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From the Simulation of Complex Biological Systems 
to the Design of Artificial Morphogenetic Systems, 

and Back 
 
 
Abstract 
 
The main theme of my research is the computational modeling and simulation of complex multi-
agent systems, in particular biological, neural and techno-social, which can also inspire novel 
principles in intelligent systems design. I am especially interested in “self-made puzzles”, i.e., the 
self-organization of complex, articulated morphologies from a swarm of heterogeneous agents, 
through dynamical, developmental, and evolutionary processes. For example, these emergent 
patterns can be innovative structures in multicellular organisms, autonomic networks of 
computing devices, or “mental representations” and imagery made of correlated spiking neurons. 
 
My work currently addresses two domains: (a) neural computation, where a central question is to 
understand how the symbolic level of cognition (artificial intelligence) can arise from the underlying 
complex dynamical system of the brain (neural networks); and (b) artificial life, preoccupied with 
explaining how orderly complexity can spontaneously develop and evolve without the need for a 
higher symbolic level. In other words, the cognitive challenge I pursue consists of reconstructing the 
emergence of the human symbolic faculty to help create intelligent machines. As for the engineering 
challenge, it is rather about removing the symbolic human bias from intelligent system design and 
creating autonomous efficient systems that could grow and adapt without explicit programming. 
These two challenges are naturally closely linked and their concepts mutually transferable. 
 
Artificial Life: Biological Modeling & Bio-Inspired Engineering Part of my efforts has been 
focused on promoting a new field of research, Embryomorphic Engineering or, more broadly, 
Morphogenetic Engineering, exploring the artificial design and implementation of autonomous 
systems capable of developing complex, heterogeneous morphologies without central planning or 
external drive. I have conducted various studies toward this goal, starting with multi-agent models of 
biological development that combine pattern formation (arising from gene regulation networks 
contained in each cell, themselves triggered by diffusion of positional gradients between cells) and 
self-assembly (arising from biomechanical forces). I have extended these principles to the self-
organization of precise network topologies by “programmed attachment” of nodes (instead of 
random “preferrential attachment”). At another scale, I have also investigated spatially explicit 
models of evolutionary dynamics and endogenous speciation among large populations of genome-
encoded individuals. 
 
Neural Dynamics: Large-Scale Spiking Neural Networks My other research endeavor is to bridge 
the lingering gap between symbol-based AI architectures and node-based neural computation, thus 
establish an intermediate, or mesoscopic, scale of description of cognitive functions. Representations 
at this scale are embodied in local yet large-scale dynamical states of bioelectrical activity. The 
working hypothesis is that this activity consists of “spatio-temporal patterns” that can be composed 
together to form quasi-discrete entities. My goal is to understand the laws of self-organization, and 
induced organization, of the neural signals supporting those entities, and from there outline a new 
theoretical framework for mesoscopic neurodynamics with compositional properties. At a mesoscopic 
level, the brain should essentially be construed as a “pattern formation machine”, generating 
specific dynamical states or regimes made of myriads of bioelectrical neuronal signals – not unlike 
many other biological collective phenomena such as bird flocking, ant colonies or multicellular 
development itself (except dynamical “neuron flocking” happens in phase space and across a 
complex network topology). 
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1 

1. Overview of Research Program 
 
Information and Communication Technology (ICT) systems are qualitatively fundamentally different 
from natural complex systems (CS). Traditional engineered ICT products are generally made of a 
number of unique, heterogeneous components assembled in complicated but precise ways, and are 
always intended to work deterministically following the specifications given by their designers 
(Fig. 1.1d). By contrast, self-organization in natural complex systems (physical, biological, 
ecological, social) often emerges from the repetition of agents obeying identical rules under stochastic 
dynamics (Fig. 1.1a). 

