

# Embryomorphic Engineering:



# From biological development to artificial multi-agent organisms

René Doursat

http://www.iscpif.fr/~doursat









# Systems that are self-organized <u>and</u> architectured



free self-organization

the scientific challenge of complex systems: how can they integrate a true architecture?

the engineering challenge of complicated systems: how can they integrate selforganization?



(evolutionary) design



Peugeot Picasso



decompose the system

self-organized architecture / architectured self-organization



#### Toward programmable self-organization

#### Self-organized (complex) systems

- ✓ a myriad of self-positioning, self-assembling agents
- ✓ collective order is not imposed from outside (only influenced)
- ✓ comes from purely *local* information & interaction around each agent
- ✓ no agent possesses the global map or goal of the system.
- ✓ but every agent may contain all the *rules* that contribute to it

# - AB

#### Architectured systems

- ✓ true intrinsic structure: non-trivial, complicated morphology
  - hierarchical, multi-scale: regions, parts, details, agents
  - modular: reuse, quasi-repetition
  - *heterogeneous*: differentiation & divergence in the repetition
- ✓ random at the microscopic level, but reproducible (quasi deterministic) at the mesoscopic and macroscopic levels





#### **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies



## De facto complexity of engineering (ICT) systems

#### Ineluctable breakup into myriads of modules/components,



in hardware,





software,



number of O/S lines of code/year



or networks, ...



number of network hosts/year



#### Complex systems in many domains





- large number of elementary agents interacting locally
- simple individual behaviors creating a complex emergent collective behavior
- decentralized dynamics: no master blueprint or grand architect
- ✓ physical, biological, technical, social systems (natural or artificial)



pattern formation O = matter



biological development ○ = cell



the brain & cognition ○ = neuron





Internet & Web ○ = host/page



social networks
O = person





## INSTITUT DESSYSTEMESCOMPLEXES Paris Ile-de-France





4<sup>th</sup> French Complex Systems Summer School, 2010



Lyon **Rhône-Alpes** 





























#### Complex systems: a vast archipelago

Precursor and neighboring disciplines

complexity: measuring the length to describe, time to build, or resources to run, a system

- information theory (Shannon; entropy)
- computational complexity (P, NP)
- Turing machines & cellular automata
- → Toward a unified "complex systems" science and engineering?

dynamics: behavior and activity of a system over time

- nonlinear dynamics & chaos
- stochastic processes
- systems dynamics (macro variables)

adaptation: change in typical functional regime of a system

- evolutionary methods
- genetic algorithms
- machine learning

systems sciences: holistic (non-reductionist) view on interacting parts

- systems theory (von Bertalanffy)
- systems engineering (design)
- cybernetics (Wiener; goals & feedback)
- control theory (negative feedback)

multitude, statistics: large-scale properties of systems

- graph theory & networks
- statistical physics
- agent-based modeling
- distributed Al systems



#### From "statistical" to "morphological" CS

Most self-organized systems form "simple"/random patterns

(a) simple/random SO: pattern formation (spots, stripes), swarms (clusters, flocks), complex networks (hubs)...















texture-like order: repetitive, statistically **uniform**, information-poor – arising from amplification of fluctuations: **unpredictable** number/position of mesoscopic entities (spots, groups) – **OR determined** by the environment (trails)

gap to fill





#### ... while "complicated" architectures are designed by humans

(d) direct design (top-down)











more self-organization



### From "statistical" to "morphological" ... to artificial CS



mesoscopic organs and limbs have intrinsic, nonrandom morphologies – development is highly reproducible in number and position of body parts – **heterogeneous** elements arise under information-rich genetic control

(b) natural self-organized architectures







**MESOBIONICS** 

(c) engineered self-organization (bottom-up)









> can we reproduce them in artificial systems?

self-organization



#### From natural CS to designed CS (and back)

The challenges of complex systems (CS) research



#### **Transfers**

among systems



CS science: understanding & modeling "natural" CS

(spontaneously emergent, including human-made):

morphogenesis, neural dynamics, cooperative co-evolution, swarm intelligence

#### **Exports**

- decentralization
- <u>autonomy</u>, homeostasis
- learning, evolution



#### **Imports**

- observe, model
- control, harness
- design, use



CS engineering: designing a new generation of "artificial" CS (harnessed & tamed, including nature):

collective robotics, synthetic biology, energy networks



#### The need for morphogenetic abilities

- ➤ Self-architecturing in natural systems → artificial systems
  - ✓ morphogenetic abilities in biological modeling
    - organism development
    - brain development





