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Abstract— We propose a spiking neural network for map-

ping the infinity of schematic visual scenes to a small set of 

semantic symbols. According to cognitive linguistics, spatial 

prepositions such as ‘in’ or ‘above’ are neutral toward the 

shape and size of objects. We suggest that they correspond to 

morphodynamical transforms erasing details and creating 

virtual structures (boundaries, skeleton). These singularities 

arise from a large-scale lattice of coupled excitable units ex-

hibiting pattern formation through spatiotemporal order, 

especially traveling waves. Our model addresses the funda-

mental cognitive mechanisms of spatial schematization and 

categorization, which mediate vision and language and are 

crucial in designing intelligent systems. 

I. INTRODUCTION 

A. Spatial Categorization 

How can the same English relationship ‘in’ apply to 

scenes as different as “the shoe in the box” (small, hollow, 

closed volume), “the bird in the tree” (large, dense, open 

volume) or “the fruit in the bowl” (curved surface)? What 

is the common ‘across’ invariant behind “he swam across 

the lake” (smooth trajectory, irregular surface) and “the fly 

zigzagged across the hall” (broken trajectory, regular vol-

ume)? How can language, especially its spatial elements, 

be so insensitive to wide topological and morphological 

differences among visual percepts? In short, how does lan-

guage drastically simplify information and categorize? 

This study examines the link between the spatial struc-

ture of visual scenes and their linguistic descriptions. We 

propose a computational and spiking neural model aimed 

at mapping the endless diversity of schematic visual scenes 

to a small set of standard semantic labels. Contemporary 

theories of metaphor
1
 have demonstrated that terms with 

spatiotemporal content are highly polysemous. We there-

fore restrict our scope to relatively “homogeneous” sub-

categories, or protosemantic concepts. For example2, “the 
cat in1 the house” and “the bird in2 the tree” should be 

treated separately from “the flower in3 the vase” or “the 

crack in4 the vase”. Yet, even within a monosemantic sub-

concept, there remains the great difficulty of relating the 

infinite continuum of shape diversity to a discrete symbol. 

This task addresses the brain’s fundamental mechanisms of 

schematization and categorization, which mediate vision 

and language and play a critical role in the design of intel-

ligent systems. In recent years, neural networks and reac-

tive robotics have successfully challenged symbolic artifi-

cial intelligence and formal logic by showing how complex 

behavior, object recognition or learning can arise from 

simple dynamic control loops. Yet, for further progress in 

this direction there is a need for greater generalization ca-

pabilities at more abstract levels of spatial representation. 

The different trajectories followed by a robot could be 

categorized under a few invariant tasks; the different visual 

scenes captured by its sensors, under a few prototypical 

situations. Categorization-enabled agents could then inter-

act with other agents or humans at this emergent symbolic 

level, i.e., the level typical of a natural language. 

B. Cognitive Linguistics 

Through another recent shift of paradigm, the formalist 

view that language is functionally autonomous was revised 

by a set of works
1,3,4,5

 collectively named cognitive linguis-
tics, for which language is much rather “embodied” in per-
ception, action and inner conceptual representations. In 

this stance, generative grammar models have been super-

seded by studies of the interdependence of language and 
perceptual reality and how these two systems influence 
each other’s organization. For example, in “I am in/on/far 

from the street”, the elements ‘in’, ‘on’ and ‘far from’ con-

trastively construe the street as a volume, a surface or a 

reference point. Formal syntax models, for their part, make 

the street a mere symbol, irrespective of its spatial features. 

These alternative linguistic orientations have naturally con-

verged with major advances in perception and image 

analysis, both in neurophysiology and machine vision. 

Cognitive linguistics is directly preoccupied with mean-

ing and categorization. Refuting the distinction between 

syntax and semantics, it postulates a conceptual level of 
representation, where language, perception and action be-

come compatible
5
. It also remarkably revived the Gestalt 

approach calling into question the traditional roles as-

signed to perception—as a faculty only dealing with object 

shapes, and language—as a faculty only dealing with rela-

tions between objects. Whereas in logical theories of lan-

guage “things” are already individuated symbols and “rela-

tions” are abstract links connecting these symbols, in the 

Gestaltist or mereological conception things and relations 
constitute wholes: relations are not given for granted but 
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emerge together with the objects through segmentation and 

transformation. In fact, for Gestalt linguistics the percep-

tual background is a true figure, actively structured by the 

grammatical elements in a spatial and morphological way 
that is radically different from symbolic relations. 

