have shown that

terms with spatiotemporal content are highly polysemous.

For example, different uses of ‘in’ relate to qualitatively

different spatial situations (Herskovits, 1986): ‘the cat in1

the house’, ‘the bird in2 the tree’, ‘the flower in3 the vase’,

‘the crack in4 the vase’, etc. Spatial prepositions typically

form prototype-based radial categories (Rosch, 1975). Here,

‘in1’ represents the most prototypical containment schema,

while ‘in2’ departs from it slightly in the texture and

openness of the container. Top-down, knowledge-based

inferences also create metonymic effects such as ‘in3’—the

stem, not the flower, is inside the vase. In the subcategorical
Neural Networks 18 (2005) 628–638
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island ‘in4’, the container is a surface, etc. Another major

departure from prototypical use comes from metaphors, a

pervasive mechanism of cognitive organization rooted in

the fundamental domains of space and time (Lakoff, 1987;

Talmy, 2000). The schemas grammaticalized by ‘in’ are not

just used to structure physical scenes but also abstract

situations: one can be ‘inA a committee’, ‘inB doubt’, etc.

These uses of ‘in’ pertain to a virtual concept of space

generalized from real space: ‘inA’ metaphorically maps to

an element of a discrete numerable set, such as ‘in5 a

crowd’, while ‘inB’ relates to an immersion into a

continuous ambient substance, such as ‘in6 water’.

With these preliminary remarks in mind, we restrict

the scope of the present study to relatively homogeneous

subcategories or protosemantic features, i.e. low-level

compared to linguistic categories but high-level

compared to local visual features. Our goal is to

categorize scenes into elementary semantic subclasses,

such as ‘in1’, or clusters of closely related subclasses,

such as ‘in1–in2’. We will not attempt to delineate the

whole cultural complex formed by the English preposi-

tion ‘in’ with a single (and nonexistent) universal. We

also leave aside issues of top-down control or ‘intention-

ality’ deciding how to choose and compose elements.

Yet, even in their most typical and concrete instantiation,

we are still facing the great difficulty of linking these

invariant semantic kernels to the infinite continuum of

perceptual shape diversity. To help solve this problem,

we focus on a collection of low-level dynamical routines

that structure visual scenes in a ‘Gestaltist’ fashion.

1.2. The Gestaltist conception of relations

Through a shift of paradigm initiated in the 1970s, the

formalist view that language is functionally autonomous

was revised by a set of works (e.g. Lakoff, 1987; Langacker,

1987; Talmy, 2000) collectively named cognitive linguis-

tics, for which language is much rather ‘embodied’ in

perception, action and inner conceptual representations. In

this paradigm, generative grammar models have been

superseded by studies of the interdependence of language

and perceptual reality and how these two systems influence

each other’s organization. Cognitive linguistics is directly

preoccupied with meaning and categorization. Refuting the

distinction between syntax and semantics, it postulates a

conceptual level of representation, where language, percep-

tion and action become compatible (Jackendoff, 1983). It

also remarkably revived the Gestalt approach calling into

question the traditional roles assigned to visual percep-

tion—as a faculty only dealing with object shapes—and

language—as a faculty only dealing with relations between

objects. Classical formal linguistics follows the logical

atomism of set theory: ‘things’ are already individuated

symbols and ‘relations’ are abstract links connecting these

symbols. By contrast, in the Gestaltist or mereological

conception, things and relations constitute wholes: relations
are not taken for granted but emerge together with the

objects through segmentation and transformation. Here,

objects involved in relations are parts of a higher-order

complex object—the global configuration.

1.3. Toward an active morphodynamical semantics

A fundamental thesis of Talmy’s Gestalt semantics is

that linguistic elements structure the conceptual material in

the same way visual elements structure the perceptual

material and that this structuration is mostly of grammatical

origin, as opposed to lexical. Grammatical elements (‘in’,

‘above’) provide the conceptual structure or ‘scaffolding’ of

a cognitive representation, while lexical elements (‘bird’,

‘box’) provide its conceptual contents. Consider a figure or

trajector (TR)—to use Langacker’s terminology—profiled

against a ground or landmark (LM), for example ‘TR in

LM.’ One of Talmy’s most compelling ideas is that LM is

not just a passive frame but is actively structured

(scaffolded) in a geometrical and morphological way

radically different from symbolic relations. In this Gestaltist

view, for example, ‘I am in/on/far from the street’ construes

LM (the street) either as a volume, a surface or a reference

point, thus dividing (scaffolding) reality in conceptually

different ways. By contrast, formal theories of syntax

assimilate the street to a symbol, irrespective of its

perceptual properties, and encapsulate all spatial meaning

in an abstract relationship labeled ‘in’.

Now, by giving a new significance to the object’s

geometry we are challenged to find how it varies with

linguistic circumstances, i.e., how prepositions actually

select and process certain morphological features from the

perceptual data and ignore others. We propose that simple

spatial elements like ‘in’, ‘above’, ‘across’, etc., correspond

in fact to visual processing algorithms that take perceptual

shapes in input, transform them in a specific way, and

deliver a semantic schema in output. We call these

algorithms morphodynamical routines and the global

process active semantics. Morphodynamical routines erase

details and create new forms that evolve temporally. They

enrich a visual scene with virtual structures or singularities

(e.g., influence zones, fictive boundaries, skeletons, inter-

section points, force fields, etc.) that were not originally part

of it but are ultimately revealing of its conveyed meaning.

