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Morphogenetic “neuron flocking™:
The dynamic self-organization of neural activity into mental shapes

René Doursat

Research Group in Biomimetics (GEB), Universidad de Malaga (UMA), Spain
Complex Systems Institute, Paris (ISC-PIF), CREA, CNRS and Ecole Polytechnique, France

Abstract — My aim is to contribute to a new research focus on the theoretical modeling of the “shapes” of multiscale
spatiotemporal phenomena in large neural populations. | wish to emphasize the “complex systems” view of the brain
as a recurrent network chiefly occupied with its own intrinsic, emergent activity (sometimes also called “ongoing
activity”, although this term is more evocative of a background nuisance than a core function). Traditionally, neural
models have followed a rather naive paradigm of input/output signal processing, in which the system is considered
passive and essentially stimulus-driven. We should now encourage a recent trend of computational neuroscience to
move away from this linear reduction, in order to explore a dynamical paradigm of active self-organization. In this
paradigm, stimuli only trigger or distort preexisting internal states, which have been molded and imprinted in
synaptic connections during development and Hebbian-like learning. At one or several appropriate mesoscopic
levels, the neocortex could be construed as a “pattern formation machine”, generating specific dynamical regimes
made of myriads of bioelectrical neuronal signals — not unlike many other biological collective phenomena such as
bird flocking, ant colonies or, closer to neurons, multicellular development. Dynamical “neuron flocking”, for its
part, happens in phase space and across a complex network topology: What are the emergent mesoscopic objects of
its dynamics? Can we characterize their fine spatiotemporal structure through experimental data and/or theoretical
models? How are they are endogenously produced by the neuronal substrate — and exogenously evoked and
perturbed by perceptual stimuli? How do they interact (bind and compose, breakup and compete) with each other
and with motor action? | will present a few of my studies that have started to address these important questions of
dynamical neural assembly and shape formation.


http://doursat.free.fr/
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phase space view:
complex spatiotemporal pattern =
mental shape

emergence?
(dynamic) | structure? (long-term) persistence? learning? storage? compositionality?
properties? \

physical space view:
mega-MEA raster plot =
activity of 106-108 neurons
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4 N . )
1. Cognitive Architectures in the
Tower of Complex Systems

The emergence of neural/mind states on
multiple levels of self-organization
= From agents to collectives, via local interactions
o0 From neurons to brain (anatomy)
o From potentials to fMRI (physiology)
o From connections to cognition (models)

- J




Lie 1. The Tower of Complex Systems

» Emergence on multiple levels of self-organization

— complex systems:

a) alarge number of elementary agents
Interacting locally

b) simple individual behaviors creating a
complex emergent collective behavior

c) decentralized dynamics: no master
blueprint or grand architect




19C 1. The Tower of Complex Systems

PARIS TLE < FRANCE

» From genotype to phenotype, via development
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LiYe 1. The Tower of Complex Systems
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W birds to flocks, via flocking

separation alignment cohesion

L I N




PARIS TLE/ « FRANCE

LiYe 1. The Tower of Complex Systems

» All agent types: molecules, cells, animals, humans & tech

ant trails

termite
mounds

biological
patterns

~animals

258 physical
i patterns

Internet,

Web markets,
economy

social networks
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1S 1. The Tower of Complex Systems
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Animation of a functional MRI
study (J. Ellermann, J
Strupp, K. Ugurbil, U
Minnesota)

Dynamics of orientation tuning:
polar movie

Sharon and Grinvald, Science
2002

Raster plot of of a simulated
synfire braid
Doursat et al. 2011




LiYe 1. The Tower of Complex Systems

PRRIS ILE * FRANCE

» From connections to cognition, via correlations
(modeling) e e o

a book to Mary”, = of the book”

after Bienenstock A
(1995, 1996) {
. / -7 \
; : B
d

N dynamics (stability, chaos,
; reg|mes,-b|mrcatr0ns)

T Markrarﬁ_(§606) Abeles Blenenstock - .
\ Diesmann (1982, 1995, 1999) ST
polychronous groups_

morphodynamics

Hodgkin & Huxley | b
integrate & fire D
* oscillatory, Izhikevich
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(2. The Mind as a Pattern

Formation Machine

Neural correlations: The glue of
spatiotemporal patterns (STPS)
= The importance of temporal coding
= Pattern formation
= “Neuron flocking”

( Morphogenesis j




1SC 2. A Pattern Formation Machine

PRARIS ILE « FRANCE

» The importance of temporal coding
v more than mean rates — temporal correlations among spikes
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» Historical motivation for rate coding