C. Linguistic Topology 

Reinforcing this view, there is extensive evidence that 

grammatical elements select certain morphological features 

from the perceptual data and ignore others
3
. These ele-

ments are largely invariant with respect to the dimensions 

and detailed shapes of objects and trajectories. For exam-

ple, “the caterpillar crawled up along the filament/flagpole/ 

redwood tree”
3
 shows that the English preposition ‘along’ 

construes the background object only as its central axis and 

is indifferent to its girth. Similarly, the ‘in’ and ‘across’ 

examples cited in section I.A indicate neutrality toward the 

topological diversity of the container. On the other hand, 

the domain of applicability of grammatical elements can 

also be sensitive to metric ratios: “he swam across the pool 

lane” implies a swimmer’s trajectory crossing the rectangle 

of water parallel to its short side, not its long side. 

This core invariance of spatial meaning is sometimes re-

ferred to as the “linguistic form of topology”
3
 or “cognitive 

topology”
1
. Yet, language can also display a greater power 

of generalization than mathematical topology (example 

‘in’) while in other cases it can preserve metric aspects and 

constrain distortions much more strictly than topology (ex-

ample ‘across’). This apparent paradox constitutes one of 

the great puzzles of spatial cognition. 

II. MORPHODYNAMICAL CELLULAR AUTOMATA 

A. Perceptual-Semantic Machine 

One step toward solving this puzzle is to propose that 

spatial prepositions like ‘in’, ‘above’, ‘across’, etc., fun-

damentally amount to morphodynamical transforms, i.e., 
transforms creating a morphology that evolves temporally. 

The above findings could be explained by transformation 

routines performing a drastic, yet targeted simplification of 

the geometric data. These routines essentially (a) erase 

details and (b) create new, virtual structures or singulari-
ties (e.g., influence zones, fictive boundaries, skeletons, 
intersection points, force fields, etc.) that were not origi-

nally part of the scene but are ultimately revealing of the 

conveyed meaning. At the core of such transformations are 

(1) dynamical, object-centered expansion processes, akin 

to diffusion or propagation, and (2) routines detecting the 

singularities created by these processes. A key idea is that 

singularities encode a lot of the image’s geometrical in-

formation in an extremely compact and localized manner. 

In a first attempt
6
 to test this hypothesis, we have de-

signed a morphodynamical image-processing software or 

“perceptual-semantic” machine. In input we present sche-

matic scenes, assumed to be the outcome of the early 

stages of visual processing. The actors of the semantic re-

lationship, the figure and ground, or trajector (TR) and 

landmark (LM)
4
, are presegmented. In output we obtain 

symbolic features containing global information about the 

respective spatial positions of the actors. These features are 

protosemantic, i.e., low-level compared to linguistic-
cultural categories but high-level compared to local visual 

features. They correspond to subcategorical “islands” in a 

ramified, prototype-based category. An additional classifi-

cation module based on learning could be used to imple-

ment the final step from the protofeatures to the full-

fledged prepositions, however we will not address learning 

issues here. In the remainder of this article we focus on the 

core of the system, the “morphodynamical engine” that 

transforms images into protosemantic symbols and creates 

the bridge from vision to language. 

 

Fig. 1.  Morphodynamical Detection of Protosemantic Schemas. (a) ‘In’: 

the bird’s expansion is blocked by the cage from reaching the borders, 

despite the holes. (b) ‘Above’: the lamp cannot reach the bottom because 
of the table, (c) even when not aligned vertically; (d) ‘Across’: the zig-

zagged path and textured domain are skeleton-transverse. (e) ‘Out of’: the 

singular point on the ball’s and box’s influence boundaries disappears. 

B. Examples of Morphodynamical Routines 

1)  Containment of Influence Zones in Proto-‘in’ and 
-‘above’: For example, using 2-D cellular automata (CA) 
with a simple nearest-neighbor diffusion rule, one way to 

define TR ‘in’ LM (“the bird in the cage”) could be to de-

tect whether an isotropic expansion of TR is contained 
within LM’s own expansion, i.e., check that no TR-induced 
activity reaches the image borders (Fig. 1a). Similarly, TR 
‘above’ LM (“the lamp above the table”) could correspond 

to TR’s expansion stopped by LM from reaching the bot-

tom (Fig. 1b-c: the scene has morphed into a roughly hori-

zontal boundary line, revealing an ‘above’ relation). 