We suggest below that these routines rest upon object-

centered and diffusion-like nonlinear dynamics.

In the remainder of this article, Section 2 applies the

active semantics approach to the analysis of spatial

grammatical elements and draws a link with visual

processing routines in 2-D cellular automata (CA). In

Section 3 we discuss spatial invariance and the notion of

‘linguistic topology’ in the context of mathematical

geometry, which leads us to reaffirm the importance

of transformation routines. Section 4 introduces

waveform dynamics in spiking neural networks and shows

its role in active semantics as a plausible mechanism of
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expansion-based morphology. This is further developed in

Section 5 through two models of spatial scene categoriz-

ation based on wave interaction and detection. We conclude

in Section 6 by hinting at future work beyond the

preliminary results presented here and pointing out the

originality of our proposal compared to both current

linguistic and neural modeling.
Fig. 1. Detection of a Proto-’in’ Schema in a 2-D CA. We use a 100!100,

3-state lattice: 1 for TR (black), 2 for LM (gray) and 0 for the ambient space

(white). A simple diffusion rule requires that a 0 cell adopt the state of any

non-0 nearest neighbor, if it exists. Starting with any two initial TR and LM

domains and stopping when the total TR activity is constant, the lattice

quickly converges to an attractor characterized by two contiguous domains

of 1’s and 2’s. TR’s expansion is blocked by LM’s expansion from reaching

the borders despite discontinuities in LM. (a) ‘The ball in the box’

converges in 21 steps. (b) ‘The bird in the cage,’ in 27 steps.
2. Morphodynamical cellular automata

Numerous examples collected by Talmy show that

grammatical elements are largely indifferent to the

morphological details of objects or trajectories. Such

invariance of meaning points to the existence of underlying

visual-semantic routines that perform a drastic but targeted

simplification of the geometrical data. We examine a

representative sample that helps us introduce various types

of data-reduction transforms essential to scene

categorization.

2.1. Magnitude invariance / multiscale analysis

Grammatical elements are fundamentally scale-invar-

iant. The sentences ‘this speck is smaller than that speck’

and ‘this planet is smaller than that planet’ (Talmy, 2000, p.

25) show that real distance and size do not play a role in the

partitioning of space carried out by the deictics ‘this’ and

‘that’. The relative notions of ‘proximity’ and ‘remoteness’

conveyed by these elements are the same, whether speaking

of millimeters or parsecs. It does not mean, however, that

grammatical elements are insensitive to metric aspects but

rather that they can uniformly handle similar metric

configurations at vastly different scales. Multiscale proces-

sing therefore lies at the core of Gestalt semantics and,

interestingly, has also become a main area of research in

computational vision (since Mallat, 1989).

2.2. Bulk invariance / skeleton

Another form of magnitude invariance appears in the

selective rescaling of some dimensions and not others. This

is the case of thickness or bulk invariance. For example, ‘the

caterpillar crawled up along the filament/flagpole/redwood

tree’ (Talmy, 2000, p. 31) shows that ‘along’ is indifferent to

the girth of LM and focuses only on its main axis or

skeleton, parallel to the direction of TR’s trajectory. Like

multiscale analysis, skeleton transforms are widely used in

machine vision and implemented using various

algorithms. Studied by Blum (1973) under the name ‘medial

axis transform’ and by others as ‘cut locus’, ‘stick

figures’, ‘shock graphs’ or ‘Voronoi diagrams’ (e.g. Marr,

1982; Siddiqi, Shokoufandeh, Dickinson, & Zucker, 1999;

Zhu & Yuille, 1996), morphological symmetry plays a

crucial role in theories of perception and is even

considered a fundamental structuring principle of cognition
(Leyton, 1992). Skeletons indeed conveniently simplify and

schematize shapes by getting rid of unnecessary details,

while at the same time conserving their most important

structural features. There is also experimental evidence that

the visual system effectively constructs the symmetry axis

of shapes (Kimia, 2003; Lee, 2003).
2.3. Continuity invariance / expansion

Sentences such as ‘the ball/fruit/bird is in the box/bowl/

cage’ are good examples of the neutrality of the preposition

‘in’ with respect to the morphological details of the

container. We propose that the active semantic effect of

‘in’ is to trigger routines that transform a scene in the

following manner: the container LM (‘bowl/cage’) is closed

by adding virtual parts to become a continuous spherical or

blob-like domain, while the contained object TR (‘fruit/

bird’) expands by some contour diffusion process, irrespec-

tive of its detailed shape, until it collides with the boundaries

of the closed LM. In fact, these two phases of the ‘in’ routine

can often run in parallel: both TR and LM expand

simultaneously until they reach each other’s boundaries

(Fig. 1). The expansion of LM naturally creates its own

closure while providing an obstacle to the expansion of TR.

Therefore, we propose the following active semantic

definition of the prototypical ‘containment’ schema

(‘in1–in2’ and closely related variants): a domain TR lies

‘in’ a domain LM if an isotropic expansion of TR is stopped

by the boundaries of LM’s own expansion.