For sure, nontrivial behavior can emerge from relatively simple agent rules—a fact often touted as 
the hallmark of complex systems—however, most patterns spontaneously created by natural self-
organization (spots, stripes, waves, trails, clusters, hubs, etc.; see Ball 1999, Bourgine & Lesne 2006) 
can be described with a small number of statistical variables. They are either random or shaped by 
external boundary conditions, or both, but never truly exhibit an intrinsic architecture like ICT 
systems possess on the hardware and software levels. There are, however, major exceptions that blur 
this dichotomy between ICT and CS and show a possible path toward what could become tomorrow’s 
(a) ICT-like / ICT-controlled CS and (b) CS-inspired ICT:  
 
ICT-like / ICT-controlled CS On the one hand, major families of natural complex systems strikingly 
demonstrate the possibility of combining pure self-organization and elaborate architectures 
(Fig. 1.1b): the self-assembly of myriads of cells into the body plans and appendages of organisms, 
the synchronization of constellations of neuronal signals into cognitive states of the brain, or the 
stigmergic collaboration of swarms of social insects toward giant constructions. Multicellular 
organisms are composed of segments and parts arranged in specific ways, yet they entirely self-
assemble in a decentralized fashion, under the guidance of genetic and epigenetic instructions 
spontaneously evolved over millions of years and stored in every cell. In modern biotechnological 
endeavors such as synthetic biology (e.g., Endy 2005, Knight 2003), these instructions could be 
modified in specific ways to steer the emergent collective behavior of cellular populations toward 
desirable outcomes for biomedical applications. Similarly, spiking neural activity in the brain also 
exhibits unique properties of structured self-organization into non-random “spatiotemporal patterns” 
(e.g., Bienenstock 1995), or “dynamic shapes”, which are the basis for mental representations and all 
cognitive functions. Finally, social insects are also able to collectively construct complicated nests 
without global plan or architect (Bonabeau et al. 1999). 
 
CS-inspired ICT Conversely, large-scale artificial ICT systems already exhibit complex systems 
effects—albeit still mostly uncontrolled and unwanted at this point. Segmentation and distribution of 
large computing systems over a multitude of smaller and relatively simpler components has become 
both a growing need and an inevitable reality in many domains of computer science & engineering, 
AI, and robotics (e.g., Tanenbaum & van Steen 2002). Instead of fighting this trend, ICT should ride it 
higher and gradually transition from a state of exogenously imposed order toward increasing 
organizational and functional autonomy. Faced with an explosion in system size at all scales, whether 
hardware (integrated parts), software (program modules), or networks (applications and users), 
engineers will be led, more or less willingly, to give up the rigid design of systems in every detail and 
rethink them in terms of CS (Fig. 1.1c; e.g., Minai et al. 2006, Würtz 2008). They should focus on 
“meta-design”, i.e., the generic conditions allowing the endogenous self-assembly, self-regulation and 
evolution of these systems. How do biological organisms achieve morphogenetic tasks so reliably? 
Can we export their self-formation capabilities to engineered systems? 
 
Thus, while CS already include natural systems that seemingly exhibit all the attributes of ICT 
systems, ICT systems are already becoming natural objects of study for CS researchers. Both of these 
cross-boundary examples point to a new field that would explore the design and implementation of 
autonomous systems capable of developing complex and desired functional architectures with little or 
no central planning. In other words, they are captivating examples of programmable self-
organization—a hybrid concept not sufficiently explored so far, neither in natural CS (for the 
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“programmable” part), nor in traditional ICT engineering (for the “self-organization” part). 
Along these directions, I am interested in clarifying the fundamental principles of an “informed 

physics” or, its flip side, a “physical computation”, in particular the continuous-to-discrete transition 
from microscopic elements to structured macroscopic patterns, via mesoscopic levels of organization. 
My focus is on (i) cognitive problems, where the goal is to understand the emergence of a symbolic 
architecture from the underlying neural dynamics (schematization, categorization, pattern recognition 
in perception and language) and (ii) evo-devo problems, where the challenge is the meta-design of 
decentralized systems that do not make use of a symbolic level (biological modeling and bio-inspired 
computing, artificial development, evolutionary computation). 

