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2. COHERENCE INDUCTION
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→→→→ the stimulation creates transient coherence

Pattern matching by spatiotemporal resonance

� by stimulating L via weak coupling, K engages (but does not create) one of L’s modes

� each subnetwork alone is characterized by a mix of endogenous modes of activity
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Below spikes: subthreshold potentials

� by stimulating L via weak coupling, the spikes of K pull the phases of L together

� in this model, typical L modes are phase distributions; typical K modes are spike trains
L K

→→→→ the stimulation increases the global amplitude

membrane

potentials

Lock Key

KeyLock

Locksmithing analogy

� Key’s notches raise Lock’s discs just enough to release them

� Lock contains a set of discs at varying heights; Key contains a series of notches

→→→→ the key opens the tumbler lock

membrane

potential

phases

� just as rate coding does not include temporal information from the spikes, temporal 

coding does not include current/voltage information from the membrane potential

� neurons receive a great amount of background activity
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But spikes are only the tip of the iceberg

� from remote cortical areas (through apical 

contacts): low-pass signals

� from neighboring columns and cortical areas 

(basal contacts): high-pass signals

� this activity is irregular but somewhat rhythmic

� it has a critical influence on the responsiveness, 

i.e., firing sensitivity of the neurons

→ analog binding, instead of spike synchrony
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1. BACKGROUND
New paradigm: interplay between active subnetworks

1. temporal coding is a major aspect of neural activity

� in vivo recordings show precise and reproducible temporal order in neural signals

� neurons engaged in a perceptual or associative task exhibit quick onsets of 

transitory correlations among firing patterns

2. neocortical regions are characterized by pervasive feedback connectivity

� the “feed-forward” view, where lower areas activate higher areas, is inadequate

+

= 3. paradigm shift in cortical dynamics: interacting modes of “ongoing activity”

� the flow of information is better described by “coherence induction”, “interference” or 

“resonance” between already active areas or subnetworks

� AI: symbols, syntax →→→→ production rules

� logical systems define high-level symbols that can be composed in a generative way

� they are lacking a “microstructure” needed to explain the fuzzy complexity of 

perception, categorization, motor control, learning

� neural networks: neurons, links →→→→ activation rules

� in neurally inspired dynamical systems, network nodes are activated by association

� they are lacking a “macrostructure” needed to explain the systematic compositionality 

of language, reasoning, cognition

→ need for a “mesolevel” of description, populated with complex dynamic assemblies

Mesocircuits: the missing link between neural nets and AI
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3. IN PHASE SPACE
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� network L contains n neuronal membrane potentials {Vi(t)}i = 1...n that fluctuate quasi-

periodically, representing simplified in vivo subthreshold recordings

� in a simple case, each Vi is described by one phase ϕi and the shifts {ϕi − ϕ1}i = 2...n
are an attractor mode of L: after stimulation, L consistently relaxes back to this mode 

� L’s response (order parameter) is the amplitude of interference sum VL(t) = ∑i Vi(t)
� when L is relaxed, phases are scattered and ∆VL is near 0

� when L is perturbed, phases can be pulled together and ∆VL increases

Detailed phase model

� network K produces a spike train with variable firing rate f(t), equivalent to the sum of 

multiple contributions from fixed-rate spiking units with variable phases {ψk(t)}

� if spike k ∈ K stimulates cell i ∈ L shortly after (before) Vi reaches its peak, Vi will 

peak slightly later (earlier) and ϕi will decrease (increase); thus, ϕi is pulled toward ψk

� ∆ϕi is modeled as a decreasing function of ϕi − ψk, e.g., ∆ϕi ~ cos(ϕi − ψk), since a 

cell is less likely to be brought to fire by PSPs, the further it lies below threshold

→ in total, L’s response depends on the match between the spectral composition of the 

Vi’s and the temporal structure of K

VL(t) = ∑i Vi(t)

= ∑i (V0 + Vmsin(2π ft + ϕi))

VK(t) = δ (sin(2π f(t).t))

= ∑k δ (sin(2π ft + ψk(t)))

Numerical results

� observations:

i. uniqueness of transient response of a specific 

phase distribution L to a specific incoming spike 

pattern K, despite identical mean rates

ii. reproducibility of this unique response

iii.sensitivity to variations in either pattern, K or L

� thus, evidence for distinct key-lock engagement, 

provided sufficient diversity of lock combinations

→ promising approach to future models of real-time 

pattern recognition and stimulus-response learning
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4. IN SPIKING NETWORKS

� network L contains n integrate-&-fire neurons {Vi(t)}i = 1...n that receive input from 3

background source groups S through different combinations of synaptic weights

� the background groups are bursting at same frequency f, with 120° and 240° shifts; the 

3 weights received by each neuron i from the S groups randomly share a constant value

� therefore, L’s membrane potentials fluctuate quasi-periodically with various phases {ϕi}
determined by the 3n weights, and L’s preferred mode are phase shifts {ϕi − ϕ1}i = 2...n

� L’s response is defined here as the Fourier power E of interference sum ∑i Vi(t)

Simplified potential and spiking model
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� we tried different types of spike trains for network K:

(A) a repeated 200-ms pattern of 4 spikes every 1/f period

(B) a repeated pattern every 8/7f period

(C) a repeated pattern every 1/f period on average, with random phase shifts

L6, KA1, E=.050

L7, KA1, E=.038

L1, KA1, E=.086L4, KA2, E=.120

L4, KB2, E=.088

L4, KC2, E=.178

Numerical experiments on the NeoCortical Simulator
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� for each stimulus K there is a best-matching subnetwork L; then, L’s activation can be 

reinforced by winner-take-all competition and represent an output behavior (see 5)

5. ROBOTIC APPLICATION

� a Sony AIBO dog is connected by WiFi to a laptop, serving as the “brainstem” to negotiate 

signals to and from the dog, and to and from the supercomputer Beowulf cluster running the 

NCS brain software for actual learning and decision-making based on coherence induction

NeoCortical Simulator (NCS) at UNR

200-CPU cluster, 2TB memory

biologically realistic brain model pre-, postprocessing and relay sensing and acting

AIBO robot“brainstem” laptop

motor signalsbehavioral decision

sensory informationhigh-level input

Hybrid neuromorphic/AI, socially interactive robotic system