2)  Transversality of Skeleton in Proto-‘across’: For TR 
‘across’ LM (Fig. 1d), TR’s and LM’s medial axes should 
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be transverse, i.e., intersect nontangentially. These axes are 

obtained by skeletonization, an inward expansion eroding a 
shape to its axis, possibly preceded by tubification, a lim-
ited outward expansion erasing irrelevant texture details. 

3)  Dynamic Bifurcation in Proto-‘out of’: Fig. 1e illus-
trates another scenario, TR ‘out’ of LM (“the ball out of the 

box”). In this case, the singular point on the influence 

boundaries of TR and LM (triple intersection highlighted 

by the thick lines) accelerates away from TR and eventu-
ally disappears as TR exits the interior of LM. This is a 

very robust bifurcation phenomenon, too, independent of 

the detailed shapes of the objects or TR’s trajectory. 

C. Expansion-Based Topology 

We suggest that the brain might rely on dynamical pat-

terns of activity of this kind to perform invariant spatial 

categorization. There is experimental evidence that the 

visual system effectively constructs the symmetry axis of 

shapes
7,8
. We therefore postulate the following principles: 

(i) objects have a tendency to occupy the whole space; 

(ii) objects are obstacles to each other’s expansion. 

Through the action of structuring routines the common 

space shared by the objects is divided into influence zones. 
Image elements cooperate to propagate activity across the 

field and inhibit activity from other sources. This creates 

singularities, such as boundaries and intersection points, 

which constitute the characteristic “signature” of the spa-

tial relationship
9
. The transformation routines thus consid-

erably reduce the dimensionality of the input space, liter-

ally “boiling down” the input images to a few key features. 

III. WAVES IN SPIKING NEURAL NETWORKS 

A. Dynamic Pattern Formation in Excitable Media 

Elaborating upon this first morphodynamical model, we 

now establish a parallel with neural modeling. Our main 

hypothesis is that the transition from analog to symbolic 

representations of space might be neurally implemented by 

traveling waves in a large-scale network of coupled spik-
ing units, via the expansion processes discussed above (see 
Fig. 2). There is a vast cross-disciplinary literature, revived 

in the 1970’s
10
, on the emergence of ordered patterns in 

excitable media and coupled oscillators. Traveling or ki-
nematic waves are also a frequent phenomenon in nonlin-

ear chemical reactions or multicellular structures
11
, such as 

slime mold aggregation, heart tissue activity, or embryonic 

pattern formation. Across various dynamics and architec-

tures, these systems have in common the ability to reach a 

critical state from which they can rapidly bifurcate be-

tween randomness or chaos and ordered activity. To this 

extent they can be compared to “sensitive plates”, as cer-

tain external patterns of initial conditions (chemical con-

centrations, food, electrical stimuli) can quickly trigger 

internal patterns of collective response from the units. 

We explore the same idea in the case of an input image 

impinging on a layer of neurons and draw a link between 

the produced response and categorical invariance. In the 

framework proposed here, a visual input is classified by 

the qualitative behavior of the system, i.e., the presence or 

absence of certain singularities in the response patterns. 

B. Spatiotemporal Patterns in Neural Networks 

During the past two decades, a growing number of neu-

rophysiological recordings have revealed precise and re-

producible temporal correlations among neural signals and 

related them with behavior
12,13,14,15

. Temporal coding16 is 
now recognized as a major mode of neural transmission, 

together with average rate coding. In particular, quick on-

sets of transitory phase locking have been shown to play a 

role in the communication among cortical neurons engaged 

in a perceptual task
13
. 

While most experiments and models involving neural 

synchronization were based on zero-phase locking among 

coupled oscillators
17,18

, delayed correlations have also been 
observed

12
, suggesting nonzero-phase locking modes of 

organization that correspond to reproducible rhythms or 

waves. In another proposal
19
, waves are generated by syn-

fire chains12,20 and construed as the physical basis for ele-
mentary “building blocks” composing more complex cog-

nitive objects. These patterns exhibit compositional prop-
erties, as two waves simultaneously propagating on two 

chains can lock and merge into one single wave by grow-

ing cross-connections between the chains (in a “zipper” 

fashion). According to this theory, spatiotemporal patterns 

would then be analogous to folded proteins that bind 

through conformational interactions. 