— Adrian (1926): the firing rate of mechanoreceptor neurons in frog leg
IS proportional to the stretch applied

— Hubel & Wiesel (1959): selective response of visual cells; e.g., the
firing rate is a function of edge orientation

— rate coding is confirmed in sensory system and primary cortical areas,
however increasingly considered insufficient for integrating the information

» Temporal coding pioneers of the 1980-90’s

— von der Malshurg (1981): theoretical proposal to consider correlations

— Abeles (1982, 1991): precise, reproducible spatiotemporal spike
rhythms, named “synfire chains”

— Gray & Singer (1989): stimulus-dependent synchronization of
oscillations in monkey visual cortex

— O'Keefe & Recce (1993): phase coding in rat hippocampus supporting
spatial location information

— Bialek & Rieke (1996, 1997): in H1 neuron of fly, spike timing conveys
information about time-dependent input
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2. A Pattern Formation Machine

» The “binding problem”: using temporal code
v how to represent relationships?

stimulus
or concept
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» More generallly: feature binding in cell assemblies
v"unstructured lists or “sets” of features lead to the “superposition

catastrophe”
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> “Grahdmether” “Jennifer Aniston” cells... really?

O 3 = ?/" O 9 O 3

“big-green-leather-armchair” cell E

“blue-orange-red-3-book-stack” cell

—f— —
-

N — one way to solve the

+ confusion: introduce
/ overarching hypercomplex
/ detector cells

I

2 —




1SC 2. A Pattern Formation Machine

> “Grahdmether” “Jennifer Aniston” cells... really?

i .
o / Vs

$ O O O O O 0O O O O O O O 3

... however, this soon leads to
a combinatorial explosion
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PRARIS ILE « FRANCE

» Instead: relational representation — graph format

v" a better way to solve the confusion: represent relational
Information with graphs
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2. A Pattern Formation Machine

» |dea: relational information can be encoded temporally
v" back to the binding problem: a solution using temporal coding

stimulus
or concept
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after von der Malsburg (1981, 1987)




e 2. A Pattern Formation Machine

» Beyond small graphs — large “spatiotemporal patterns”

v STPs: large-scale, localized dynamic cell assemblies that display
complex, reproducible digital-analog regimes of neuronal activity

o Y these regimes of activity are supported by specific, ordered
el il patterns of recurrent synaptic connectivity
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v toward a “mesoscopic neurodynamics™-- (L e
construing the brain as a (spatio- Sip 4
temporal) pattern formation machine
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» Biological development is about pattern formation
v' ... the brain is no different

ocular dominance
stripes Hubel & Wiesel, 1970

Scott Camazine, http://www.scottcamazine.com

orientation column
“pinwheels” Blasdel, 1992
Sharon and Grinvald, Science 2002

Dynamics of orientation tuning: polar movie
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> .

. but beyond pattern formation: complex morphogenesis

v/ organisms are not just random, repetitive patterns but mostly
complex, composite shapes endowed With a specific structure

coeslre BN
R S i @ it
e vw%ﬁg M#Iiﬁﬁﬂw i
| '||r* a "J-,L__'g "- i , { o
”"‘L L‘% i Wmﬂ & I’T'u %Eﬂll |fk1*"l1“-'e~’|

“The stripes are easy, it's the horse part that troubles me”
—attributed to A. Turing, after his 1952 paper on the chemical basis of morphogenesis
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LiYe 2. A Morphogenetic Machine
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» ... but beyond pattern formation: complex morphogenesis

v STPs are not just random, repetitive patterns but mostly
complex, composite shapes endowed with a specific structure




1SC 2, Architecture Without Architects

architectured

organisms

termite &
mounds §

» Dbiology strikingly demonstrates
the possibility of combining
pure self-organization and
elaborate architecture, i.e.:

iving cell

v’ anon-trivial, sophisticated morphology

= hierarchical (multi-scale): regions, parts, details
= modular: reuse of parts, quasi-repetition
= heterogeneous: differentiation, division of labor

v random at agent level, reproducible at system level
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PRARIS ILE* FRANCE

» EX: Morphogenesis - Blologlcal development

» cells build
sophisticated
organisms by
division, genetic
differentiation and

79 ¥ biomechanical self-

L e ———. T 1)

www.infovisual.info (Embryomics & BioEmergences)

architecture

» Ex: Swarm intelligence — Termite mounds

termite colonies
build sophisticated
mounds by
"stigmergy" = loop
between modifying
the environment
and reacting
differently to these
modifications

