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Abstract – My aim is to contribute to a new research focus on the theoretical modeling of the “shapes” of multiscale 
spatiotemporal phenomena in large neural populations. I wish to emphasize the “complex systems” view of the brain 
as a recurrent network chiefly occupied with its own intrinsic, emergent activity (sometimes also called “ongoing 
activity”, although this term is more evocative of a background nuisance than a core function). Traditionally, neural 
models have followed a rather naive paradigm of input/output signal processing, in which the system is considered 
passive and essentially stimulus-driven. We should now encourage a recent trend of computational neuroscience to 
move away from this linear reduction, in order to explore a dynamical paradigm of active self-organization. In this 
paradigm, stimuli only trigger or distort preexisting internal states, which have been molded and imprinted in 
synaptic connections during development and Hebbian-like learning. At one or several appropriate mesoscopic 
levels, the neocortex could be construed as a “pattern formation machine”, generating specific dynamical regimes 
made of myriads of bioelectrical neuronal signals – not unlike many other biological collective phenomena such as 
bird flocking, ant colonies or, closer to neurons, multicellular development. Dynamical “neuron flocking”, for its 
part, happens in phase space and across a complex network topology: What are the emergent mesoscopic objects of 
its dynamics? Can we characterize their fine spatiotemporal structure through experimental data and/or theoretical 
models? How are they are endogenously produced by the neuronal substrate – and exogenously evoked and 
perturbed by perceptual stimuli? How do they interact (bind and compose, breakup and compete) with each other 
and with motor action? I will present a few of my studies that have started to address these important questions of 
dynamical neural assembly and shape formation. 

http://doursat.free.fr/




MORPHOGENETIC “NEURON-FLOCKING” 

physical space view: 
mega-MEA raster plot = 
activity of 106-108 neurons 

phase space view: 
complex spatiotemporal pattern = 
mental shape 

    emergence? 
(dynamic)     structure?        (long-term) persistence? learning? storage? compositionality? 
    properties? 



MORPHOGENETIC “NEURON-FLOCKING” 

Waves, Chains, Phase Shapes 

Compositionality Emergent Neurodynamics 

Complex Systems 
Levels 

Temporal Code, Patterns, 
Morphology 



1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

 From agents to collectives, via local interactions 
o From neurons to brain (anatomy) 
o From potentials to fMRI (physiology) 
o From connections to cognition (models) 

MORPHOGENETIC “NEURON-FLOCKING” 



 Emergence on multiple levels of self-organization 
1. The Tower of Complex Systems 

complex systems: 
a) a large number of elementary agents 

interacting locally 
b) simple individual behaviors creating a 

complex emergent collective behavior 
c) decentralized dynamics: no master 

blueprint or grand architect 



 From genotype to phenotype, via development 
1. The Tower of Complex Systems 

× × →  →  



1. The Tower of Complex Systems 

ctivator 

nhibitor 

 From pigment cells to coat patterns, via reaction-diffusion 



 From social insects to swarm intelligence, via stigmergy 
1. The Tower of Complex Systems 



 From birds to flocks, via flocking 
1. The Tower of Complex Systems 

separation          alignment          cohesion 



1. The Tower of Complex Systems 

the brain organisms ant trails 

termite 
mounds 

animal 
flocks 

cities, 
populations 

social networks markets, 
economy 

Internet, 
Web 

physical 
patterns 

living cell 

biological 
patterns 

?? 

animals 

humans 
& tech 

molecules 

cells 

 All agent types: molecules, cells, animals, humans & tech 



1. The Tower of Complex Systems 
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Ramón y 
Cajal  1900 

 From neurons to brain, via neural development (anatomy) 



. 

. 
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1. The Tower of Complex Systems 
 From potentials to fMRI, via synaptic transmission 

(physiology) 

 
. 
. 
. Animation of a functional MRI 

study (J. Ellermann, J. 
Strupp, K. Ugurbil, U 
Minnesota) 

Dynamics of orientation tuning: 
polar movie 
Sharon and Grinvald, Science 
2002 

Raster plot of of a simulated 
synfire braid, 
Doursat et al. 2011 



. 

. 

. 

1. The Tower of Complex Systems 
 From connections to cognition, via correlations 

(modeling) 

 
. 
. 
. 