In the present work, we propose the emergence of wave 

patterns on regular 2-D lattices of coupled oscillators, 

which implement the expansion dynamics of the morpho-

dynamical spatial transformations. Therefore, compared to 

the traditional blocks of synchronization, i.e., phase pla-

teaus often used in segmentation models, we are interested 

in traveling waves, i.e., phase gradients. 

C. Wave Propagation and SKIZ 

A possible neural implementation of the morphody-

namical engine at the core of our model relies on a net-

work of individual spiking neurons, or local groups of 

spiking neurons (e.g., columns), arranged in a 2-D lattice 

similar to topographic cortical areas, with nearest-neighbor 

coupling. Each unit obeys a system of differential equa-

tions that exhibit regular oscillatory behavior in a certain 

region of parameter space. Various combinations of oscil-

latory dynamics (relaxation, stochastic, reaction-diffusion, 

pulse-coupled, etc.) and parameters (frequency distribu-

tion, coupling strength, etc.) are able to produce waveform 

activity, however it is beyond the scope of the present 

work to discuss their respective merits. We want here to 

point out the generality of the wave propagation phenome-

non, rather than its dependence on a specific model. For 

practical purposes, we use Bonhoeffer-van der Pol (BvP) 

relaxation oscillators
21
 locally coupled to each other within 

a small radius. Parameters are tuned so that individual 
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units are close to a bifurcation in phase space between a 

fixed point and a limit cycle, i.e., one spike emission. They 

are excitable in the sense that a small stimulus causes them 
to jump out of the fixed point and orbit the limit cycle, 

during which they cannot be disturbed again. 

 

Fig. 2.  Realizing Morphodynamical Routines in a Spiking Neural Net-
work. (a) SKIZ obtained by diffusion in a 64x64 CA, as in Fig. 1. 

(b) Same SKIZ obtained by traveling waves on a 64x64 lattice of coupled 

BvP oscillators with connectivity radius 2.3 (potential shown in gray 
levels). An initial input image generates traveling waves in the network. 

Fig. 2b shows waves of excitation in a network of cou-

pled BvP units created by the schematic scene “a small 

blob above a large blob”. Starting with uniform resting 

potentials or a weak level of stochastic firing, the initial 

impulse triggered by the input image creates fronts of ac-

tivity that propagate away from the object contours and 

collide at the boundary between the objects. These fronts 

are “grass-fire” traveling waves, i.e., single-spike bands 

followed by refraction and reproducing only as long as the 

input is applied. Nonlinear waves of this type annihilate 

when they meet, instead of adding up. Fig. 2a shows the 

same influence zones obtained by mutual expansion, as 

seen in the CA model (Fig. 1b-c). In both cases, the border 

line is the skeleton by influence zones or SKIZ. It also cor-
responds to what is usually called the medial axis22 or 
shock graph23, applied here to the objects’ complementary 
set. As noted previously, there is convincing perceptual 

and neural evidence for the significant role played by the 

medial axis and propagation in vision
7
. 

The dynamics of coupled spiking units (Fig. 2b) is richer 

than the morphodynamical model (Fig. 1, Fig. 2a) because 

it contains specific patterns of activity that are absent from 

a static geometric line. In particular, the wave fronts high-

light a secondary flow of propagation along the SKIZ line, 
which travels away from the focal shock point with de-

creasing speed on either branch
22,7

. The focal point (where 

the bright band is at its thinnest in Fig. 2b) is the closest 

point to both objects and constitutes a local optimum along 
the SKIZ. While a great variety of object pairs produce the 

same static SKIZ, the speed and direction of flow along the 

SKIZ vary with the objects’ relative curvature and prox-

imity to each other. For example, a vertical SKIZ segment 

flows outward between brackets facing their convex sides 

)|(, whereas it flows inward between reversed brackets (|). 

This information is revealed by wave propagation and can 

be exploited for refined classification schemes. 

D. SKIZ Signature Detection 

In order to detect the focal points and flow characteris-

tics (speed, direction) of the SKIZ, we propose in this 

model additional layers of neural cells similar to the so-

called “complex cells” of the visual system. These detector 

cells receive afferent contacts from local neighborhoods in 

the input layer and respond to segments of moving wave 

bands, with selectivity to their orientation and direction. 

More precisely, Fig. 3 shows the detection of a protose-

mantic ‘above’ situation. The spiking neural network pre-

sented here is a three-tier architecture comprising: (a) two 

input layers, (b) two middle layers of orientation and direc-

tion-selective “D” cells, and (c) four top layers of coinci-
dence “C” cells responding to specific pairwise combina-
tions of D cells. Note that these are not literally cortical 
layers but might rather correspond to functionally distinct 

cortical areas, or subnetworks thereof. 