- ✓ need for morphogenetic abilities in computer science & Al
  - self-forming robot swarm
  - self-architecturing software
  - self-connecting micro-components
- ✓ need for morphogenetic abilities in techno-social networked systems
  - self-reconfiguring manufacturing plant
  - self-stabilizing energy grid
  - self-deploying emergency taskforce



http://www.symbrion.eu



MAST agents, Rockwell Automation Research Center {pvrba, vmarik}@ra.rockwell.com 12



#### **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies



### From "statistical" to "morphological" CS

#### in social insect constructions



tp://taos-telecommunity.org/epow/ep chive\_2003/EPOW-030811\_files/ma more intrinsic, sophisticated architecture

tttp://picasaweb.google.com/tridentoriginal/Ghana

ant trail



network of ant trails



ant nest



termite mound



### From "statistical" to "morphological" CS

in inert matter / insect constructions / multicellular organisms



physical pattern formation



grains of sand + air



# Morphological (self-dissimilar) systems compositional systems: pattern formation ≠ morphogenesis



"I have the stripes, but where is the zebra?" or "The stripes are easy, it's the horse part that troubles me" —attributed to A. Turing, after his 1952 paper on morphogenesis



#### From "statistical" to "morphological" CS

Physical pattern formation is "free" – Biological (multicellular) pattern formation is "guided"





#### From "statistical" to "morphological" CS

- Multicellular forms = a bit of "free" + a lot of "guided"
  - ✓ domains of free patterning embedded in a guided morphology

unlike Drosophila's stripes, these pattern primitives are <u>not</u> regulated by different sets of genes depending on their position

spots, stripes in skin angelfish, www.sheddaquarium.org





ommatidia in compound eye dragonfly, www.phy.duke.edu/~hsg/54

✓ repeated copies of a guided form, distributed in free patterns

entire structures (flowers, segments) can become modules showing up in random positions and/or numbers

flowers in tree cherry tree, www.phy.duke.edu/~fortney





segments in insect centipede, images.encarta.msn.com

#### **Evo-Devo Engineering**

- ➤ Model embryogenesis → export to engineering
  - ✓ automated **observation** and reconstruction of developing organisms by image processing and learning/optimization methods
  - ✓ mathematical and computational (agent-based) modeling
  - ✓ simulation of recalculated embryos, real and fictitious



FP6 Projects *Embryomics*, *BioEmergences*Submitted ANR Projects *MEC@GEN*, *SYNBIOTIC* 



#### Overview of morphogenesis

#### An abstract computational approach to development



- ✓ as a fundamentally *spatial* phenomenon
- ✓ highlighting its *broad principles* and proposing a *computational* model of these principles

#### Broad principles



- 1. biomechanics  $\rightarrow$  collective motion  $\rightarrow$  "sculpture" of the embryo
- 2. gene regulation  $\rightarrow$  gene expression patterns  $\rightarrow$  "painting" of the embryo
- + coupling between shapes and colors

#### Multi-agent models



- ✓ best positioned to integrate both
- ✓ account for heterogeneity, modularity, hierarchy
- ✓ each agent carries a combined set of biomechanical and regulatory rules



### Embryogenesis couples assembly and patterning

#### ➤ Sculpture → forms

Ádám Szabó, *The chicken or the egg* (2005) http://www.szaboadam.hu









#### "shape from patterning"

✓ the forms are

"sculpted" by the selfassembly of the
elements, whose
behavior is triggered
by the colors

#### ➤ Painting → colors



"patterns from shaping

✓ new color regions

 appear (domains of genetic expression)
 triggered by deformations



### Embryogenesis couples assembly and patterning





#### Embryogenesis couples mechanics and regulation

#### Cellular mechanics

- adhesion
- deformation / reformation
- migration (motility)
- division / death













#### Gene regulatory pattern formation

#### Segmentation & identity domains in Drosophila

 periodic A/P band patterns are controlled by a 5-tier gene regulatory hierarchy



 ✓ intersection with other axes creates organ primordia and imaginal discs (identity domains of future legs, wings, antennae, etc.)



from Carroll, S. B., et al. (2001) From DNA to Diversity, p63



### Embryogenesis couples mechanics and regulation

Cellular mechanics mechanical stress, modification of cell mechano-sensitivity size and shape growth, division, apoptosis differential adhesion Genetic regulation change of cell-to-cell contacts gene regulation change of signals, chemical messengers diffusion gradients ("morphogens")



Nadine Peyriéras, Paul Bourgine, Thierry Savy,

Benoît Lombardot, Emmanuel Faure et al.