McCulloch & Pitts 
Hodgkin & Huxley 

integrate & fire 
oscillatory, Izhikevich 

Hebb 
STDP 
LTP/LTD 

“John gives 
  a book to Mary” 

“Mary is the owner 
  of the book” ⇒ 

ex: Freeman (1994) 

dynamics (stability, chaos, 
regimes, bifurcations) 

ex: Amari (1975) 

bumps, blobs 

BlueColumn 

Markram (2006) 

       morphodynamics 

Petitot, Doursat  (1997, 2005) 

Vogels & Abbott (2006)       

IR/regular A/sync activity 

EXC INH polychronous groups 

Izhikevich (2006) 

synfire chains 

Abeles, Bienenstock, 
Diesmann (1982, 1995, 1999) 

after Bienenstock 
(1995, 1996) 



2. The Mind as a Pattern 
Formation Machine  
Neural correlations: The glue of 
spatiotemporal patterns (STPs) 

2. The Mind as a Pattern 
Formation Machine  
Neural correlations: The glue of 
spatiotemporal patterns (STPs) 
 The importance of temporal coding 
 Pattern formation 
 “Neuron flocking” 
 Morphogenesis 

1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

MORPHOGENETIC “NEURON-FLOCKING” 



low activity rate 

low activity rate 

low activity rate 

high activity rate 

high activity rate 

high activity rate 

ra
te
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in
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 zero-delays: synchrony 
 (1 and 2 more in sync than 1 and 3) 

temporal coding 

 nonzero delays: rhythms 
 (4, 5 and 6 correlated through delays) 

after von der 
Malsburg (1981) 

and Abeles (1982)  

2. A Pattern Formation Machine 

 The importance of temporal coding 
 more than mean rates → temporal correlations among spikes 



– Adrian (1926): the firing rate of mechanoreceptor neurons in frog leg 
is proportional to the stretch applied 

– Hubel & Wiesel (1959): selective response of visual cells; e.g., the 
firing rate is a function of edge orientation 

→ rate coding is confirmed in sensory system and primary cortical areas, 
however increasingly considered insufficient for integrating the information 

 Historical motivation for rate coding 

– von der Malsburg (1981): theoretical proposal to consider correlations 
– Abeles (1982, 1991): precise, reproducible spatiotemporal spike 

rhythms, named “synfire chains” 
– Gray & Singer (1989): stimulus-dependent synchronization of 

oscillations in monkey visual cortex 
– O’Keefe & Recce (1993): phase coding in rat hippocampus supporting 

spatial location information 
– Bialek & Rieke (1996, 1997): in H1 neuron of fly, spike timing conveys 

information about time-dependent input 

 Temporal coding pioneers of the 1980-90’s 

2. A Pattern Formation Machine 



feature cells 

= 

= stimulus 
or concept 

 The “binding problem”: using temporal code 
 how to represent relationships? 

= 

= 

2. A Pattern Formation Machine 



+ = big 

green 

round 

soft 

blue 

angular 

small 

 More generallly: feature binding in cell assemblies 
 unstructured lists or “sets” of features lead to the “superposition 

catastrophe” 

2. A Pattern Formation Machine 

red 



... ... ... ... 

→ one way to solve the 
confusion: introduce 

overarching hypercomplex 
detector cells 

  “Grandmother”  “Jennifer Aniston” cells... really? 

2. A Pattern Formation Machine 

... ... 

+ = 
“big-green-leather-armchair” cell 

“blue-orange-red-3-book-stack” cell 



... ... ... ... 

. . . however, this soon leads to 
a combinatorial explosion 

  “Grandmother”  “Jennifer Aniston” cells... really? 

2. A Pattern Formation Machine 



+ = 

 Instead: relational representation → graph format 
 a better way to solve the confusion: represent relational 

information with graphs 

2. A Pattern Formation Machine 



feature cells 

= 

= 

= 

= stimulus 
or concept 

after von der Malsburg (1981, 1987)  

 Idea: relational information can be encoded temporally 
 back to the binding problem: a solution using temporal coding 

= 

= 

grandmother cells 

2. A Pattern Formation Machine 
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 Beyond small graphs → large “spatiotemporal patterns” 

 these regimes of activity are supported by specific, ordered 
patterns of recurrent synaptic connectivity 

 toward a “mesoscopic neurodynamics”:  
construing the brain as a (spatio-
temporal) pattern formation machine 

 STPs: large-scale, localized dynamic cell assemblies that display 
complex, reproducible digital-analog regimes of neuronal activity 

2. A Pattern Formation Machine 

electrodes 

STP 
(network view) 

STP1 

STP2 

STP3 

STP 
(raster view) 
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 Biological development is about pattern formation 
 multicellular patterning 

 