Termite stigmergy
(after Paul Grassé; from Solé and Goodwin,

Termite mound http://cas.bellarmine.eduftietjen/ "Signs of Life", Perseus Books)

(J. McLaughlin, Penn State University) TermiteMound%20CS.gif



1ie 2. Morphogenetic Engineering
An Artificial Life agent model capturing the essence of morphogenesis

» Alternation of self-
positioning (div)
and self-
Identifying
(grad/patt)

grad,

genotype ; = J T
G 151Gl 42 O @ O W00
(;‘A tipy (}&4 tip ..... p =15 ....... J |
G dise 5 =5 7" $e 00, N
div, 'fif?';
each agent .9 ot
follows the same set '“*{};:f
of self-architecting rules (the "genotype") ﬁ
but reacts differently depending on its neighbors divs s



Lixfa 2. Morphogenetic Engineering
... and changing the agents’ self-architecting behavior through evpll.xilon

3 H
‘gesetss

seatey
¥52352% 4-limb

s. .
}

| 5
by tinkering with the genotype, new architectures (phenotypes) can be obtaineﬁ‘“ﬁw (




1SC

PRARIS ILE* FRANCE

A metaphor for a “mental shape zoo”?
Neural morphogenesis extends beyond
slow, 3-D physical development into
fast, n-D spatio-temporal assemblies.

After cells have positioned themselves
and established contacts, they
continue “moving” and “assembling /
disassembling” in virtual, phase space.

2. Morphogenetic Engineering
... and changing the neurons’ self-flocking behavior through Iear%%jn

s

i

spikes innD
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4 )
3. Example Model: Wave-

Based Shape-Matching

Coding coordinates by phases,
and shapes by waves

Lattices: group sync, waves, 2D shapes =
Synfire chains: wave storage, retrieval =
Synfire braids: shape storage, matching =




LiYe 3. Wave-Based Shape-Matching

» Wave-based pattern retrieval and matching

v' Lattices of coupled oscillators (zero delays)

= group synchronization

= traveling waves

= 2D wave shapes

= shape metric deformation

=0
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Ie 3. Wave-Based Shape-Matching — Lattice

FRANCE

» Lattice of coupled oscillators — group sync, phase-tagging

v"the base of many perceptual segmentation models in the 1990’s

= auditory: von der Malsburg & Schneider (1986), “cocktail party” processor

= visual, after Gray & Singer (1989): Kurrer & Schulten (1990), Kénig & Schillen
(1991), DL Wang & Terman (1995), Campbell & DL Wang (1996), etc.

o0 oscillatory or excitable units as an abstraction of excit<>inhib columnar activity
o 2D lattice coupling as an abstractlon of topographically organized visual cortex

A B C
| i . ' .
'..E E.Z,: Pattern H
(EEY TT | g B Y L
NN ] A Pt T HIR L—‘
R e TR F
I RSy ET I BN T RN ]
Pattern I
D E F

N 141 U M N 04 SN
IO 1 SRR S 28 Right O I " Il Il || J '1
o | .
- o . 0 :
: : :
: 1 Inhibitor
1 I I O O O

Time

illll.i’l.i’l.‘i

(w/ relaxation oscillators similar to FitzHugh-Nagumo/Morris-Lecar + global inhibition)

Wang D.L. and Terman D. (1997): Image segmentation based on oscillatory correlation. Neural Computation, vol. 9, 805-836
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LiYe 3. Wave-Based Shape-Matching
» Stochastic excitable units | ., 2
s c(u; — T + v+ 2) 47

v"ex: Bonhoeffer-van der Pol (BVP)1
oscillator’'s two main regimes: | @

2>z, @) sparse, stochastic — excitable -

! Y 1
L (@ —u; —bv;) +1n

C

z, = —0.3465 | 07
z<z, b) quasi-periodic — oscillatory - | b= g_g
(b)

] 7=-0.36
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e 3. Wave-Based Shape-Matching — Lattice

PRARIS TLE/ « FRANCE

» Lattice of coupled oscillators ( 8
_ _ _ = c(u; — —3’ +vi+2)+n+ K + |
v i« j coupling features \ de 1 5

. . th = —(a—u;—bv;) +7 !