A directly measurable consequence of this definition is

the fact that no TR-induced activity will be detected on the

borders of the visual field. This can be easily implemented

in a 2-D square lattice, three-state CA (Fig. 1). The final

boundary line between the domains is approximately equal

to the skeleton of the complementary space between the
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A tubification followed by a skeletonization is performed separately on TR
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objects, also called skeleton by influence zones or SKIZ. In

the case of the containment schema, the SKIZ surrounds TR

and no cell on the borders is in TR’s state 1. The sheer

absence of TR activity on the borders is a robust feature that

contributes to categorize the scene as ‘in’. It illustrates a

typical morphodynamical routine at the basis of our

‘perceptual-semantic’ classifier (Doursat & Petitot, 1997).

(20 steps) and LM (52 steps), revealing an intersection point.
2.4. Translation invariance

Another example, ‘the lamp is above the table’, can be

processed in the same way: the simultaneous expansion of

TR and LM creates a roughly horizontal SKIZ line in the

center of the image (Fig. 2). This time, the key classification

feature is the absence of TR activity on the bottom border of

the field, in conjunction with high TR activity on the top

border and partial presence on the sides. This property is

conserved by translation of TR in a broad region of space.

Prototypical ‘above’ is one example of the generic

‘partition’ schema that includes elements such as ‘below’,

‘beside’, ‘behind’ and ‘in front of’ (viewed in 3-D).

Although rather simple, the double expansion process

that we propose for the ‘containment’ and ‘partition’

schemas is nonetheless crucial and leads us to introduce

the following general principles of active semantic

morphodynamics: (i) objects have a tendency to occupy

the whole space; (ii) objects are obstacles to each other’s

expansion. Through the action of structuring routines, the

common space shared by the objects is divided into

influence zones. Image elements cooperate to propagate

activity across the field and inhibit activity from other

sources.
2.5. Shape invariance / singularities

Talmy clearly shows that salient aspects of shapes are

simply not taken into account by grammatical elements. In

the sentences ‘I zigzagged/circled/dashed through the

woods’ (Talmy, 2000, p. 27), the trajectory of TR,

whether made of segments, curves or one straight line,

ultimately joins two opposite (and possibly virtual) sides of

an extended domain LM. In our active semantic view,

the element ‘through’ creates a sharp schematization of

TR in two steps: (1) tubification—a limited outward

expansion convexifying the object—followed by
Fig. 2. Detection of a Proto-’above’ Schema in a 2-D CA. We use the same

lattice as Fig. 1. (a) LM’s expansion prevents TR’s expansion from

reaching the bottom border. (b) Same effect when LM and TR are not

vertically aligned, so that part of TR is directly facing the bottom border.
(2) skeletonization—the reverse inward expansion eroding

the object down to its central symmetry axis. At the same

time, it does the same with LM: the texture is first erased,

then the domain is skeletonized (Fig. 3). The grammatical

perspective enforced by ‘through’ thus reduces the detailed

trajectory of TR or texture of LM to mere fluctuations

around their medial axes. Finally, the characteristic feature

of the ‘through’ schema lies at the intersection of the two

skeletons.

Fig. 4 illustrates another scenario, TR ‘out of’ LM

(‘the ball out of the box’). In this case, the T-junction in the

SKIZ between TR and LM accelerates away from TR and

eventually disappears as TR exits the interior of LM. Again,

this is a very robust bifurcation phenomenon, independent

of the detailed shapes or trajectories of the objects.

In these two examples, ‘through’ and ‘out of’, the spatial

relation between the objects is inferred from virtual

singularities in the boundaries of the objects’ territories.

These singularities and their dynamical evolution are

important clues that constitute the characteristic ‘signature’

of the spatial relationship (Petitot, 1995). Transformation

routines considerably reduce the dimensionality of the input

space, literally ‘boiling down’ the input images to a few

critical features. A key idea is that singularities encode a lot

of the image’s geometrical information in an extremely

compact and localized manner.

In summary, after the morphodynamical routines have

transformed the scene according to the expansion principles

(i) and (ii), several types of characteristic features can be

detected to contribute to the final categorization: (iii)

presence or absence of activity on the borders; (iv)

intersection of skeletons; (v) singularities in the SKIZ

boundary line. Our active semantic approach proposes a link

between the ‘things-relations-events’ trilogy of cognitive
Fig. 4. Detection of a Proto-’out of’ Schema in a 2-D CA. Each image is

equivalent to the last step of Figs. 1 and 2, with TR and LM pasted on top.

The influence domains of the ball and box are displayed in gray levels

reflecting the distance to the objects (the farther, the darker). The sequence

of images, in which TR moves out of LM, reveals a dynamical bifurcation

(or ‘phase transition’, or ‘catastrophe’) as the singularity formed by the T-

junction in the SKIZ boundary line disappears (shown by arrows).
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grammar (Langacker, 1987) and the ‘domains-singularities-

bifurcations’ trilogy of morphodynamical visual processing

(Petitot, 1995). We suggest that the brain might rely on

dynamical activity patterns of this kind to perform invariant

spatial categorization.
3. What is ‘cognitive topology’?