 ... the brain is no different 
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2. A Pattern Formation Machine 
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“The stripes are easy, it’s the horse part that troubles me” 
—attributed to A. Turing, after his 1952 paper on the chemical basis of morphogenesis 

2. A Morphogenetic Machine 

 ... but beyond pattern formation: complex morphogenesis 
 organisms are not just random, repetitive patterns but mostly 

complex, composite shapes endowed with a specific structure 



2. A Morphogenetic Machine 

 ... but beyond pattern formation: complex morphogenesis 
 STPs are not just random, repetitive patterns but mostly     

complex, composite shapes endowed with a specific structure 



 ... yet, even human-caused 
systems are "natural" in the 
sense of their unplanned, 
spontaneous emergence 

the brain organisms ant trails 

termite 
mounds 

animal 
flocks 

physical 
patterns 

living cell 

biological 
patterns 

 biology strikingly demonstrates 
the possibility of combining 
pure self-organization and 
elaborate architecture, i.e.: 
 a non-trivial, sophisticated morphology 

 hierarchical (multi-scale): regions, parts, details 
 modular: reuse of parts, quasi-repetition 
 heterogeneous: differentiation, division of labor 

 random at agent level, reproducible at system level 

2. Architecture Without Architects 

 "Simple"/random vs. architectured complex systems 



 Ex: Morphogenesis – Biological development 
 cells build 

sophisticated 
organisms by 
division, genetic 
differentiation and 
biomechanical self-
assembly 

www.infovisual.info 

architecture 

Termite mound 
(J. McLaughlin, Penn State University) 

http://cas.bellarmine.edu/tietjen/ 
TermiteMound%20CS.gif 

Termite stigmergy 
(after Paul Grassé; from Solé and Goodwin, 

"Signs of Life", Perseus Books) 

 termite colonies 
build sophisticated 
mounds by 
"stigmergy" = loop 
between modifying 
the environment 
and reacting 
differently to these 
modifications 

 Ex: Swarm intelligence – Termite mounds 
architecture 

2. Architecture Without Architects 

Nadine Peyriéras, Paul Bourgine et al. 
(Embryomics & BioEmergences) 



grad1 

div1 

patt1 

div2 

grad2 

patt2 
div3 

grad3 

 Alternation of self- 
 positioning (div) 
 and self- 
 identifying 
 (grad/patt) 

genotype 

An Artificial Life agent model capturing the essence of morphogenesis 

each agent 
follows the same set 
of self-architecting rules (the "genotype") 
but reacts differently depending on its neighbors Doursat (2009) 

18th GECCO, Montreal 

patt3 

... 

2. Morphogenetic Engineering 



... and changing the agents’ self-architecting behavior through evolution 

by tinkering with the genotype, new architectures (phenotypes) can be obtained Doursat (2009) 
18th GECCO, Montreal 

2. Morphogenetic Engineering 



... and changing the neurons’ self-flocking behavior through learning? 

Doursat (2009) 
18th GECCO, Montreal 

2. Morphogenetic Engineering 

A metaphor for a “mental shape zoo”? 
Neural morphogenesis extends beyond 
slow, 3-D physical development into 
fast, n-D spatio-temporal assemblies. 
 
After cells have positioned themselves 
and established contacts, they 
continue “moving” and “assembling / 
disassembling” in virtual, phase space. 

cells in 2D/3D 
spikes in nD 



3. Example Model: Wave-
Based Shape-Matching 
Coding coordinates by phases, 

and shapes by waves 

2. The Mind as a Pattern 
Formation Machine  
Neural correlations: The glue of 
spatiotemporal patterns (STPs) 

1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

MORPHOGENETIC “NEURON-FLOCKING” 

3. Example Model: Wave-
Based Shape-Matching 
Coding coordinates by phases, 

and shapes by waves 
Lattices: group sync, waves, 2D shapes  ■ 

Synfire chains: wave storage, retrieval  ■ 

Synfire braids: shape storage, matching  ■ 



3. Wave-Based Shape-Matching 
 Wave-based pattern retrieval and matching 
 Lattices of coupled oscillators (zero delays) 
 group synchronization 
 traveling waves 
 2D wave shapes 
 shape metric deformation 

τ = 0 

 Synfire chains (uniform delays) 
 wave propagation 
 chain growth 
 pattern storage and retrieval 

τ = 5 

 Synfire braids (transitive delays) 
 shape storage and retrieval 
 2D wave-matching 