 

 
 
Figure 1.1: Four families of systems representing various degrees of self-organization vs. design, and 
randomness vs. architecture. (a) Most natural complex systems are characterized by stochasticity, 
repetitivity and statistical uniformity. From left to right: sand ripples from wind convection, activator-
inhibitor pattern formation, slime-mold aggregation, traveling waves in BZ reaction, bird flocking, 
insect heap-clumping, and power-law networks (all NetLogo simulations except the first photograph). 
(d) At the other extreme, all human-made artifacts (computers, devices, vehicles, buildings, software) 
are centrally and precisely designed, leaving almost no room for autonomy. There, self-organization 
and emergence are a noisance, not desired effects. (c)-(d) My research is positioned in the middle: I 
strive to (i) understand how certain natural self-organized systems exhibit a strong (non-random) 
architecture, by proposing new models for class (b): multicellular organisms, including the activity of 
their nervous system, and social insect constructions. Conversely, I also want to (ii) instill self-
organized principles into artificial intelligent systems, i.e., invent new systems for class (c): multi-
agent software, robotic swarms, techno-social networks, and much more. 

 
Recognizing and Reintroducing Programmability in Complex Systems 
 
Complex systems are generally defined as large sets of elements that interact locally among each 
other and with their nearby environment to produce an emergent collective behavior at a macroscopic 
scale. They are characterized by a high degree of decentralization, and the ability to self-assemble and 
self-regulate. Most CS are also adaptive (and dubbed “CAS”; Holland 1992) in the sense that they are 
able to learn and/or evolve toward further innovation by feedback from their external fitness, i.e., 
overall level of success in their environment, onto their internal structure and behavior of the elements 
(whether through direct learning mechanisms and/or indirect selection processes). 

The elements or “agents” composing a CS follow local rules that can be more or less 
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sophisticated. Often, these rules are themselves internally structured as networks of smaller entities. 
For example, one cell can be modeled as a self-regulatory network of genetic switches, one social 
agent (ant, software process) as a network of decision rules, one neural unit as a local assembly of 
neurons (dual excitatory/inhibitory oscillator system, synfire chain). On the other hand, agents can 
also interact collectively at the level of clusters or subnetworks (organs, assemblies, cliques) that 
combine in a modular fashion to form larger collectives. Thus, from both perspectives, CS can often 
be described as “networks of networks” on several hierarchical levels. The higher levels connecting 
elements or clusters of elements are generally spatially extended (cell tissues, cortical areas, ant 
colonies, computer networks), whereas the lower levels inside elements are generally nonspatial (gene 
nets, neural assemblies, rule trees). Elements follow the dynamics dictated by their inner networks and 
also influence neighboring elements through the emission and reception of signals (chemical, 
electrical, software packets). 

In this vast interdisciplinary field of CS research, my own research ambition is to look beyond the 
usual fascination for spontaneous or “free” order, i.e., unconstrained or unstructured patterning 
(Fig. 1.1a), and explore another critical question that concerns the interplay of programmability with 
self-organization (Fig. 1.1b-c). Indeed, it is an often underappreciated ability of CS to exhibit 
controllable properties, at the same time (or despite the fact) that they are self-organizing. It seems 
that “complex” is too commonly (mis)construed as “homogeneous”, “monolithic” and/or “random”. 
Yet, there can be a wide diversity of agents and heterogeneity of patterns, via positions; a CS can be 
modular, hierarchical, and architecturally detailed at multiple scales; it can also consist of 
reproducible structures arising from programmable agents. Thus, with the dual goal to “re-engineer 
emergence” and promote emergent engineering (Doursat & Ulieru 2008), whether in CS-inspired 
artificial systems or ICT-controlled natural systems, the most important challenge is not simply to 
observe how any kind of self-organization can happen, but it is to understand how self-organization is, 
and can be, guided. Here, relevant models will likely not be found in the traditional “statistical” 
approaches to CS (Fig. 1.1a), such as random patterning (e.g., Gierer & Meinhardt 1972, Pearson 
1993), flocking (e.g., Vicsek et al. 1995) or networking (e.g., Barabási & Albert 1999, Newman 2006, 
Barrat et al. 2008), but rather in the genuinely morphological aspects of CS, such as biological 
development (Fig. 1.1b). The difference between these two qualitative classes of CS resides in (i) the 
relative sophistication of the elements and (ii) their ability to combine in sufficiently various ways to 
form precise and reproducible architectures. 