In this particular setup, the original input layer is split 

into two layers, LTR and LLM (Fig. 3a), each holding one 

presegmented component of the scene. A number of mod-

els have shown that segmentation from contiguity can arise 

on a lattice of coupled oscillators through temporal tagging 

(zero-phase synchronization). We take these results as the 

starting point of our simulations and assume that the initial 

segments are forwarded to two separate sublayers, where 

they independently generate a single wave front (Fig. 3a is 

a thresholded version of Fig. 2b). Here, the waves created 

by TR and LM do not actually collide. Rather, the region 

where they coincide “vertically” (viewing layers LTR and 
LLM superimposed) can be captured by higher feature cells 

in two direction-selective layers, DTR and DLM (Fig. 3b), 

and four coincidence-detection layers, C1…4 (Fig. 3c). DTR 

receives afferents only from LTR, and DLM only from LLM. 

Layers Ci are connected to both DTR and DLM through split 

receptive fields: half of the afferent connections of a C cell 
originate from a half-disc in DTR and the other half from its 

complementary half-disc in DLM (details below). 

In the intermediate D layers, each point contains a fam-
ily of cells, or “jet”, similar to multiscale Gabor filters. 

Viewing the traveling waves in layers L as moving bars of 
activity, each D cell is sensitive to a combination of bar 
width λ, speed v, orientation θ and direction of movement 
φ. In the simple wave dynamics of the L layers, λ and v are 
approximately uniform. Therefore, a jet of D cells is in fact 
single-scale and indexed by one parameter θ = 0…2π, with 
the convention that φ = θ + π/2. Typically, 8 cells with 
orientations θ = kπ/4 are sufficient. For ease of view, both 
D layers in Fig. 3b are displayed as 8 sublayers (small 
squares) with k = 8, 7, …, 1 starting north, going clock-

wise. Each sublayer DTR(θ) thus detects a portion of the 
traveling wave in LTR (same with LM). Realistic neurobio-

logical architectures generally implement direction-

selectivity using inhibitory cells and transmission delays. 
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In our simplified model, a D(θ) cell is a “cylindrical” filter, 
i.e., a temporal stack of discs containing a moving bar at 

angle θ (see illustration at center of D layers): it sums po-
tentials from afferent L-layer spikes spatially and tempo-
rally, and fires itself a spike above a certain threshold. 

 

 

Fig. 3.  SKIZ Detection in a Three-Tier Spiking Neural Network Archi-
tecture. (a) Input layers. (b) Orientation and direction-selective cells. 

(c) Pairwise coincidence cells (see text). 

Among the four top layers (Fig. 3c), C1 detects converg-

ing parallel wave fronts, C2 detects diverging parallel wave 

fronts, and C3 and C4 detect crossing perpendicular wave 

fronts. Like the D layers, each Ci layer is subdivided into 8 

orientation sublayers Ci(θ). Each cell in C1(θ) is connected 
to a half-disc neighborhood in DTR(θ) and the complemen-
tary half-disc in DLM(θ - π), where the half-disc separation 
is at angle θ. For example: a cell in C1(0) (illustrated in the 

center icon of C1) receives afferents from a horizontal bar 

of DTR(0) cells in the lower half of its receptive field, and a 

bar of DLM(π) cells in the upper half (for C2(0), swap 

TR/LM and upper/lower). Similarly, C3(θ) cells are half-

connected to DTR(θ) and DLM(θ - π/2), with orthogonal bars 
(swapping TR/LM for C4). The net output of this hierarchi-

cal arrangement is a signature of coincidence detection 
features providing a very sparse coding of the original spa-
tial scene. The input scene “a blob above a blob” is even-

tually reduced to a handful of active cells in a single orien-

tation sublayer Ci(θ) for each Ci: C1(π), C2(0), C3(3π/4) and 
C4(-π/4) (Fig. 3c). Note that the activity traces shown here 
are persistent: in reality, C1 cells fire first when the two 

wave fronts meet, then C2 cells when the fronts separate 

again, and finally C3 and C4 cells in close succession when 

the arms of the waves cross. 