τ = 10 

τ = 15 
τ = 5 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – group sync, phase-tagging 
 the base of many perceptual segmentation models in the 1990’s 

 auditory: von der Malsburg & Schneider (1986), “cocktail party” processor 
 visual, after Gray & Singer (1989): Kurrer & Schulten (1990), König & Schillen 

(1991), DL Wang & Terman (1995), Campbell & DL Wang (1996), etc. 
o oscillatory or excitable units as an abstraction of excit↔inhib columnar activity 
o 2D lattice coupling as an abstraction of topographically organized visual cortex 

 

Wang D.L. and Terman D. (1997): Image segmentation based on oscillatory correlation. Neural Computation, vol. 9, 805-836 
(w/ relaxation oscillators similar to FitzHugh-Nagumo/Morris-Lecar + global inhibition) 



z = −0.36 z = −0.3 

(a) (b) 
−1.7 

2 

0 
1 

3. Wave-Based Shape-Matching 
 Stochastic excitable units 
 ex: Bonhoeffer-van der Pol (BvP) 

oscillator’s two main regimes: 
a) sparse, stochastic → excitable 

 
b) quasi-periodic → oscillatory 

a = 0.7 
b = 0.8 
c = 3 

zc = −0.3465 

z > zc 

z < zc 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators 
 i ← j coupling features 
 isotropic 
 proportional to the u signal difference 

o only in spiking domain u < 0 
 positive connection weight kij 

 possible transmission delay τij 
o here zero delays τij = 0 

+ Ii 

kij ,τij 

i j 
kij ,τij 

input 
term coupling 

term 



 Lattice of coupled oscillators – group sync, phase-tagging 
3. Wave-Based Shape-Matching – Lattice 

Wang D.L. and Terman D. (1997): Image segmentation based 
on oscillatory correlation. Neural Computation, vol. 9, 805-836 (illustration by Doursat & Sanchez 2011) 

z = −0.336 
k = 0.10 
I = −2.34 



instead of phase plateaus . . . 

x 

ϕ 
π 

-π 

x 

ϕ 
π 

-π 
Wang D.L. and Terman D. (1997): Image segmentation based on 
oscillatory correlation. Neural Computation, vol. 9, 805-836 

Doursat,, R. & Petitot, J. (2005) Dynamical systems and cognitive linguistics: 
Toward an active morphodynamical semantics. Neural Networks 18: 628-638.  

3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – traveling waves 

. . . phase gradients 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – traveling waves 
 Random propagation 

 z = −0.346, k = 0.04, I = 0 

 Circular wave generation 
 z = −0.29, k = 0.10, I = −0.44  (point stimulus     ) 

 Planar & mixed wave generation 
 z = −0.29, k = 0.10, I = −0.44  (bar stimulus          )   



3. Wave-Based Shape-Matching – Lattice 
 The “morphodynamic pond”: a neural medium at criticality 
 upon coupling onset and/or stimulation → emergence of a wave 
 quick transition to ordered regime (STP): reproducible succession of spike events (t1,t2,...) 

coupling onset + stimulus → STP 

(a) → (b) 
u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

u9 

u10 

{... t2(u4) ... t9(u9) ...} = STP 

 the structure of the STP is a trade-off between 
 endogenous factors: connectivity (structural bias), attractors (preferred activation modes) 
 exogenous factors: stimulus (perturbation), binding (composition with other STPs) 

HERE 



virtual phase 
space 

STPx 

x coordinates 

3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – 2D wave shapes 
 coding coordinates with phases 

STP
y 

y coordinates
 

 the salient “feature-
detecting” units of an 
object can participate 
in 2 different STPs by 
propagation of 2 
different waves 

 similar to buoys 
floating on water 
 
 
 

 these 2 STPs  form a 
2D constellation or 
“shape” in virtual 
phase space (timings) 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – 2D wave shapes 
 coding coordinates with phases 

 the salient “feature-
detecting” units of an 
object can participate 
in 2 different STPs by 
propagation of 2 
different waves 

 similar to buoys 
floating on water 
 
 
 

 these 2 STPs  form a 
2D constellation or 
“shape” in virtual 
phase space (timings) 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – 2D wave shapes 
 the final shape in virtual phase space depends on 
 the physical position of the feature units on the lattice 
 the form and direction of the two waves, itself depending on: 

o endogenous factors: connectivity and weight distribution 
o exogenous factors: stimulus domains 

 ex: no deformation 
 planar & orthogonal waves 

o uniform weights on PX and PY 
o orthogonal full-bar stimuli 

→ shape = physical positions 

uniform weight 
distribution: 

k = 0.09 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – shape metric deformation 
 wave detection and velocity measure based on control units 
 the probability of wave generation increases with z     and k 
 the velocity of the generated wave increases with z     and k 