Naturally, this ambition seems to lead to paradoxical objectives: Can autonomy be planned? Can 
decentralization be controlled? Can evolution be designed? The answer lies in a change of scale: 
instead of a top-down enforcement of macroscopic structures, the new controls take the form of local 
instructions inside every microscopic agent of the system. These instructions can also be diversified, 
depending on the agent types and positions, introducing the required degree of heterogeneity for a 
system to exhibit a new type of behavior, more sophisticated than patterning, flocking or clustering. 
 
Summary of Research Topics 
 
My work currently addresses two domains: (a) neural computation, where a central question is to 
understand how the symbolic level of cognition (artificial intelligence) can arise from the underlying 
complex dynamical system of the brain (neural networks); and (b) artificial life, preoccupied with 
explaining how orderly complexity can spontaneously develop and evolve without the need for a 
higher symbolic level. In other words, the cognitive challenge I pursue consists of reconstructing the 
emergence of the human symbolic faculty to help create intelligent machines. As for the engineering 
challenge, it is rather about removing the symbolic human bias from intelligent system design and 
creating autonomous efficient systems that could grow and adapt without explicit programming. 
These two challenges are naturally closely linked and their concepts mutually transferable. 
 
Artificial Life — Biological Modeling & Bio-Inspired Engineering 
 
Part of my efforts has been focused on promoting a new field of research, Embryomorphic 
Engineering or, more broadly, Morphogenetic Engineering, exploring the artificial design and 
implementation of autonomous systems capable of developing complex, heterogeneous morphologies 
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without central planning or external drive. I have conducted various studies toward this goal, starting 
with multi-agent models of biological development that combine pattern formation (arising from gene 
regulation networks contained in each cell, themselves triggered by diffusion of positional gradients 
between cells) and self-assembly (arising from biomechanical forces). I have extended these 
principles to the self-organization of precise network topologies by “programmed attachment” of 
nodes (instead of random “preferrential attachment”; Barabási & Albert 1999). At another scale, I 
have also investigated spatially explicit models of evolutionary dynamics and endogenous speciation 
among large populations of genome-encoded individuals. 
 
Ambition: “Meta-designing” the development, function and evolution of self-organized complex 
systems that do not use a symbolic level. 

• How do embryonic cells construct an entire organism without a blueprint map?  
• How do complexity, innovation and fitness spontaneously evolve (without a “watchmaker”)?  
• How can biological organisms inspire a novel engineering paradigm based on decentralized, 

self-adapting collectivities of agents, instead of explicit rules and external design?  
• How can we create a network of agents that would spontaneously diversify, multiply and self-

organize to work collectively on a given task (e.g., swarm robotics, immune security)?  
 
Keywords: artificial development, self-assembly, pattern formation, spatial computing, evolutionary 
computation. 

• multi-agent models of morphogenesis, based on gene regulation networks 
• decentralized but programmable pattern formation, self-assembly and shape development  
• spatially extended cellular automata models of population genetics, evolution and ecology 
 

Neural Dynamics — Large-Scale Spiking Neural Networks 
 
My other research endeavor is to bridge the lingering gap between symbol-based AI architectures and 
node-based neural computation, thus establish an intermediate, or mesoscopic, scale of description of 
cognitive functions. Representations at this scale are embodied in local yet large-scale dynamical 
states of bioelectrical activity. The working hypothesis is that this activity consists of “spatio-
temporal patterns” that can be composed together (Bienenstock 1995, 1996) to form quasi-discrete 
entities. My goal is to understand the laws of self-organization, and induced organization, of the 
neural signals supporting those entities, and from there outline a new theoretical framework for 
mesoscopic neurodynamics with compositional properties. At a mesoscopic level, the brain should 
essentially be construed as a “pattern formation machine”, generating specific dynamical states or 
regimes made of myriads of bioelectrical neuronal signals – not unlike many other biological 
collective phenomena such as bird flocking, ant colonies or multicellular development itself (except 
dynamical “neuron flocking” happens in phase space and across a complex network topology). 
 