#### Embryogenesis couples motion and patterns

#### Collective motion regionalized into patterns







#### Pattern formation that triggers motion







#### **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies



#### Overview of an embryomorphic system































#### Virtual gene atlas

#### Programmed patterning (patt): the hidden embryo map

- a) same swarm in different colormaps to visualize the agents' internal patterning variables X, Y,  $B_i$  and  $I_k$  (virtual *in situ hybridization*)
- b) consolidated view of all identity regions  $I_k$  for k = 1...9
- c) gene regulatory network used by each agent to calculate its expression levels, here:  $B_1 = \sigma(1/3 X)$ ,  $B_3 = \sigma(2/3 Y)$ ,  $I_4 = B_1B_3(1 B_4)$ , etc.





### Hierarchical embryogenesis

#### Morphological refinement by iterative growth

✓ details are not created in one shot, but gradually added. . .







✓ ... while, at the same time, the canvas grows







from Coen, E. (2000) The Art of Genes, pp131-135



Hierarchical embryogenesis









### Hierarchical embryogenesis









# **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies



## **Evolutionary innovation by development**

Development: the missing link of the Modern Synthesis...

"When Charles Darwin proposed his theory of evolution by variation and selection, explaining selection was his great achievement. He could not explain <u>variation</u>. That was Darwin's dilemma."

"To understand novelty in evolution, we need to understand organisms down to their individual building blocks, down to their deepest components, for these are what undergo change."





## The self-made puzzle of "evo-devo" engineering

Development: the missing link of the Modern Synthesis...



macroscopic, emergent level

"To understand novelty in evolution, we need to understand organisms down to their individual building blocks, down to their deepest components, for these are what undergo change."





# The self-made puzzle of "evo-devo" engineering

Development: the missing link of the Modern Synthesis...







macroscopic, emergent level

microscopic, componential

level





**Phenotype** 







## Toward "evo-devo" engineering

... and of Evolutionary Computation: toward "meta-design"

✓ organisms endogenously grow but artificial systems are built



✓ could engineers "step back" from their creation and only set generic conditions for systems to self-assemble?

instead of building the system from the top (phenotype), program the components from the bottom (genotype)





## The meta-design of complexity

Pushing design toward evolutionary biology



#### intelligent "hands-on" design

heteronomous order

centralised control

designer as a micromanager

rigidly placing components

sensitive to part failures

need to control and redesign

complicated systems: planes, computers

#### intelligent & evolutionary "meta-design"

- autonomous order
- decentralised control
- designer as a lawmaker
- allowing fuzzy self-placement
- insensitive to part failures
- prepare for adaptation & evolution
- complex multi-component systems



# The evolutionary "self-made puzzle" paradigm



- a. Construe systems as *self-assembling* (developing) *puzzles*
- b. Design and *program their pieces* (the "genotype")
- c. Let them evolve by *variation* of the pieces and *selection* of the architecture (the "phenotype")
- Genotype: rules at the micro level of agents
  - ✓ ability to search and connect to other agents.
  - ✓ ability to *interact* with them over those connections
  - ✓ ability to modify one's internal state (differentiate) and rules (evolve)
  - ✓ ability to provide a specialized local function
- Phenotype: collective behavior, visible at the macro level



# The evolutionary "self-made puzzle" paradigm



- a. Construe systems as *self- assembling* (*developing*) *puzzles*
- b. Design and *program their pieces* (the "genotype")
- c. Let them evolve by *variation* of the pieces and *selection* of the architecture (the "phenotype")







### Quantitative mutations: limb thickness









Quantitative mutations: body size and limb length





### Qualitative mutations: limb position and differentiation









Qualitative mutations: number of limbs





Qualitative mutations: 3<sup>rd</sup>-level digits













# Work toward more accurate biological modeling

### More accurate mechanics

- **√** 3-D
- ✓ individual cell shapes
- ✓ collective motion, migration
- ✓ adhesion



### Better gene regulation

- ✓ recurrent links
- ✓ gene reuse
- ✓ kinetic reaction ODEs
- ✓ attractor dynamics