T 

~ 1/T 



3. Wave-Based Shape-Matching – Lattice 

gradient weight 
landscape: 

k ∈ [0.09, 0.20] 

 Lattice of coupled oscillators – shape metric deformation 
 ex: “shear stress” deformation 
 vertical wave + horizontal wave 

o Y-gradient of weights on PY 

o orthogonal full-bar stimuli 
 

 
 
 
 

 ex: “laminar flow” deformation 
 laminar wave + vertical wave 

o Y-gradient of weights on PX 

o orthogonal full-bar stimuli 



3. Wave-Based Shape-Matching – Lattice 
 Lattice of coupled oscillators – shape metric deformation 
 ex: irregular deformation 
 heterogeneous waves 

o random weight distribution 
(bumps & dips) on PX and PY 

o orthogonal full-bar stimuli 

 various weight combinations 



3. Wave-Based Shape-Matching 
 Wave-based pattern retrieval and matching 
 Lattices of coupled oscillators (zero delays) 
 group synchronization 
 traveling waves 
 2D wave shapes 
 shape metric deformation 

τ = 0 

 Synfire chains (uniform delays) 
 wave propagation 
 chain growth 
 pattern storage and retrieval 

 Synfire braids (transitive delays) 
 shape storage and retrieval 
 2D wave-matching 

τ = 10 

τ = 15 
τ = 5 

τ = 5 



 a synfire chain (Abeles 1982) is a sequence of synchronous neuron 
groups P0 → P1 → P2 ... linked by feedfoward connections that can 
support the propagation of waves of activity (action potentials) 

 the redundant divergent/convergent connectivity of synfire chains can 
preserve accurately synchronized action potentials, even under noise 

3. Wave-Based Shape-Matching – Chains 
 Synfire chains – definition 

 synfire chains have been hypothesized to explain neurophysiological 
recordings containing statistically significant delayed correlations 

P0(t) 

P3(t) 

P2(t) 



3. Wave-Based Shape-Matching – Chains 
 Synfire chains – typical example studies 
 1-chain propagation viability 

 Diesmann, Gewaltig & Aertsen (1999) Stable propagation 
of synchronous spiking in cortical neural networks 
 

 1-chain self-organized growth 
 Doursat & Bienenstock (1991, 2006) Neocortical self-

structuration as a basis for learning 
 

 2-chain binding (→ see Section 4.) 
 Abeles, Hayon & Lehmann (2004) Modeling Compo-

sitionality by Dynamic Binding of Synfire Chains 
 

 N-chain storage capacity 
 Bienenstock (1995) A model of neocortex 
 Trengove (2007) Storage capacity of a superposition of 

synfire chains using conductance-based I&F neurons 

mental shape 
stability 

mental shape 
learning 

mental shape 
composition 

mental shape 
memory 

synfire chains potential fill all the requirements for a mesoscopic world of mental shapes 



spatially 
rearranged 

view 

network 
structuration 
by accretive 
synfire growth 

t = 200 t = 4000 

. 

. 

. 

. 

∑ ∆Wij ~ 0 
∆Wij ~ xi xj 

1. Hebbian rule 

2. sum rule 

3. Wave-Based Shape-Matching – Chains 
 Synfire chains – self-organized growth  

Doursat, R. (1991), Doursat & Bienenstock, E. (2006) Neocortical self-structuration as a basis for learning. 5th International Conference 
on Development and Learning (ICDL 2006), May 31-June 3, 2006, Indiana University, Bloomington, IN. IU, ISBN 0-9786456-0-X. 



 a special group of n0 synchronous cells, P0, is repeatedly (not necessarily 
periodically) activated and recruits neurons “downstream” 

if j fires once after 
P0, its weights 

increase and give 
it a 12% chance 
of doing so again 
(vs. 1.8% for the 

others) 

if j fires a 2nd time 
after P0, j has 
now 50% chance 
of doing so a 3rd 
time; else it stays 
at 12% while 
another cell, j' 
reaches 12% 

OR 

the  number of 
post-P0 cells (cells 
with larger weights 
from P0) increases 
and forms the next 

group P1  

once it reaches a 
critical mass, P1 
also starts 
recruiting and 
forming a new 
group P2, etc. 