Ambition: Understanding and reconstructing the emergence of a symbolic level from a complex 
dynamical system. 

• How is the infinite diversity of analog (visual, auditory) stimuli segmented, grouped and 
reduced to a few logical categories?  

• How is discrete symbolic meaning “carved out” from the continuous physical environment?  
• How are neural signals organized in the brain and what kind of complex coordinated (and 

reproducible) spatiotemporal patterns do they form?  
• How does this pattern formation of a spatiotemporal kind provide the basis for structured 

“mental objects” and their hierarchical composition? 
 
Keywords: segmentation, schematization, categorization, perception, language, ontology. 

• mesoscopic emergence and interaction of spatiotemporal patterns of activity and connectivity  
• based on: stochastic-firing, excitable, oscillatory and subthreshold neuron models  
• creating: synchronization, traveling waves, coherence induction, synfire chains, 

compositionality  
• for: pattern recognition and categorization, in perception and language 
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2. Artificial Life: Biological Modeling & Bio-Inspired Engineering 
 
Computational, spatially explicit models of development and evolution with possible outcomes 
toward hyperdistributed, decentralized engineering systems. 
 

The fireworks were by Gandalf: they were not only brought by him, but 
designed and made by him; ... The lights went out. A great smoke went 
up.  It  shaped  itself  like a mountain  seen  in  the distance, and began  to 
glow at the summit. ... Out flew a red‐golden dragon – not life‐size, but 
terribly life‐like: fire came from his jaws, his eyes glared down; there was 
a roar, and he whizzed three times over the heads of the crowd. 

—J. R. R. Tolkien, The Fellowship of the Ring 
 
This area of my research is positioned at the interface between the science and the engineering of 
complex systems, around biological topics and bio-inspired principles. It covers both the 
computational modeling of biological self-organization phenomena (in particular development and 
evolution) and the design of decentralized, autonomous and adaptive artificial systems inspired by 
these phenomena (especially in ICT and robotics). It aims to establish mutually beneficial transfers 
between these two poles, by providing new paradigms to engineering and, in turn, by equipping 
biological observation techniques with new models and control methods. In this way, it ultimately 
hopes to contribute to important future applications and potential fallouts, whether of biomedical 
nature (e.g., how models of development can be relevant to cancer or stem cell research) or 
technological nature toward a new generation of distributed processors, architectures and robotics 
(e.g., how a swarm of mini-robots can self-organize). 

The CREA lab and ISC-PIF institute where I work were leaders or partners of four recent major 
European and ANR projects (to which I collaborated in 2006-2008), including Embryomics (Peyriéras 
et al. 2005) and BioEmergences (Bourgine et al. 2006). These projects pioneered the development of 
methods and algorithms for reconstructing the complete dynamics of multicellular development 
observed by microscopy. Describing this process as a dynamic tree annotated in space and time, they 
founded a new discipline, “embryomics”, named after the -omics family (genomics, proteomics, etc.). 
The embryome of an organism refers to the system-level description of the multiscale dynamics of its 
early stages of development, correlating genotype and phenotype. In this framework, biologists 
produce and annotate time-lapse series of organism development, while mathematicians and computer 
scientists process these images to reconstruct and model collective cell dynamics. This effort resulted 
in sophisticated software platforms capable of handling large amounts of 4-D imaging data (i.e., voxel 
movies) by a workflow of segmentation and tracking algorithms (e.g., Zanella et al. 2007, Lombardot 
et al. 2008; Fig. 2.1). It is therefore an inverse problem of complex systems: starting from a large set 
of spatiotemporal data and detecting their correlations, the goal is to arrive at theoretical models 
explaining their changes. The post-genomic era is in great need of such systemic approaches at the 
cellular organization level to achieve a better understanding of biological processes and make 
progress in medical applications. 