The core invariance of spatial meaning reviewed above is

sometimes referred to as the ‘linguistic form of topology’ or

‘cognitive topology’. Like mathematical topology (MT),

language topology (LT) is magnitude and shape-neutral, yet

in a way more abstract and less abstract at the same time

(Talmy, 2000, p. 30). In some areas, LT has a greater power

of generalization than MT. For example, ‘in’ closes the

missing parts of ‘cage’ and ‘bowl’ to make them like a

‘box’. In other cases, however, LT preserves metric ratios

and limits distortions in a stricter sense than MT. For

example, the lexical elements ‘cup’ and ‘plate’ have distinct

uses, although a plate is a flatter cup. The grammatical

element ‘across’ also exhibits subtle metric constraints in its

applicability: ‘he swam across the pool lane’ implies that the

swimmer’s trajectory crosses the rectangle of water parallel

to its short side, not its long side. Thus, because of these

discrepancies LT has actually little to do with MT.

In geometry, one can identify six main levels of

increasing structural constraints: sets (points), topological

(‘glued’ points), differentiable (‘smooth’ objects), con-

formal (angle-preserving), metric (distance, e.g. Rieman-

nian) and linear (vectors, e.g. Euclidean) spaces. We

think that LT does not correspond to any of these levels

or intermediate levels. In reality, the active conception of

semantics presented above leads us to consider interlevel

transformations, i.e. processes starting at one level and

going up or down the hierarchy. For example, a

convexification routine makes objects smoother and

‘rounder’: it discards most of the objects’ metric

properties, therefore seems to go down, towards the

‘soft’ topological levels. Yet, at the same time,

the convex classes it creates are more ‘rigid’ than the

original objects because, precisely, mappings at their

level must preserve convexity. Therefore, convex classes

also belong to the higher metric levels. This illustrates

the subtle interplay between impoverishment of details

and rigidification of structures. Active semantics is

neutral toward shape or continuity but it transforms

objects into prototypes, which by nature are more

metrically constrained. One could say that schematization

and categorization replace ‘soft complex’ forms (e.g.

intricate amoeboid blobs) with ‘rigid simple’ ones (e.g.

spheres). Here, lies the puzzling apparent paradox of LT.

In summary, what is called ‘topology’ in Gestalt

semantics and cognitive grammar actually corresponds to

a family of morphological operators, as reviewed in

Section 2. These operators are similar to the basic
operations of dilation and erosion defined in ‘the

mathematical morphology’ (MM) of Serra (1982).

Dilation and erosion can be combined to obtain the

closure (filling small gaps), opening (pruning thin

segments) or skeleton of a shape. Thus, MM is better

suited than MT as a ‘toolbox’ for an active-semantic LT.
4. Waves in spiking neural networks

4.1. Dynamic pattern formation in excitable media

Elaborating upon this first morphodynamical model, we

now establish a parallel with neural modeling. Our main

hypothesis is that the transition from analog to symbolic

representations of space might be neurally implemented by

traveling waves in a large-scale network of coupled spiking

units, via the expansion processes discussed above

(see Fig. 6 for a preview). There is a vast cross-disciplinary

literature, revived by Winfree (1980), on the emergence of

ordered patterns in excitable media and coupled oscillators.

Traveling or kinematic waves are a frequent phenomenon

in nonlinear chemical reactions or multicellular structures

(e.g. Swinney & Krinsky, 1991), such as slime mold

aggregation, heart tissue activity, or embryonic pattern

formation. Across various dynamics and architectures, these

systems have in common the ability to reach a critical state

from which they can rapidly bifurcate between randomness

or chaos and ordered activity. To this extent, they can be

compared to ‘sensitive plates’, as certain external patterns of

initial conditions (chemical concentrations, food, electrical

stimuli) can quickly trigger internal patterns of collective

response from the units.

We explore the same idea in the case of an input image

impinging on a layer of neurons and draw a link between the

produced response and categorical invariance. In the

framework proposed here, a visual input is classified by

the qualitative behavior of the system, i.e. the presence or

absence of certain singularities in the response patterns.

4.2. Spatiotemporal patterns in neural networks

During the past two decades, a growing number of

neurophysiological recordings have revealed precise and

reproducible temporal correlations among neural signals

and linked them with behavior (Abeles, 1982; Bialek,

Rieke, de Ruyter van Steveninck, & Warland, 1991;

O’Keefe & Recce, 1993). Temporal coding (von der

Malsburg, 1981) is now recognized as a major mode of

neural transmission, together with average rate coding. In

particular, quick onsets of transitory phase locking have

been shown to play a role in the communication among

cortical neurons engaged in a perceptual task (Gray, König,

Engel, & Singer, 1989).

While most experiments and models involving neural

synchronization were based on zero-phase locking among



Fig. 5. Typical Firing Modes of a Stochastic BvP Relaxation Oscillator.

Plots show u(t), solution of Eq. (1) with aZ.7, bZ.8, cZ3, hO0, kZ0, IZ
0. (a) Sparse stochastic firing at zZK.2 (spikes are upside-down). (b)

Quasi-periodic firing at zZK.4. At critical value zcZK.3465, without

noise, there is a bifurcation from a stable fixed point uz1 to a limit cycle.

Fig. 6. Realizing Morphodynamical Routines in a Spiking Neural Network.

