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In vivo recordings suggest precise and reproducible temporal order in neural signals that underlie behavior. In par-

ticular, neurons engaged in a perceptual or associative task seem to exhibit quick onsets of transitory correlations 

among firing patterns. Moreover, documentation of pervasive feedback connectivity suggests an alternative para-

digm to the traditional feed-forward model, in which lower areas activate higher areas. Thus, interest is turning to 

the synchronous interplay of active subnetworks, which we will refer to as coherence induction. Here, local groups 

of neurons possess spontaneous modes of “ongoing activity” [1] that are influenced by stimuli in various ways. 

These preferred transient modes may be overt patterns of spikes or covert fluctuations of subthreshold potentials. In 

this context, stimulus-behavior association tasks can be reformulated as processes of selection among several tran-

sients. The stimulation of a subnetwork L (as in “lock”) by another subnetwork K (as in “key”) engages—but does 

not create—one of L’s intrinsic modes. Learning (e.g., by STDP) then becomes a question of reinforcing successful 

matches rather than creating new matches. Our model of coherence induction contains N neuronal membrane poten-

tials {Vi(t)}i=1...N that fluctuate quasi-periodically, representing simplified in vivo subthreshold recordings (Fig. a). 

Through recurrent connections, the potentials are pulled into relative coherence at a characteristic frequency f and 

each neuron is described by a phase ϕi. The set of phase shifts {ϕi − ϕ1}i=2...N is an attractor mode of L: when an ex-

ternal stimulus is applied and removed, L consistently relaxes back to this mode. (Several factors could support this 

slow dynamic attractor, including apical dendritic background activity [2], transmission delays, and inhibitory path-

ways.) We define the order parameter as the interference sum VL(t) = ∑i Vi(t) and look at its patterning and peak 

magnitudes when perturbing the neurons with specific spiking signals (Fig. b). We propose that the amplitude ∆VL 

may represent the real propensity of a subnetwork to respond instantaneously as a population code to external per-

turbation. When L is relaxed, ∆VL is near 0 due to mutual cancellation among scattered phases. When L is perturbed, 

phases are pulled toward each other and form transient, history-dependent coherent clusters, increasing ∆VL in an 

irregular pattern. The main point is that network L’s response will depend on the relative match between the tempo-

ral structure of the input stimulus K and the spectral composition and instantaneous phase distribution of Vi. Let this 

input be a spike train VK(t) = ∑j δ[sin(2πft + ψj(t))], where δ is a spike at 0. The core influence of K on L is then the 
following: if cell j sends a spike shortly after (before) Vi reaches its peak, then Vi peaks slightly later (earlier) and ϕi 

decreases (increases). Thus, j always attracts ϕi towards its own phase ψj. We model the displacement ∆ϕi as a de-

creasing function of ϕi − ψj (e.g., a cosine). This mirrors the physiological nonlinearity that a cell is less likely to be 

brought to fire by incoming post-synaptic potentials the further it lies below firing threshold. Viewed on the phase 

circle, L is a pattern of scattered dots {ϕi}i=1...N. The net effect of one spike j on this circle is a sudden jerk of all the 

dots, to varying degrees, towards j’s phase ψj (Fig. c). One repeated spike with constant ψj eventually coalesces the 

dots and raises the response amplitude. Two spikes with opposite phases interfere to form two opposite clumps of 

dots and perpetuate the cancellation. More spikes elicit more complex responses. When the stimulus is removed, the 

dots relax toward their original phase distribution constrained by the ongoing activity. Fig. c presents snapshots of 

L’s phases: before stimulation, at different spike times (stars), and after stimulation. Our numerical experiments 

show (i) the remarkable uniqueness of the transient response of a specific phase distribution L to a specific incoming 

spike pattern K, despite identical mean rates, (ii) the reproducibility of this unique response, and (iii) its sensitivity to 

variations in either pattern, K or L. Thus, there is evidence for distinct “key and lock” engagement, provided a suffi-

cient diversity of lock combinations (analogous to the complexity of the tumbler of a safe). These preliminary ob-

servations based on phase-space dynamics offer a promising approach to future models of real-time pattern recogni-

tion and stimulus-response learning based on spiking neural networks, and may also explain, in part, rhythmic com-

ponents of EEG recordings. [1] Kenet et al., Nature 425, 2003. [2] Destexhe & Paré, Neurocomputing 32-33, 2000. 
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