. |sotrop|p | L c T

= proportional to the u signal difference coupling -~ term
o onlyin spiking domain u < 0 term s

= positive connection weight k;; : N

Ki(t) = Z R (105 (t = 7ij) — ()

= possible transmission delay Tij
0 here zero delays z; = 0
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> Lattlce of coupled oscillators — group sync, phase- tagglng

z: -0.336 )‘ ‘ CJ

. k=0.10
(illustration by Doursat & Sanchez 2011) | =-2.34

Wang D.L. and Terman D. (1997): Image segmentation based
on oscillatory correlation. Neural Computation, vol. 9, 805-836
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3. Wave-Based Shape-Matching — Lattice

» Lattice of coupled oscillators - traveling waves

/A

Wang D.L. and Terman D. (1997): Image segmentation based on
oscillatory correlation. Neural Computation, vol. 9, 805-836

XV

.. phase gradients

S

/A

______ \—/

Doursat,, R. & Petitot, J. (2005) Dynamical systems and cognitive linguistics:
Toward an active morphodynamlcal semantics. Neural Networks 18: 628-638.
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» Lattice of coupled oscillators - traveling waves

v Random propagation
= 7=-0.346,k=0.04, 1 =

o

v" Circular wave generation
= 72=-0.29,k=0.10,1 =-0.44 (point stimulus o)

—_— O K

O

v' Planar & mixed wave generation
= 7z2=-0.29,k=0.10, 1 =-0.44 (bar stimulus =)

P> & N

AN
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» The “morphodynamic pond”: a neural medium at criticality

v" upon coupling onset and/or stimulation — emergence of a wave
= quick transition to ordered regime (STP): reproducible succession of spike events (t,t2,...)

v’ the structure of the STP is a trade-off between

<: = endogenous factors: connectivity (structural bias), attractors (preferred activation modes)
= exogenous factors: stimulus (perturbation), binding (composition with other STPs)

ElEEEEEEEEEEEEEEE , :7.' HERE { tz(u4) tg(ug) } = STP
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EEEEE R EEEEEEEEE *
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FEIEE | EEEEEEEEEE i H :
FEEEEBEEEEEREEEEE K :
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M EEEEEEEEEEEEEEE :
FlEIEE R EEEEEEEEE :
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=l EEIE FMEEEREEEE : :
coupling onset + stimulus — STP \_/
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» Lattice of coupled oscillators — 2D wave shapes

v"coding coordinates with phases m
: T Yug
= the salient “feature- . - _
detecting” units of an 1 N W "'”‘;";‘)'aﬁ';ase
object can participate gusEs = 2 e
in2different STPs by Gaagaaiiams. = B
propagation of 2 anEnnnssEsS v

different waves Vi

= similar to buoys
floating on water

s b=t + 7y X coordinates
. = - = \@ STP,
= these 2 STPs forma =E:°
Do :

phase space (timings)
ta=ty +T2
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» Lattice of coupled oscillators — 2D wave shapes
v"coding coordinates with phases

= the salient “feature- time: (50.00)
detecting” units of an ‘
object can participate AN \ -
in 2 different STPs by SN AN
propagation of 2
different waves
= similar to buoys = | A
floating on water T\ | B
o 5 100 150 200 0 50 100 150 200
= these 2 STPs forma — e
2D constellation or - —
“shape” in virtual i T
phase space (timings) = —— —

0 50 100 150 200 0 50 100 150 200
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e 3, Wave-Based Shape-Matching — Lattice

» Lattice of coupled oscillators

v" the final shape in virtual phase space depends on
= the physical position of the feature units on the lattice

= the form and direction of the two waves, itself depending on:

o0 endogenous factors: connectivity and weight distribution
O exogenous factors: stimulus domains

v'ex: no deformation

= planar & orthogonal waves
o uniform weights on Py and Py

Px

o orthogonal full-bar stimuli
— shape = physical positions it Briace

40
uniform weight
distribution:

k=0.09

20

0 20 40 60
STPx
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¢ 3. Wave-Based Shape-Matching — Lattice

» Lattice of coupled oscillators

v wave detection and velocity measure based on control units

= the probability of wave generation increases with 2\, and k7
= the velocity of the generated wave increases with z ™~ and kK

~ 1T

Waw e velocity

Actividad de neurcnas de control

Coupling strength (k)
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e 3. Wave-Based Shape-Matching - Lattice

» Lattice of coupled oscillators
v’ ex: “shear stress” deformation
= vertical wave + horizontal wave f

O Y-gradient of weights on Py,

o orthogonal full-bar stimuli  Viual Space
025 é‘m
02 W 20
gradient weight ois 10
landscape: . "