3. Wave-Based Shape-Matching – Chains 
 Synfire chains – self-organized growth  

. . . 

ac
tiv

ity
 

time 



 random renumbering and uniform rewiring (column→column probability p) 

3. Wave-Based Shape-Matching – Chains 
 Synfire chains – pattern mix and selective retrieval 

1 

2 

3 

4 

5 

6 

7 

8 

10 

11 

9 

12 

13 

14 

15 

16 

2 

11 

7 

6 

13 

15 

1 

16 

9 

14 

5 

4 

10 

3 

12 

8 

1 

2 

3 

4 

5 

6 

7 

8 

10 

11 

9 

12 

13 

14 

15 

16 

+ = 
layout A w/ weights A layout B w/ weights B layout A w/ mixed weights A + weights B 

layout A 
NA = 13 

layout B 
NB = 13 

p = 0.5 
z = −0.28 
k = 0.016 

mixed 
weights 

layout A 
NA = 8 

→ no wave 

 high specificity of synfire stimulus 
 unlike the “sensitive” isotropic lattice, 

not any input pattern will trigger a wave 
 a synfire chain needs a “critical seed” of 

N stimulated neurons at the right place 

 endo: connectivity, attractors 
 exo: stimulus, binding 

HERE 



3. Wave-Based Shape-Matching – Chains 
 Synfire chains – pattern mix and selective retrieval 
 statistics of selective retrieval depending on input size (in first pool)  

2-grid mix 

3-grid mix 



3. Wave-Based Shape-Matching 
 Wave-based pattern retrieval and matching 
 Lattices of coupled oscillators (zero delays) 
 group synchronization 
 traveling waves 
 2D wave shapes 
 shape metric deformation 

τ = 0 

 Synfire chains (uniform delays) 
 wave propagation 
 chain growth 
 pattern storage and retrieval 

 Synfire braids (transitive delays) 
 shape storage and retrieval 
 2D wave-matching 

τ = 10 

τ = 15 
τ = 5 

τ = 5 



 synfire braids (Bienenstock 1991, 1995) are generalized STPs with longer 
delays among nonconsecutive neurons, without distinct synchronous groups 

 they were rediscovered later as “polychronous groups” (Izhikevich 2006) 

 in a synfire braid, delay transitivity τAB + τBC = τAD + τDC  supports 
incoming spike coincidences, hence stable propagation of activity 

 synfire braids can also grow in a network with nonuniform integer-valued 
delays τij and inhibitory neurons inhibitory 

activity (background) excitatory 
activity (chain) 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – definition  

Izhikevich 2006 

A 
C 

D 

B 
Doursat & Bienenstock 1991 

Doursat & Bienenstock 1991 



3. Wave-Based Shape-Matching – Braids 
 Synfire braids – pattern mix and selective retrieval 
 same layout, same shape, different wiring (wrap-around) 

+ = 
τ = 10 

τ = 15 
τ = 5 

NA = 11 
in ‘A’ sequence 

NB = 11 
in ‘B’ sequence 

z = −0.28 
k = 0.016 

 high stimulus specificity 
 to generate a wave, a 

synfire braid needs a 
minimum of N neurons 
stimulated in a sequence 
(“sub-STP”) compatible 
with the delays 

N = 11 
simultaneously → no wave 

mixed 
weights 

mixed weights A + weights B weights A weights B 



3. Wave-Based Shape-Matching – Braids 
 Synfire braids – pattern mix and selective retrieval 
 statistics of selective retrieval depending on input size (in sequence) 

 statistics of selective retrieval depending on input size and p or τ 



NA = 11 
in ‘A’ sequence 

NB = 11 
in ‘B’ sequence 

z = −0.28 
k = 0.016 

 high stimulus specificity 
 to generate a wave, a 

synfire braid needs a 
minimum of N neurons 
stimulated in a sequence 
(“sub-STP”) compatible 
with the delays 

mixed 
shapes 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – shape mix and selective retrieval 
 same layout, different shape 

+ = 
shape A + shape B 

τ = 10 

τ = 15 
τ = 5 

shape A w/ weights A 

. . . . . . 
. . . . . . 

. . . . . . 

. . . . . . 
. . . . . . 

. . . . . . . . . . . . 

. . . . . . 