(a) SKIZ obtained by diffusion in a 64!64 3-state CA, as in Fig. 2. (b)

Same SKIZ obtained by traveling waves on a 64!64 lattice of coupled BvP

oscillators in the regime of Fig. 5(a) with hZ0, connectivity radius rZ2.3

and coupling strength kZ.04. Activity u is shown in gray levels, brighter

for lower values, i.e. spikes u!0. Starting with uniform resting potentials

uz1 (or weak stochastic firing with noise hO0), an input image is

continuously applied with amplitude IZK.44 in both TR and LM domains.

This amounts to shifting z to a subcritical value zZK.3467!zc, thus

throwing the BvP oscillators into periodic firing mode (Fig. 5(b)). This in

turn creates traveling waves in the rest of the network.
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coupled oscillators (e.g., Campbell & Wang, 1996; König &

Schillen, 1991), delayed correlations have also been

observed (Abeles, 1982, 1991). These nonzero-phase

locking modes of activity correspond to reproducible

rhythms, or waves, and could be supported by connection

structures called synfire chains (Abeles, 1982; Ikegaya

et al., 2004). Bienenstock (1995) construes synfire chains as

the physical basis of elementary ‘building blocks’ that

compose complex cognitive representations: synfire

patterns exhibit compositional properties (Abeles, Hayon,

& Lehmann, 2004; Bienenstock, 1996), as two waves

propagating on two chains in parallel can lock and merge

into one single wave by growing cross-connections between

the chains (in a ‘zipper’ fashion). In this theory,

spatiotemporal patterns in long synfire chains would thus

be analogous to proteins that fold and bind through

conformational interactions.

The present work construes wave patterns differently: we

look at their emergence on regular 2-D lattices of coupled

oscillators to implement the expansion dynamics of our

morphodynamical spatial transformations. Compared to the

traditional blocks of synchronization, i.e. the phase plateaus

often used in segmentation models, we are also more

interested in traveling waves, i.e. phase gradients.

4.3. Wave propagation and morphodynamical routines

A possible neural implementation of the morphodyna-

mical engine at the core of our model relies on a network of

individual spiking neurons, or local groups of spiking

neurons (e.g. columns), arranged in a 2-D lattice similar to

topographic cortical areas, with nearest-neighbor coupling.

Each unit obeys a system of differential equations that

exhibit regular oscillatory behavior in a certain region of

parameter space. Various combinations of oscillatory

dynamics (relaxation, stochastic, reaction-diffusion, pulse-

coupled, etc.) and parameters (frequency distribution,

coupling strength, etc.) are able to produce waveform

activity, however, it is beyond the scope of the present work

to discuss their respective merits. We want here to point out

the generality of the wave propagation phenomenon, rather

than its dependence on a specific model.

For practical purposes, we use Bonhoeffer-van der Pol

(BvP) relaxation oscillators (FitzHugh, 1961). Each unit i is

located on a lattice point xi and described by a pair of

variables (ui, vi). Unit i is locally coupled to neighbor units j

within a small radius r and may also receive an input Ii:

_ui Z cðui Ku3
i =3 Cvi CzÞCh Ck

P
jðuj KuiÞC Ii

_vi Z ða Kui KbviÞ=c Ch

(

(1)

where h is a Gaussian noise, kxiKxjk!r and IiZ0 or a

constant I. Parameters are tuned as in Fig. 5(a), so that

individual units are close to a bifurcation in phase space

between a fixed point and a limit cycle, i.e. one spike
emission. They are excitable in the sense that a small

stimulus causes them to jump out of the fixed point and orbit

the limit cycle, during which they cannot be disturbed again.

Fig. 6(b) shows waves of excitation in a network of

coupled BvP units created by the schematic scene ‘a small

blob above a large blob’. Block impulses of spikes trigger

wave fronts of activity that propagate away from the object

contours and collide at the SKIZ boundary between the

objects. These fronts are ‘grass-fire’ traveling waves, i.e.

single-spike bands followed by refraction and reproducing

only as long as the input is applied. Under the nonlinear

dynamics, waves annihilate when they meet, instead of

adding up. Fig. 6(a) shows the same influence zones

obtained by mutual expansion in a CA, as seen in Section 2

(Fig. 2). Again, there is convincing perceptual and neural

evidence for the significant role played by this virtual SKIZ

structure and propagation in vision (Kimia, 2003).
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5. Two wave-based categorization models

We now show how wave dynamics can support the

categorization of spatial schemas by proposing two models

based on the principles discussed in Section 2. First, waves

implement the expansion-based transformations stated in

principles (i)–(ii), then the detection of global activity or

singularities created by the wave collisions is based on

principles (iii)–(v). One wave model implements the border

detection principle (iii) used in the ‘containment’ (Fig. 1) and

‘partition’ (Fig. 2) schemas. The second model focuses on the

SKIZ singularities and ‘signature’ detection principle (v),

which can be used as a complement or alternative to border

detection. In this case, we illustrate SKIZ detection with the

same ‘above’ schema as in border detection.

5.1. Border detection with cross-coupled lattices

Detecting the presence or absence of TR activity on the

borders of the image, as for ‘in’ or ‘above’, is not possible in

the single lattice of Fig. 6(b) because the waves triggered by

TR and LM cannot be distinguished from each other.