### More work toward functional EC

### What is missing...

- 1. the *function/purpose/behavior* of a developed organism
  - depending on the problem domain
  - 2-D/3-D modular robotics: move, grab, build, etc.
  - N-D networks: communication dynamics, collective computation
- 2. a *fitness measure* 
  - assessing the value of the above function
- 3. a *systematic exploration* 
  - by random, automated mutations
  - with statistics over many runs
- 4. a *comparison* 
  - with other, non-developmental (or non-self-organized) approaches
  - on the same problems or benchmarks



### Discussion

- Questions that need to be addressed...
  - √ modularity?
    - modularity of the genotype vs. phenotype
  - √ compactness?
    - repetitiveness: reuse of genes and gene regulation modules
    - vs. heterogeneity and uniqueness of structures
  - ✓ innovation?
    - how fine-grained development fosters the emergence of new structures
  - ✓ open-ended evolution?
    - don't set a specific goal, harvest from surprising organisms



# **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies



## Programmable techno-social networks

### Harnessing complex networks



ubiquitous computing & communication capabilities create entirely *new myriads of user-device interactions* from the bottom up



explosion in size and complexity of techno-social networks in all domains: energy, education, healthcare, business, defense



de facto complex systems with spontaneous collective behavior that we don't quite understand or control yet



time to design new collaborative technologies to harness this decentralisation and emergence



### From "scale-free" to architectured networks





single-node composite branching



iterative lattice pile-up



clustered composite branching



# Self-knitting networks



✓ a generalisation of embryogenesis in n dimensions

the node routines are the "genotype" of the network



# Order influenced (not imposed) by the environment











- > Formation of a specific, reproducible structure
  - ✓ nodes attach randomly, but only to a few available ports



- I. Chains
- 2. Lattices
- 3. Clusters
- 4. Modules



### > Simple chaining

✓ link creation (L) by programmed port management (P)





### Simple chaining

 $\checkmark$  port management (P) relies on gradient update (G)





### Simple chaining







- Lattice formation by guided attachment
  - $\checkmark$  two pairs of ports: (X, X') and (Y, Y')



✓ without port management P, chains form and intersect randomly





- Lattice formation by guided attachment
  - ✓ only specific spots are open, similar to beacons on a landing runway





#### Cluster chains and lattices

✓ several nodes per location: reintroducing randomness but only within the constraints of a specific structure





Cluster chains and lattices







### Modular structures by local gradients

modeled here by different coordinate systems,  $(X_a, X'_a)$ ,  $(X_b, X'_b)$ , etc., and links cannot be created different tags







Modular structures by local gradients



## Self-organized programmable networks

strong intrinsicmorphology – no influencefrom the environment

no intrinsic morphologycomplete adaptation to

the environment





intrinsic morphologies that are non-trivial <u>and</u> adapt dynamically to their environment

# Development > Polymorphism freely growing structure **Evolution** ruleset A (b) (b) "wildtype" ruleset A" ruleset A $rule set \ A'$

# **Spatial Computers**



Robot Swarms



Reconfigurable Computing



**Biological Computing** 3.5 weeks



Cells during Morphogenesis



Sensor Networks



Modular Robotics

## **Evo-Devo Engineering**

### Methodologies and tools

- ✓ an original, young field of investigation without a strong theoretical framework yet but close links with many established disciplines, which can give it a more formal structure through their own tools
  - cellular automata, pattern formation
  - collective motion, swarm intelligence (Ant Colony Optim. [Dorigo])
  - gene regulatory networks: coupled dynamical systems, attractors
  - spatial computing languages:
     PROTO [Beal] and MGS [Giavitto]
     (top-down compilation)



- evolution: genetic algorithms, computational evolution [Banzhaf]
- Iterative Function Systems (IFS) [Lutton]
- → goal: going beyond agent-based experiments and find an abstract description on a macroscopic level, for better control and proof



# Morphogenetic Engineering, ANTS 2010, Brussels

# http://iridia.ulb.ac.be/ants2010

→ Special Session on Morphogenetic Engineering

Exporing various engineering approaches to the artificial design and implementation of autonomous systems capable of developing complex, heterogeneous morphologies



Thank you



# **Embryomorphic Engineering**

- 1. Toward self-organized <u>and</u> architectured systems
- 2. Biological development as a two-side challenge Heterogeneous motion vs. moving patterns
- 3. Embryomorphic engineering Embryogenesis as a multi-agent self-assembly process
- 4. Evo-devo engineering Evolutionary innovation by development
- 5. Extension to self-knitting network topologies