N = 11 
simultaneously → no wave 

shape B w/ weights B 



graph 1 

STP 1x 

S
TP

 1
y 

S
TP

 2
y 

STP 2x 

graph 2 

 graph-matching implemented 
as dynamical link matching 
between two pairs of STPs 

+ Wi 

graph-1 nodes i' 

graph-2 nodes i 

link matrix wii' 

Wi = ∑ wii' (ui' − ui) 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – wave-matching 



 additional coupling term: 

with 

and 

 where wii' varies according to 
1. Hebbian-type synaptic plasticity based on temporal correlations 

wii'  →  wii' / ∑j wji' 

2. competition: renormalize efferent links 

 

3. label-matching constraint 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – wave-matching 

STP 1x STP 2x 



 Hebbian rule in 2D: 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – 2D wave-matching 



 if match is weak, this will perturb STP 2 and undo matching links 
 if match is strong, this will not perturb STP 2 because it will be 

sustained by matching links → resonance between links and STPs 

weak (mis)match → undone by uncoupling 

S(t) 

C(t) 

strong match → resistant to uncoupling 

S(t) 

C(t) 

3. Wave-Based Shape-Matching – Braids 
 Synfire braids – 2D wave-matching 
 to drive the system to the best match (global minimum), internal 

coupling k in graph-2 layer is regularly lowered and increased again 

global “correlation” order parameter S: global “synchronicity” order parameter C: 



3. Example Model: Wave-
Based Shape-Matching 
Coding coordinates by phases, 

and shapes by waves 

2. The Mind as a Pattern 
Formation Machine  
Neural correlations: The glue of 
spatiotemporal patterns (STPs) 

4. Shape-Based 
Compositionality 
STPs: The building blocks of 
mental shapes 

1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

MORPHOGENETIC “NEURON-FLOCKING” 
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(b)  Mary gives a book to John. 
(c)* Book John Mary give. 

book 

Mary 

give 

John 

car 

lamp 

Rex 
talk 

see 

book 

Mary 

give 

John 

(a)  John gives a book to Mary. 

4. Shape-Based Compositionality 
 From temporal binding to shape-based composition 



Subj 

Recip 

Obj 
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(b)  Mary gives a book to John. 
(c)* Book John Mary give. 

book 

Mary 

give 

John 

car 

lamp 

Rex 
talk 

see 

book 

Mary 

give 

John 

(a)  John gives a book to Mary. 

4. Shape-Based Compositionality 

after Shastri & Ajjanagadde (1993)  

 From temporal binding to shape-based composition 
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book 

John 

Mary 

  give 
Subj Obj 

Recip 

4. Shape-Based Compositionality 

car 

lamp 

Rex 
talk 

see 

 From temporal binding to shape-based composition 

 language as a construction game of “building blocks” 



car 

lamp 

Rex 
talk 

see 
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book 

John 

Mary 

  give 
S O 

R   give 
S O 

R 
book 

John 

Mary 

4. Shape-Based Compositionality 
 From temporal binding to shape-based composition 

 language as a construction game of “building blocks” 
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  give 
S O 

R 
book 

John 

Mary 

 From temporal binding to shape-based composition 
4. Shape-Based Compositionality 

 language as a construction game of “building blocks” 



  give 
G O 

R 

book 

John 

Mary 

  give 
G O 

R 

ball 

book John 
Mary   give 

G O 

R 

 language, perception, 
cognition are a game of 
building blocks 
 

 mental representations 
are internally structured 
 

 elementary components 
assemble dynamically 
via temporal binding 

after Shastri & Ajjanagadde (1993)  after Bienenstock (1995) 

 From temporal binding to shape-based composition 
4. Shape-Based Compositionality 
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 cognitive compositions could be analogous to 
conformational interactions among proteins... 

 two synfires can 
bind by synchro-
nization through 
coupling links 

after Bienenstock (1995) and Doursat (1991) 

he
m

og
lo

bi
n 

 in which the basic “peptidic” 
elements could be synfire 
chain or braid structures 
supporting traveling waves 

 Ex: synfire patterns can bind, i.e. support compositionality 

→ molecular 
metaphor 

4. Shape-Based Compositionality 
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cortical 
structu- 
ration by 
“crystal- 
lization” 

 Sync & coalescence in a “self-woven tapestry” of chains 
 multiple chains can “crystallize” from intrinsic “inhomogeneities” in 

the form of “seed” groups of synchronized neurons 

 concurrent chain development defines a mesoscopic scale of 
neural organization, at a finer granularity than macroscopic AI 
symbols but higher complexity than microscopic neural potentials 

see Bienenstock (1995), Abeles, Hayon & Lehmann (2004), Trengrove (2005) 

compo- 
sition 
by synfire 
wave 
binding 

 on this substrate, the dynamical binding & coalescence of multiple 
synfire waves provides the basis for compositionality and learning 