However, as discussed earlier in Section 4, a number of

models have shown that lattices of coupled oscillators can

also carry out segmentation from contiguity by exploiting a

simpler form of temporal organization in the lattice: zero-

phase synchronization or ‘temporal tagging’. We take here

these results as the starting point of our simulation and

assume that the original input layer is now split into two

distinct sublayers, each holding one component of the scene.

Thus, after a preliminary segmentation phase (not presented

here), TR and LM are forwarded to layers LTR and LLM,

where they generate wave fronts separately (Fig. 7). Mutual

wave interference and collision is then recreated by cross-

coupling the layers: unit i in layer LTR is not only connected to

units j in LTR inside a neighborhood of radius r, but also to

units j 0 in LLM inside a neighborhood of radius r 0.
Fig. 7. Detection of the ‘above’ Schema by Mutually Inhibiting Waves.

Two 64!64 lattices of BvP units, LTR and LLM, are internally coupled and

cross-coupled according to Eq. (2) and its symmetrical version, with rZ
r 0Z2.3, hZ0, kZ.03, k 0ZK.03. (a) Single wave fronts obtained by

injecting a pulse input IZK.44 in TR and LM for 0%t!2 (10 time steps

dtZ.2). (b) Multiple wave fronts obtained by applying the same input

amplitude indefinitely. In both cases, no spike reaches the bottom of LTR.
The modified dynamics is therefore:
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where F(u) is the right hand side of Eq. (1) without k and I

terms. A symmetrical relation holds for uLM
i , swapping TR

and LM. Variables vi are not coupled and obey Eq. (1) as

before. The net effect is shown in Fig. 7: the spiking wave

fronts created by TR are cancelled by LM’s wave fronts and

never reach the bottom border of LTR, while hitting the top

and partly the sides. This could be easily detected by external

cells receiving afferents from the border units and linked to

an ‘above’ response (not presented here). Again, the invisible

collision boundary line is the SKIZ, which we now examine

more closely in the next network model.

5.2. SKIZ signature detection with complex cells

Border activity provides a simple categorization

mechanism but is generally not sufficient. Alone, it does

not allow to distinguish among similar but nonoverlapping

protoschemas, such as the ones in Fig. 8. This is where the

properties of the SKIZ can help. For example, the concave

or convex shape of the SKIZ is able to separate (b) and (c).

For (a) and (d), one should also take into account the flow

velocity along the SKIZ (Blum, 1973). Indeed, the

dynamics of coupled spiking units (Fig. 6(b)) is richer

than the morphological model (Fig. 6(a)) because it

contains specific patterns of activity that are absent from

a static geometric line. In particular, the wave fronts

highlight a secondary flow of propagation along the SKIZ

line, which travels away from the focal shock point with

decreasing speed on either branch. The focal point (where

the bright band is at its thinnest in Fig. 6(b), t 0Z32) is the

closest point to both objects and constitutes a local

optimum along the SKIZ. While a great variety of object

pairs produce the same static SKIZ, the speed and direction

of flow along the SKIZ vary with the objects’ relative

curvature and proximity to each other. For example, a

vertical SKIZ segment flows outward between brackets
Fig. 8. Four Prototypical Horizontal Partition Schemas. In each case, TR

(light gray) and LM (dark gray) are displayed with their SKIZ line (black).

(a–c) English ‘above’. (b) Mixtec ‘siki’: LM is horizontally elongated

(Regier, 1996). (c) French ‘par-dessus’: TR is horizontally elongated and

covers LM. (d) English ‘on top of’: TR is in contact with LM. A simple

border-based detection would give the same output in all cases.
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facing their convex sides )j(, whereas it flows inward

between reversed brackets (j). This refined information is

revealed by wave propagation.

In order to detect the focal points and flow characteristics

(speed, direction) of the SKIZ, we propose in this model

additional layers of detector neurons similar to the so-called

‘complex cells’ of the visual system. These cells receive

afferent contacts from local fields in the input layer and

respond to segments of moving wave bands, with selectivity

to their orientation and direction. More precisely, the

spiking neural network presented in Fig. 9 is a three-tier

architecture comprising: (a) two input layers, (b) two middle

layers of orientation and direction-selective ‘D’ cells, and

(c) four top layers of coincidence ‘C’ cells responding to

specific pairwise combinations of D cells. (These are not

literally cortical layers but could correspond to functionally

distinct cortical areas.) As in the previous model, TR and

LM are separated on two independent layers (Fig. 9(a)). In

this particular setup, however, there is no cross-coupling

between layers and the waves created by TR and LM do not

actually interfere or collide. Rather, the regions where wave

fronts coincide ‘vertically’ (viewing layers LTR and LLM

superimposed) are captured by higher feature cells in two
Fig. 9. SKIZ Detection in a Three-Tier Spiking Neural Network

Architecture. (a) Input layers show single traveling waves as in Fig. 7(a),

except that there is no cross-coupling and potentials are thresholded to

retain only the spikes u!0. (b) Orientation and direction-selective cells.

Each D layer is shown as 8 sublayers (smaller squares) of cells selective to

orientation qZkp/4, with kZ8.1 from the top, clockwise. (c) Pairwise

coincidence cells. Each cell in C1(q) is connected to a half-disc

neighborhood in DTR(q) and its complementary half-disc in DLM(q Kp),

rotated at angle q. For example: a cell in C1(0) (illustrated by the icon on the

right of C1) receives afferents from a horizontal bar of DTR(0) cells in the

lower half of its receptive field, and a bar of DLM(p) cells in the upper half.