 

 
 
Figure 2.1: Typical image processing workflow at the core of the Embryomics and BioEmergences 
projects (from Faure et al. 2007; see Publications in Section 2.1). 
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In parallel to this biological modeling endeavor, works in Artificial Life (Alife), especially artificial 
development and evolution, aim to create a new generation of intelligent computational complex 
systems, consisting of a multitude of (electronic or hybrid synthetic-organic) micro-programmed 
elements interacting locally. The objective here is to incorporate self-organization into the traditional 
concepts of architecture, function and design—and vice versa. This new “complex systems 
engineering” (e.g., Braha et al. 2006, Minai et al. 2006, Würtz 2008) must meet the growing necessity 
of hyper-distributed and self-organized architectures. Beyond statistical and random phenomena 
(pattern formation, collective movement, power laws, etc.), the main challenge is to reintroduce 
programmability and reproducibility in the emergence of spontaneous order—in short: to regain 
control of emergence. It is therefore necessary to understand how complex self-organizing systems 
can also be heterogeneous, modular and hierarchical. 
 
Alife Systems 
 
The field of Alife is chiefly concerned with the simulation of life-like, organismal processes through 
computer programs or robotic devices that generally are of a distributed nature and operate on a 
multitude of interacting components. Researchers in Alife attempt to design and construct systems 
that have the characteristic of living organisms or societies of organisms out of nonliving parts, 
whether virtual (software agents) or physical (electromechanical components, chemical materials, 
etc.). Alife is therefore a bottom-up attempt to recreate or synthesize biological phenomena with the 
goal of producing adaptive and intelligent systems. In this sense, it can be contrasted with the 
traditional top-down analytical approach of Artificial Intelligence (AI) based on symbolic systems. 
Alife is one of the most important and rapidly developing research domain within the landscape of 
complex systems. In particular, it actively promotes biology-inspired engineering as a new paradigm 
that would complement or replace classical physics-based engineering. Alife opens entirely new 
perspectives in software, robotic, electrical, mechanical or even civil engineering. Can a sophisticated 
device or building architecture construct itself from a reservoir of small components? Can a robot 
rearrange its parts and evolve toward better performance without explicit instructions? Can a swarm 
of software agents self-organize and collectively innovate in problem-solving tasks? 

Among the great variety of biological systems that inspire and guide Alife research, three broad 
areas can be identified according to the scale of their elementary components: (a) at the microscopic 
scale, chemical, cellular and tissular systems; (b) at the mesoscopic scale, organismal and 
architectured systems; and (c) at the macroscopic scale, collective and societal systems. Artificial 
molecular and cellular models focus on the spontaneous organization of complex chemical and 
organic structures, such as DNA/protein self-assembly (e.g., Rothemund 2006) or organism 
development (e.g., Eggenberger 1997). Applications are linked to nanotechnologies for biomedical or 
integrated electronic purposes (“smart materials”, MEMS, etc.). On the anatomical and functional 
level, robotic parts (limbs, sensors, actuators, etc.) and local behavioral modules are coupled and 
integrated to produce a global behavior in one autonomous device, aiming toward adaptivity and 
nonsymbolic intelligence. This is the scope of “reactive”, “behavior-based” (Brooks 1985) or 
“embodied” robotics (e.g., Pfeifer & Bongard 2006), exemplified by insect-like robots and evolving 
or reconfigurable mechanical morphologies (e.g., Sims 1994, Lipson & Pollack 2000). Finally, entire 
colonies of virtual or robotic creatures also constitute important objects of interest for their unique 
properties of collective self-organization and diversity-inducing evolution. Generically termed 
“swarm intelligence”, new methodologies such as ant colony optimization (ACO; Dorigo & Stützle 
2004, Bonabeau et al. 1999) or particle swarm optimization (PSO; Kennedy & Eberhart 1995) are 
derived from the observation of animal societies and applied to problem-solving tasks. 
 