In summary, the active cells in C1 and C2 reveal the fo-

cal point of the SKIZ, which is the primary information 

about the scene, while C3 and C4 reveal the outward flow 

on the SKIZ branches, which can be used to distinguish 

among similar but nonequivalent concepts. This sparse 

SKIZ signature is at the same time characteristic of the 

spatial relationship and largely insensitive to shape details. 

For example: ‘below’ yields C1(0) and C2(π), while ‘on-
top-of’ produces the same as ‘above’ but without C1 activ-

ity because TR and LM are contiguous (wave fronts can 

only separate at a contact point, not join). 

IV. DISCUSSION 

We have proposed a dynamical approach to cognitive 

linguistics drawing from morphological CA and spiking 

neural networks. We suggest that spatial semantic catego-

rization can be supported by expansion-based dynamics, 

such as activity diffusion or wave propagation. Admit-

tedly, the few results we have presented here are not par-

ticularly surprising given the relative simplicity and artifi-

ciality of the models. However, we hope that this prelimi-

nary study will be a starting point for more efficient or 

plausible network architectures exploring the interface 

between high-level vision and symbolic knowledge. 

A. Original Points of this Proposal 

1)  Bringing Large-Scale Dynamical Systems to Cogni-
tive Linguistics: Despite their deep insights into the con-
ceptual and spatial organization of language, cognitive 

grammars still lack mathematical and computational foun-

dations. Our project is among few attempts to import spa-

tiotemporal connectionist models into linguistics and spa-

tial cognition. Other authors
24,25

 pursuing the same goal 

use small “hybrid” artificial neural networks, where nodes 

already carry geometrical or symbolic features. We work at 

the fine-grained level of numerous spatially arranged units. 

2)  Addressing Semantics in CA and Neural Nets: Con-
versely, our work is also an original proposal to apply 

large-scale lattices of CA or neurons to high-level semantic 

feature extraction. These bottom-up systems are usually 

exploited for low-level image processing or visual cortical 

modeling, or both, e.g., Pulse-Coupled Neural Networks
26
 

or Cellular Neural Networks
27
. Shock graphs and medial 

axes are also advocated in computer vision models of ob-
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ject recognition
23,28,29

, but with the concern to preserve and 

match object shapes, not erase them. Collision-based wave 

dynamics was also proposed for logic-gate computing
30
. 

3)  Promoting Pattern Formation in Neural Modeling: 
Self-organized, emergent processes of pattern formation, 

or morphogenesis, are ubiquitous in nature (stripes, spots, 
branches, etc.). As a complex system, the brain produces 

“cognitive forms”, too, but instead of spatial arrangements 

of molecules or cells, these forms are made of spatiotem-
poral patterns of neural activities (synchronization, corre-
lations, waves, etc.). In contrast to other biological do-

mains, however, pattern formation in large-scale neural 

networks has attracted only few authors
31
. This is probably 

because precise rhythms involving a large number of neu-

rons are still experimentally difficult to detect, hence not 

yet proven to play a central role. 

4)  Suggesting Wave Dynamics in Neural Organization: 
Indeed, fast waveform activity on the 1-ms timescale in 

random
19
 or regular

32
 networks has been much less ex-

plored than synchronization, when addressing segmenta-

tion or the “binding problem”. Along with other authors
19
, 

we contend that waves open a richer space of temporal 

coding suitable to general mesoscopic neural modeling, 
i.e., the intermediate level of organization between micro-

scopic neural activities and macroscopic representations. 

At one end (AI), high-level formal models manipulate 

symbols and composition rules but do not address their 

fine-grain internal structure. At the other end (neural nets), 

low-level dynamical models study the self-organization of 

neural activity but their emergent objects (attractor cell 

assemblies or blobs) still lack structural complexity and 

compositionality
33
. Waves and other complex spatiotempo-

ral patterns could provide the missing link bridging the gap 

between these two levels. Furthermore, our hypothesis is 

that this mesoscopic level corresponds to the central con-

ceptual level postulated by cognitive linguistics. 

B. Future Work 

Among the multiple directions that this preliminary 

work is hinting at, we can mention: (i) extending to real-

world images; (ii) mapping the protosemantic features to 

real linguistic elements and, thereby, learning cross-

cultural differences (e.g., the English ‘on’ vs. the German 

‘auf’ and ‘an’); (iii) modeling verbal scenarios, in which 

the singularities created by fast wave activity evolve them-

selves on a slower timescale (Fig. 1e), drawing from stud-

ies about the perception of causality in schematic movies
34
. 
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