0 10 20 30 40 50
STPx

k € [0.09, 0.20]

v ex: “laminar flow” deformation

= |aminar wave + vertical wave s VS
O  Y-gradient of weights on Py E_f .
o orthogonal full-bar stimuli )
10 %

o 10 20 30 40 50
STPx
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e 3. Wave-Based Shape-Matching - Lattice

» Lattice of coupled oscillators

v’ ex: irregular deformation

. heterogeneous waves

o random weight distribution
(bumps & dips) on Py and Py o,

o orthogonal full-bar stimuli o1

v" various weight combinations

A0 ; ; anl-- = i - a0 e : . ; ] 40 (I_'?,.-_:-_:_

£ s
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R e R R :
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Py
b
e
Py
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Boo®
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= ]
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8 |1} LR e :',..-.’. i ; 10 l_‘:E
L ] p

Px P
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w = - : & :
[CTa I Re s aat 1
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» Wave-based pattern retrieval and matching

v" Synfire chains (uniform delays)
= wave propagation
= chain growth
= pattern storage and retrieval




e 3. Wave-Based Shape-Matching — Chains

» Synfire chains — definition

v'asynfire chain (Abeles 1982) is a sequence of synchronous neuron
groups Py — P; — P, ... linked by feedfoward connections that can
support the propagation of waves of activity (action potentials)

+"o +"o
o e o e
L4 . .
Ld . Ld .
L] - L] -
L] - L] -
L - L -
O L - L -
L] L L]
- L -

ORI N
XOREN E Y

‘0

s . oY, T,
P, P, P, P

v"synfire chains have been hypothesized to explain neurophysiological
recordings containing statistically significant delayed correlations

v"the redundant divergent/convergent connectivity of synfire chains can
preserve accurately synchronized action potentials, even under noise
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» Synfire chains - typical example studies
v"1-chain propagation viability

mental shape = Diesmann, Gewaltig & Aertsen (1999) Stable propagation
stability of synchronous spiking in cortical neural networks

=R

b B =B B O PO N

Group

v"1-chain self-organized growth

mental shape ®  Doursat & Bienenstock (1991, 2006) Neocortical self-
learning structuration as a basis for learning

v' 2-chain binding (- see Section 4.)

mental shape ®  Abeles, Hayon & Lehmann (2004) Modeling Compo-
composition sitionality by Dynamic Binding of Synfire Chains

-

oW oo

v"N-chain storage capacity

mental shape ®  Bienenstock (1995) A model of neocortex

memory = Trengove (2007) Storage capacity of a superposition of
4 synfire chains using conductance-based I&F neurons

% @

synfire chains potential fill all the requirements for a mesoscopic world of mental shapeg
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e 3. Wave-Based Shape-Matching — Chains

» Synfire chains — self-organized growth
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Doursat, R. (1991), Doursat & Bienenstock, E. (2006) Neocortical self-structuration as a basis for learning. 5th International Conference
on Development and Learning (ICDL 2006), May 31-June 3, 2006, Indiana University, Bloomington, IN. IU, ISBN 0-9786456-0-X.
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Lie

3. Wave-Based Shape-Matching — Chains

» Synfire chains - self-organized growth

v'aspecial group of ng synchronous cells, Py, is repeatedly (not necessarily

periodically) activated and recruits neurons “downstream”

P |
(@) I P od +i
if j fires once after o o o ; Izj;fjtglrrleé? a‘iaglme
Po, its weights o~ © I o)
: : ~n.. O o now 50% chance
increase and give Ol @ O | o o0 3
ita 12% chance o T o 1 time; e?se it stays
of doing so again o 09 4 : ; - Stay
(vs. 1.8% for the o I at 12% while
o °© © : another cell, j'
others) I .
PN . reaches 12%
Py 1 Py Py | Fy P Py
o o 1 o o I A o
! o | (o) :
the number of o ©O i o, O , o © once it reaches a
. o I o I o o critical mass, P,
post-P,, cells (cells o o Q o o o
with larger weights o I o..,g:::‘. I o ‘e also s_t_arts ]
from Pg) increases o ° | ° B ! o o I.° ;ecrt{ltmg an
and forms the next ° ! o S0 o ormln% anew
group P, o . o o © ! o o ® groupP,etc.
| |
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3. Wave-Based Shape-Matching — Chains