Toward Complex, Decentralized Engineering 
 
The interdisciplinary field of Alife originated from cellular automata (CA) and, by its very definition, 
necessarily covers or intersects with several other distributed systems paradigms—which are the rule 
in biotic systems—such as neural networks, complex networks (from gene regulation to ecosystems), 
swarm intelligence (insect colonies, collective motion), or generative and developmental systems 
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(embryogenesis, morphogenesis). Yet, despite the inherent propensity of Alife to study decentralized 
and self-organized process, researchers in evolutionary computation (EC, which comprises genetic 
algorithms), one of the most powerful concepts that Alife ever imported from biology into AI, have 
generally taken a quite different path and, in stark contrast with natural biological systems, have 
essentially focused on centralized, classically designed, and non-developmental systems. Their efforts 
have been mainly invested in optimization problems, where “emergence” actually becomes more of a 
noisance than a desired property. Yet, it is striking that the founder of genetic algorithms, John 
Holland, constantly refers to evolutionary search within the framework of complex adaptive multi-
agent systems (Holland 1992, 1996, 1998) and was himself a co-founder of the Santa Fe Institute—
whereas today’s EC conferences include only a minority of such complex systems topics. Thus, after 
all, there is still surprisingly little complex systems thinking in Alife, especially EC—while, 
conversely, there is also surprisingly little engineering thinking in the complex systems community 
(see paragraph on “Artificial Evo-Devo” below). 

Although themselves emerging from a hundred billion neurons, our human cognitive faculties 
create the illusion of a central consciousness or viewpoint and require great effort to comprehend truly 
parallel processes. We are strongly biased toward identifying central causes, and spontaneously tend 
to ascribe the generation of order and meaning to a single entity endowed with a lot of information 
(one gene, one cell, one neuron, one individual). Even when we know that this entity does not have 
intentions or does not even exist as such, we cannot help but follow anthropomorphic stereotypes: 
controller, organizer, manager, designer, etc. This is why we traditionally refer to systems containing 
multiple, intricate causal and influence links as “complex”—whereas in fact those so-called complex 
systems might well turn out to be “simpler” than our familiar artefacts with their uniquely ordered and 
precise arrangement. Heteronomous human-designed order is the most sophisticated of all forms of 
organization. In living systems, by contrast, autonomous decentralized order is the natural norm 
because it is the most cost-effective: information is distributed over a large number of relatively 
ignorant agents, making it easier to create new states of order by evolving and recombining their local 
interactions. To imitate Ulam’s famous quip about nonlinear vs. linear systems, the pervasiveness of 
self-organized systems (vs. designed systems) make them the “nonelephant” species of systems 
science—yet they remain the least familiar of them. Biological systems are not engineered and 
human-made systems could learn a lot from them (Minai et al. 2006). 

Therefore, we need to find other ways of describing the complex systems than imposing concepts 
coming from complicated human-made systems, such as “architecture”, “processing”, “control”, 
“input/output”, “feedforward/feedback”, etc. (a) The appropriate level of functional description is that 
of higher pattern formation, not agent-to-agent transmission. (b) Yet, at the same time, these patterns 
cannot be directly shaped but must emerge in a bottom-up fashion: thus the right level of design and 
control is the agent and its local interactions with other agents. As long as these two levels are 
confused—either by trying to design the patterns top-down, or trying to describe the system’s 
dynamics agent by agent, link by link—complex systems will remain inextricably complex. 
 
Evolutionary Development 
 
In the variation/selection couple of Darwinian evolution, variation has become the poor child of 
biology’s Modern Synthesis. Darwin discovered the evolution of species, based on random variation 
and nonrandom natural selection, and established it as a central fact of biology. During the same 
period, Mendel brought to light the laws of inheritance of traits. In the twentieth century, his work 
was rediscovered and became the foundation of the science of genetics, which culminated with the 
revelation of DNA’s role in heredity by Avery and its double-helix structure by Watson and Crick. By 
integrating evolution and genetics together, the “modern synthesis” of biology has demonstrated the 
existence of a fundamental correlation between genotype and phenotype. Mutation in the first is 
causally related to variation in the second. Yet, 150 years after Darwin’s and Mendel’s era, the nature 
of the link from genes to organismal forms, i.e., the actual molecular and cellular basis of the 
mechanisms of development, are still unclear. To quote Kirschner and Gerhart (2005, p. ix): “When 
Charles Darwin proposed his theory of evolution by variation and selection, explaining selection was 
his great achievement. He could not explain variation. That was Darwin’s dilemma. . . . To understand 
novelty in evolution, we need to understand organisms down to their individual building blocks, down 
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to their deepest components, for these are what undergo change”. 
While most of the attention was turned to selection, it is only in recent years that understanding 