Same for C2(0), swapping TR/LM and upper/lower. Similarly, C3(q) cells

are half-connected to DTR(q) and to DLM(qKp/2), with orthogonal bars

(swapping TR/LM for C4). The net output is sparse activity confined to

C1(p), C2(0), C3(3p/4) and C4(Kp/4). We use only global Ci activity: in

reality, C1 cells fire first when the two wave fronts meet, then C2 cells when

they separate again, and finally C3 and C4 cells in rapid succession when the

arms cross. This precise rhythm of Ci spikes could also be exploited in a

finer model.
direction-selective layers, DTR and DLM (Fig. 9(b)), and four

coincidence-detection layers, C1.4 (Fig. 9(c)). Layer DTR

receives afferents only from LTR, and DLM only from LLM.

Layers Ci are connected to both DTR and DLM through split

receptive fields: half of the afferent connections of a C cell

originate from a half-disc in DTR and the other half from its

complementary half-disc in DLM.

In the intermediate D layers, each point contains a family

of cells or ‘jet’ similar to multiscale Gabor filters. Viewing

the traveling waves in layers L as moving bars, each D cell is

sensitive to a combination of bar width l, speed s,

orientation q and direction of movement f. In the simple

wave dynamics of the L layers, l and s are approximately

uniform. Therefore, a jet of D cells is in fact single-scale and

indexed by one parameter qZ0.2p, with the convention

that fZqCp/2. Typically, 8 cells with orientations

qZkp/4 are sufficient. Each sublayer DTR(q) thus detects

a portion of the traveling wave in LTR (same with LM).

Realistic neurobiological architectures generally implement

direction-selectivity using inhibitory cells and transmission

delays. In our simplified model, a D(q) cell is a ‘cylindrical’

filter, i.e. a temporal stack of discs containing a moving bar

at angle q (Fig. 9(b), center of D layers): it sums potentials

from afferent L-layer spikes spatially and temporally, and

fires itself a spike above some threshold.

Among the four top layers (Fig. 9(c)), C1 detects

converging parallel wave fronts, C2 detects diverging

parallel wave fronts, and C3 and C4 detect crossing

perpendicular wave fronts. Like the D layers, each Ci

layer is subdivided into 8 orientation sublayers Ci(q). Each

cell in C1(q) is connected to a half-disc neighborhood in

DTR(q) and the complementary half-disc in DLM(qKp),

where the half-disc separation is at angle q. The net output

of this hierarchical arrangement is a signature of

coincidence detection features providing a very sparse

coding of the original spatial scene. The input ‘above’ scene

is eventually reduced to a handful of active cells in a

single orientation sublayer Ci(q) for each Ci: C1(p), C2(0),

C3(3p/4) and C4(Kp/4) (Fig. 9(c)).

In summary, the active cells in C1 and C2 reveal the focal

point of the SKIZ, which is the primary information about the

scene, while C3 and C4 reveal the outward flow on the SKIZ

branches, which can be used to distinguish among similar but

nonequivalent concepts. This sparse SKIZ signature is at the

same time characteristic of the spatial relationship and

largely insensitive to shape details. For example: ‘below’

yields C1(0) and C2(p); ‘on top of’ (Fig. 8(d)) yields C2(0)

like ‘above’ but no C1 activity because TR and LM are

contiguous (wave fronts can only separate at the contact

point, not join); ‘par-dessus’ with a convex SKIZ facing up

(Fig. 8(c)) yields C3(p) and C4(Kp/2), etc. Note that the

actual regions of Ci(q) where cells are active (e.g. the location

of the SKIZ branches in the south–west and south–east

quadrants of Fig. 8(c)) are sensitive to translation and

therefore are not good invariant features.
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6. Discussion

We have proposed a dynamical approach to cognitive

linguistics drawing from morphological CA and spiking

neural networks. We suggest that spatial semantic categor-

ization can be supported by an expansion-based dynamics,

such as activity diffusion or wave propagation. Admittedly,

the few results we have presented here are not particularly

surprising given the relative simplicity and artificiality of

the models. However, we hope that this preliminary study

will be a starting point for more efficient or plausible

network architectures exploring the interface between high-

level vision and symbolic knowledge.

6.1. Future work

(1) Wave Dynamics and Scene Database: we want to

conduct a more systematic investigation of the

morphodynamical routines and their link with proto-

semantic classes. Similarly to Regier (1996), a database

of schematic image/label pairs representing a broad

cross-linguistic variety of spatial elements could be

used to assess the level of invariance of the singularities

and their robustness to noise.

(2) Real Images and Low-Level Vision: currently, our

primary material consists of presegmented schematic

images. It could be extended to real-world examples by

using low-level image processing techniques based on

edge contiguity and texture. Segmentation models such

as nonlinear diffusion (Whitaker, 1993), variational

boundary/domain optimization (Mumford & Shah,

1989) or temporal phase tagging (König & Schillen,

1991) have proven that shapes can be separated from

the background in a bottom-up way without prior

knowledge, if the scene is not too cluttered.