» Synfire chains — pattern mix and selective retrieval

layout B w/ weights B

v" random renumbering and uniform rewiring (column—scolumn probability p)

g

layout A w/ mixed weights A + weights B

layout A . 2B VIR .
N =13 Ngl _‘,-"‘“' NgL& "n"f ’~ -
A 107 el NG T
H“\\_“ ____,.d"'--— 10 H “"‘-.,thf___.o-""-' 10
¥ 00 X m|Xed ¥ 00 X

weights »

layout B .
Ng =13 I

. v high specificity of synfire stimulus

unlike the “sensitive” isotropic lattice,
not any input pattern will trigger a wave

a synfire chain needs a “critical seed” of
N stimulated neurons at the right place

10 '. '5:_":‘_,'.',#"1";!- p=05 1'3"H‘"‘--,H e 1u_’- -
y 00 x 7=-028 Y 00 c:
k =0.016 -

endozconnectivity, attractors > Here
exo: stimulus, binding

-
|ay0UtA Ngl - ar Ngl o >
N,=8 AN, - - >
— Nno wave RSt N0
y 00 v 070y
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» Synfire chains — pattern mix and selective retrieval
v' statistics of selective retrieval depending on input size (in first pool)

G A Gnd B

] R EERREEEEEE e E-- e A AEREEEEEE

| 2:grid mix

#uve

_____________

GidB
P TS S B
3 ________________________
R e
4 A
D FSNRS S AN S
. o—
5 10 15 5 10 15
Size Input Size
id C
1“ __________________ i _____________
] S S i _____________
é [ P S E _____________
# 4 __________________ : _____________
P RS SO b
o f
5 10 15




LiYe 3. Wave-Based Shape-Matching

» Wave-based pattern retrieval and matching

v" Synfire braids (transitive delays)

» shape storage and retrieval
= 2D wave-matching
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» Synfire braids — definition
v’ synfire braids (Bienenstock 1991, 1995) are generalized STPs with longer
delays among nonconsecutive neurons, without distinct synchronous groups
v’ they were rediscovered later as “polychronous groups” (Izhikevich 2006)

Doursat & Bienenstock 1991

|zhikevich 2006

v"ina synfire braid, delay transitivity zag + 7gc = 7ap + Tpc SUPPOIS
Incoming spike coincidences, hence stable propagation of activity

v" synfire braids can also grow in a network with nonuniform integer-valued
delays z; and inhibitory neurons inhibitory

excitatory | —~ V4 activity| (background)
activity (chain)

||||||||||||||||||||

T e T T T T T T T T rrYryrrfFrfr frrryrry T T T rrrerrrl e T

Doursat & Bienenstock 1991
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» Synfire braids — pattern mix and selective retrieval
v same layout, same shape, different wiring (wrap-around),

_ _ ‘\ / /' ‘\ D
v T= "15 PN
1 1
1 1 1

¥ I é
: S SR>
Q-E»
weights A weights B mixed weights A + weights B

synfire braid needs a
minimum of N neurons

—72=-0.28

.
-
H'\.
.\-\"\.
-
-
.
-
-
-
H'\.

k=10.016

| i ‘dl"* v high stimulus specificity
& weights
. | S = {0 generate a wave, a

No=11 ™

TN =1 stimulated in a sequence
in“A' sequence R S In'B'sequence  («sh-STP”) compatible
* with the delays
L 4

. P ;
.-"“'HH 74 {} _.....--""
N=11 S\
simultaneously — no wave M=
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» Synfire braids — pattern mix and selective retrieval
v’ statistics of selectlve retrleval dependlng on mput size (|n sequence)

#waven
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» Synfire braids — shape mix and selective retrieva
v’ same layout, different shape

- . T:‘/IS —\I' : \ :/f'\\l :,f‘\\l :,f'\\l :,z
' © O ©o o o o0 o o
O o _0 o o ©
o — o o e o
‘o) o 0o 0 o
sﬁépe Aw/\\—/\’/eights A sH;pe B w/\\—/\’/eights B shabé A+ shé_ﬁe B
. mixed v’ high stimulus specificity

* shapes ’

= {0 generate a wave, a
o synfire braid needs a

minimum of N neurons

k=0.016 . .
Na=11 Ng =11 stimulated in a sequence
in‘A’ sequence in'B'sequence  («sh-STP") compatible
- with the delays

N=11
simultaneously — no wave
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» Synfire braids — wave-matching

v' graph-matching implemented R e
. ) . dt g 1 ¢ 1 ~ :“- -.,3“
as dynamical link matching \ de Lo W
between two pairs of STPs T e bu)An s s
Wi =2 Wi (Ui — i)
graph 1 graph-1nodes i y graph 2
.-.'. % Q L&) ]
o S . o
s . °® . L .. ;J e » - o
o
By o o -:'- S &7 ° =
o - o @ b @
U) ' ki . l. u ClT) ® o ™~
IR 1_1 e o
HE-
|
4O {2 0 L OO

link matrix Wij
STP 1x STP 2x
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» Synfire braids — wave-matching
N
v" additional coupling term:  W*"(t) = }° -u,:w(t)(-u..g:(t)—-u..ff(t))