4. Shape-Based Compositionality 



3. Example Model: Wave-
Based Shape-Matching 
Coding coordinates by phases, 

and shapes by waves 

2. The Mind as a Pattern 
Formation Machine  
Neural correlations: The glue of 
spatiotemporal patterns (STPs) 

4. Shape-Based 
Compositionality 
STPs: The building blocks of 
mental shapes 

5. Toward Emergent 
Neurodynamics 

Leaving "signal processing" 
for dynamic self-assembly  

1. Cognitive Architectures in the 
Tower of Complex Systems 

The emergence of neural/mind states on 
multiple levels of self-organization 

MORPHOGENETIC “NEURON-FLOCKING” 



 The naive engineering paradigm: “signal processing” 
 feed-forward structure − activity literally “moves” from one corner to 

another, from the input (problem) to the output (solution) 

 activation paradigm − neural layers are initially silent and are literally 
“activated” by potentials transmitted from external stimuli 

 coarse-grain scale − a few units in a few layers are already capable of 
performing complex “functions”  

relays, thalamus, 
primary areas 

primary motor 
cortex  

sensory 
neurons 

motor 
neurons 

5. Toward Emergent Neurodynamics 



It is not because the brain is an intricate network of 
microscopic causal transmissions (neurons 

activating or inhibiting other neurons) that the 
appropriate description at the mesoscopic functional 

level should be “signal / information processing”. 

This denotes a confusion of levels: mesoscopic 
dynamics is emergent, i.e., it creates mesoscopic 
objects that obey mesoscopic laws of interaction 

and assembly, qualitatively different from 
microscopic signal transmission  

5. Toward Emergent Neurodynamics 



 The emergent dynamical paradigm: excitable media 
 recurrent structure − activity can “flow” everywhere on a fast time scale, 

continuously forming new patterns; output is in the patterns 

 perturbation paradigm − dynamical assemblies are already active and 
only “influenced” by external stimuli and by each other 

motor 
neurons 

 fine-grain scale − myriads of neurons form quasi-continuous media 
supporting structured pattern formation at multiple scales 

sensory 
neurons 

5. Toward Emergent Neurodynamics 



 Tenet 1: mesoscopic neural pattern formation is of a fine 
spatiotemporal nature 

a) endogenously produced by the neuronal substrate, 

b) exogenously evoked & perturbed under the influence of 
stimuli, 

c) interactively binding to each other in competitive or 
cooperative ways. 

 Tenet 2: mesoscopic STPs are individuated entities that 
are 

5. Toward Emergent Neurodynamics 



a) Mesoscopic patterns are endogenously produced 

→ the identity, specificity or stimulus-selectiveness of a mesoscopic 
entity is largely determined by its internal pattern of connections 

fin
e m

es
os

co
pi

c 
ne
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od
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am
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 given a certain connectivity pattern, cell assemblies exhibit various 
possible dynamical regimes, modes, patterns of ongoing activity 

 the underlying connectivity is itself the product of epigenetic 
development and Hebbian learning, from activity 

5. Toward Emergent Neurodynamics 
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 external stimuli (via other patterns) may evoke & influence the 
pre-existing dynamical patterns of a mesoscopic assembly 

b) Mesoscopic patterns are exogenously influenced 

 it is an indirect, perturbation mechanism; not a direct, activation 
mechanism 

 mesoscopic entities may have stimulus-specific recognition or 
“representation” abilities, without being “templates” or 
“attractors” (no resemblance to stimulus) 

5. Toward Emergent Neurodynamics 
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c) Mesoscopic patterns interact with each other 

 and/or they can bind to each other to create composed objects, 
via some form of temporal coherency (sync, fast plasticity, etc.) 

molecular compositionality 
paradigm 

evolutionary population 
paradigm 

 populations of mesoscopic entities can compete & differentiate 
from each other to create specialized recognition units 

5. Toward Emergent Neurodynamics 



ACKNOWLEDGMENTS 

Philip H. Goodman 
(1954-2010) 
Brain Computation Lab, 
University of Nevada, Reno 

Paul Bourgine 
CREA / ISC-PIF 
Ecole Polytechnique, Paris 

Yves Frégnac 
UNIC, CNRS Gif-sur-Yvette 

Francisco 
Vico, GEB, 

U. de Málaga 

Christoph von 
der Malsburg 
FIAS, Goethe- 
Universität, Frankfurt 

Jean Petitot 
CREA, Ecole Polytechnique 

– CNRS – EHESS, Paris 

Elie Bienenstock 
Applied Math & Neuroscience 
Brown University, Providence 

Carlos 
Sánchez 
lattice simulations 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81