(3) Learning the Semantics from the Protosemantics:

semantic classes are intrinsically fuzzy: as TR moves

around LM and their SKIZ rotates, when is TR no longer

‘above’ but ‘beside’ or ‘below’ LM? Different languages

also divide space differently: for example,

‘on’corresponds in German either as ‘auf’ (top contact)

or as ‘an’ (side contact). Intra- and cross-linguistic

boundaries could be learned using known image/response

pairs. Our morphodynamical routines already consider-

ably reduce the dimensionality of the input space by

mapping images to a few singularities. In a final step, the

same universal pool of protosemantic features could be

combined in various ways to form full-fledged semantic

classes using statistical estimation methods. What is

critical, however, is how well the elementary routines map

the examples into optimally separable clusters (Geman,

Bienenstock, & Doursat, 1992). Applying learning

methods directly to the original image space or to

irrelevant features would evidently be fruitless.

(4) Verb Processes and Bifurcation Events: another

important challenge are the temporal processes and events
of verbal scenarios. The singularities created by fast wave

activity can themselves evolve on a slower timescale

(Fig. 4). Short animated clips of moving TR’s and LM’s

could be categorized into archetypal verbs, e.g. ‘give’ or

‘push’, based on an important family of psychological

experiments about the perception of causality and

animacy. Landmark studies (see Scholl & Tremoulet,

2000) have shown that movies involving simple

geometrical figures were spontaneously interpreted by

human subjects as intentional actions. For example, a few

triangles and circles moving around a square strongly tend

to elicit verbal statements such as ‘chase’, ‘hide’, ‘attack’,

‘protect’, etc.

(5) Complex Scenes: after treating single schemas separately,

we also want to show how multiple schemas can be

evoked simultaneously and assembled to form complex

scenarios. This addresses the compositionality of seman-

tic concepts, or ‘binding problem’ (von der Malsburg,

1981). Our ultimate goal is to explain mental imagery in

terms of structured compositions of morphodynamical

routines.
6.2. Original points of this proposal

(1) Bringing Large-Scale Dynamical Systems to Cognitive

Linguistics: despite their deep insights into the

conceptual and spatial organization of language,

cognitive grammars still lack mathematical and

computational foundations. Our project is among few

attempts to import spatiotemporal connectionist models

into linguistics and spatial cognition. Other authors

(e.g. Regier, 1996; Shastri & Ajjanagadde, 1993) have

pursued the same objectives, but use small ‘hybrid’

artificial neural networks, where nodes already carry

geometrical or symbolic features. We work at the fine-

grained level of numerous spatially arranged units.

(2) Addressing Semantics in CA and Neural Networks:

conversely, our work is also an original proposal to

apply large-scale lattices of cellular automata or

neurons to high-level semantic feature extraction.

These bottom-up systems are usually exploited for

low-level image processing or visual cortical modeling,

or both—e.g. Pulse-Coupled Neural Networks

(Johnson, 1994) or Cellular Neural Networks (Chua &

Roska, 1998). Shock graphs and medial axes are also

used in computer vision models of object recognition

(Siddiqi, Shokoufandeh, Dickinson, & Zucker, 1999;

Zhu & Yuille, 1996), but with the concern to preserve

and match object shapes, not erase them. Adamatzky

(2002) also envisions collision-based wave dynamics in

excitable media, but as a mechanism of universal

computing based on logic gates.

(3) Advocating Pattern Formation in Neural Modeling:

self-organized, emergent processes of pattern

formation or morphogenesis are ubiquitous in nature
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(stripes, spots, branches, etc.). As a complex system, the

brain produces ‘cognitive forms’, too, but instead of

spatial arrangements of molecules or cells, these forms

are made of spatiotemporal patterns of neural activities

(synchronization, correlations, waves, etc.). In contrast

to other biological domains, however, pattern formation

in large-scale neural networks has attracted only few

authors (e.g. Ermentrout, 1998). This is probably

because precise rhythms involving a large number of

neurons are still experimentally difficult to detect, hence

not yet proven to play a central role.

(4) Suggesting Wave Dynamics in Neural Organization:

indeed, fast rhythmic activity on the 1-ms timescale, in

random (Bienenstock, 1995), regular (Milton, Chu,&

Cowan 1993) or small-world (Izhikevich, Gally, &

Edelman, 2004) networks, has been much less explored

than pure synchronization, when addressing segmenta-

tion or the ‘binding problem’ (see review in Roskies,

1999). Along with Bienenstock (1995, 1996), we

contend that waves open a richer space of temporal

coding suitable for general mesoscopic neural model-

ing, i.e. the intermediate level of organization between

microscopic neural activities and macroscopic rep-

resentations. At one end (AI), high-level formal models

manipulate symbols and composition rules but do not

address their fine-grain internal structure. At the other

end (neural networks), low-level dynamical models

study the self-organization of neural activity but their

emergent objects (attractor cell assemblies or blobs)

still lack structural complexity and compositionality

(Fodor & Pylyshyn, 1988). Waves and other complex

spatiotemporal patterns could provide the missing link

bridging the gap between these two levels. Furthermore,

our hypothesis is that this mesoscopic level corresponds

to the central conceptual level postulated by cognitive

linguistics.
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