J=1
u;}(t)<0

v’ where w;; varies according to

1. Hebbian-type synaptic plasticity based on temporal correlations
Aw;;(t) = (_1--( — w (t) + wo f (sf}r(O))) with
sH(0) = (uf () up () g, and  f(s) = (14en Xm0t

2. competition: renormalize efferent links
Wi = Wiit/ 25 Wi

3. label-matching constraint

-0 2 L - Loy L8 ()

STP 1x STP 2x



IiYe 3. Wave-Based Shape-Matching — Braids

» Synfire braids — 2D wave-matching

v' Hebbian rule in 2D:  Awii(t) = o — wir(t) + wy f(\/.sggﬁ(O).sg;y

))

P -J‘.i__-_\'f- v

SR
LYo ST
R

S37(0) = (WS @) wp () iy, f(s) = (1 e Xm0t
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» Synfire braids — 2D wave-matching

v"to drive the system to the best match (global minimum), internal
coupling k in graph-2 layer is regularly lowered and increased again
= if match is weak, this will perturb STP 2 and undo matching links

= if match is strong, this will not perturb STP 2 because it will be
sustained by matching links — resonance between links and STPs

global “correlation” order parameter S: global “synchronicity” order parameter C:

1 / / t 1 2'71_
S(t) = > (ui(t) uy(t — 75 , C(t) = 08 | ——(ti(t) — t;(t) — Ti;
5(1) N(N = 1) Z (w; (1) uy(t sz)>t—Ts (7) N(N = 1) ;CO“’ ( T (t:(t) — 1;(¢) TJ))

EM
MW

weak (mis)match — undone by uncoupling strong match — resistant to uncoupling
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3. Example Model: Wave-
Based Shape-Matching

Coding coordinates by phases,
and shapes by waves

(4. Shape-Based -

Compositionality

STPs: The building blocks of
mental shapes

\_

J
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» From temporal binding to shape-based composition

(a) John gives a book to Mary.

(b) Mary gives a book to John. W
(c)* Book John Mary give.

65
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» From temporal binding to shape-based composition

obj |_| I_l
recip H ﬂ ﬂ
giver J—] |_| H
John J_| |_| l_l
Mary |_| |_| |_|

Book H [—l

Ball

after Shastri & Ajjanagadde (1993) d

(a) John gives a book to Mary.
{b)}Mary-gives-a-book-to-John-
{ey= Book-Jdobn-Mary-give:

66
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» From temporal binding to shape-based composition

v"language as a construction game of “building blocks”

67



Lie 4, Shape-Based Compositionality

» From temporal binding to shape-based composition

v"language as a construction game of “building blocks”
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Lie 4, Shape-Based Compositionality

» From temporal binding to shape-based composition

v"language as a construction game of “building blocks”

69



Lie 4, Shape-Based Compositionality

» From temporal binding to shape-based composition

obj
recip
— giver
~ John
Mary
N Book

Ball

obj
recip
giver

John

Book
Ball

after Bienenstock (1995)

L -
70 language, perception,
ﬂ 1 H cognition are a game of
7 1§ building blocks
T n_n
_ v/ mental representations

1non are internally structured

v" elementary components
N assemble dynamically
via temporal binding

[1 1 L

after Shastri & Ajjanagadde (1993)
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» EX: synfire patterns can bind, I.e. support compositionality

v'cognitive compositions could be analogous to
conformational interactions among proteins...

e v" in which the basic “peptidic”

AN S elements could be synfire
".'"’; . .
A""’E?%)'&i chain or braid structures
%ﬂh’ﬁ}‘f I~.  Supporting traveling waves
O '%"!‘ .
ALY };;" v’ two synfires can
L IPK :
DN\ o/ % ) hindby synchro-
S e e o \ nization through

coupling links

— molecular
metaphor
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— 4, Shape-Based Cornposii

» Sync & coalescence In a “self-woven tapestry” of chains

v multiple chains can “crystallize” from intrinsic “inhomogeneities” in
the form of “seed” groups of synchronlzed neurons

——————————————————————————

;0 o Mo o o \\ ;0 o o o \\
1 © %00 (% o ) 1 © 9 o ° o 4
: . o + o °© 60 O . : . o o o -
l o o o fo) o) ( o O | Cortlca | o \ | Compo
I 6 600 2°%°% 0 : structu- ! o o ° o ' sition
I o ° o o . ° o o ; :
10 000 % | ration by ° 5 e | by synfire
o500 o ® o I ‘tystak oS © ° I wave ‘
: ° ° oo o © ! lization” ! binding
I

I I

,____
(o]
(o]
(o] (o]
(o]
o o
0o (o]
o (o]
(o]
(o]
‘
~

—————————————

see Bienenstock (1995), Abeles, Hayon & Lehmann (2004), Trengrove (2005)

v"concurrent chain development defines a mesoscopic scale of
neural organization, at a finer granularity than macroscopic Al
symbols but higher complexity than microscopic neural potentials

—————————————

v"on this substrate, the dynamical binding & coalescence of multiple
synfire waves provides the basis for compositionality and learning

72



¢  MORPHOGENETIC “NEURON-FLOCKING”

4 )
5. Toward Emergent

Neurodynamics

Leaving "signal processing"
for dynamic self-assembly

J

U
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LiYe 5. Toward Emergent Neurodynamics

» The naive engineering paradigm: “signal processing”

v’ feed-forward structure — activity literally “moves” from one corner to
another, from the input (problem) to the output (solution)

v'activation paradigm — neural layers are initially silent and are literally
“activated” by potentials transmitted from external stimuli

v’ coarse-grain scale —a few units in a few layers are already capable of
performing complex “functions”

P e e e e e e e e B B R i

~
-

P e B Gl ] — — —

\.7_7--.” o
» sensory ‘

l :
i{/ﬁ’( (\% neurons ‘ O

ﬁ( 7/\1{—5,!’!1;&#\ Rl \

= .’—-’_ <=

J ) e S, ) .
relays, thalamus, -~ primary motor

\ Pprimary areas cortex 7
/

o o o e e e e o e e o e M M M e M e e e e




LiYe 5. Toward Emergent Neurodynamics

It Is not because the brain Is an intricate network of
microscopic causal transmissions (neurons
activating or inhibiting other neurons) that the
appropriate description at the mesoscopic functional
level should be “signal / information processing”.

This denotes a confusion of levels: mesoscopic
dynamics Is emergent, I.e., It creates mesoscopic
objects that obey mesoscopic laws of interaction

and assembly, qualitatively different from
microscopic signal transmission
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» The emergent dynamical paradigm: excitable media

v’ recurrent structure — activity can “flow” everywhere on a fast time scale,
continuously forming new patterns; output is in the patterns

v' perturbation paradigm — dynamical assemblies are already active and
only “influenced” by external stimuli and by each other

v" fine-grain scale — myriads of neurons form quasi-continuous media
supporting structured pattern formation at multiple scales

sensory
neurons
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» Tenet 1. mesoscopic neural pattern formation is of a fine
spatiotemporal nature

» Tenet 2: mesoscopic STPs are individuated entities that
are

a) endogenously produced by the neuronal substrate,

b) exogenously evoked & perturbed under the influence of
stimull,

c) Interactively binding to each other in competitive or
cooperative ways.
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PRRIS ILE ~ FRANCE

a) Mesoscopic patterns are endogenously produced

v'given a certain connectivity pattern, cell assemblies exhibit various
possible dynamical regimes, modes, patterns of ongoing activity

v" the underlying connectivity IS itself the product of epigenetic

-

————————————————————————————————————————————————
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— the identity, specificity or stimulus-selectiveness of a mesoscoplc
entity is largely determined by its internal pattern of connections
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Lie 5. Toward Emergent Neurodynamics
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b) Mesoscopic patterns are exogenously influenced

v'external stimuli (via other patterns) may evoke & influence the
pre-existing dynamical patterns of a mesoscopic assembly

v' itis an indirect, perturbation mechanism; not a direct, activation
mechanism

——————————————————————————————————————————————————————————————

neurodynamics

 fine mesoscopic
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v mesoscopic entities may have stimulus-specific recognition or
“representation” abilities, without being “templates” or
“attractors” (no resemblance to stimulus)
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c) Mesoscopic patterns interact with each other

v" populations of mesoscopic entities can compete & differentiate
from each other to create specialized recognition units

v"and/or they can bind to each other to create composed objects,
via some form of temporal coherency (sync, fast plasticity, etc.)

——————————————————————————————————————————————————————————————
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evolutionary population molecular compositionality

paradigm paradigm
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