variation (as the generation of phenotypic innovation) by comparing the developmental processes of 
different species became the primary concern of evolutionary development, or “evo-devo”, a rapidly 
expanding field of biology (e.g., Coen 2000, Carroll et al. 2001, Müller & Newman 2003, Kirschner 
& Gerhart 2005). The genotype-phenotype link cannot remain an abstraction if we want to unravel the 
generative laws of development and evolution—and ultimately transfer them to artificial self-
organized systems. The goal is to unify what Darwin called the “endless forms most beautiful” of 
nature (Carroll 2005), and reduce them to variants around a common theme (Webster & Goodwin 
1996). The variants are the specifics of genetic information; the common theme is the developmental 
dynamics that this information guides. Modern synthesis postulates this reduction in principle but has 
never truly explained it physically. How does a static genome dynamically unfold in time and 3-D 
space (Edelman 1988)? How are morphological changes correlated with genetic changes? 
 
Artificial Evo-Devo 
 
Looking at the full evolutionary and developmental picture should also be a primary concern of 
systems engineering and computer science when venturing in the new arena of autonomous 
architectures. Optimization techniques inspired by biology in its traditional modern-synthesis form 
have also, like their model, principally focused on evolution and given rise to evolutionary 
computation and genetic algorithms based on metaphorical “genes”, “reproduction”, “mutation” and 
“selection”. However, the great majority of these approaches rely on a direct mapping from artificial 
genomes to artificial phenotypes, which includes very few or no elements of morphogenesis. One 
ambition of my research work is to contribute to new avenues in evolutionary engineering, such as 
artificial embryogeny (AE, Stanley & Miikkulainen 2003, Bentley & Kumar 1999, Miller & Banzhaf 
2003), amorphous computing (Abelson et al. 1999, Coore 1999, Nagpal 2002, Werfel & Nagpal 
2006), spatial computing (Beal & Bachrach 2006), autonomic computing (Kephart & Chess 2003), 
organic computing (von der Malsburg et al. 2006, Würtz 2008), natural computation (e.g., Nunes de 
Castro 2006), complex systems engineering (Minai et al. 2006), ambient intelligence (Marzano & 
Aarts 2003) and pervasive or ubiquitous computing (Weiser 1993), by stressing the importance of 
fundamental laws of developmental variations as a prerequisite to selection on the evolutionary time 
scale of artificial systems (Stanley & Miikkulainen 2003)—a thesis mirrorring the evo-devo paradigm 
in natural, biological systems (see, e.g., Kauffman 1993, 2008, Goodwin 1994). In the EC framework, 
it means an indirect or implicit mapping (as opposed to direct or explicit) from genotype to 
phenotype. Fine-grain, hyperdistributed architectures (i.e., many light-weight agents, as opposed to a 
few heavy-weight agents) such as multicellular organisms might be in a unique position to provide the 
“solution-rich” space needed for successful selection and spontaneous innovation, through 
developmental modularity and composition. 

Most families of typical emergent patterns in complex systems (spots, stripes, waves, trails, 
clusters, hubs, etc.; see Ball 1999, Bourgine & Lesne 2006) can be described with a small number of 
statistical variables. They are generally uniform and repetitive, displaying a “poorness of information” 
akin to textures—but never exhibit a true, intrinsic architecture (Fig. 2.2) like engineered products do. 
One monumental exception to this relative homogeny is biological development. Morphogenetic 
processes demonstrate the possibility of combining pure self-organization and elaborate structures. 
Multicellular organisms are composed of segments and parts arranged in specific ways that might 
resemble the devices of human inventiveness. Yet, they entirely self-assemble in a decentralized 
fashion, under the guidance of genetic and epigenetic information spontaneously evolved over 
millions of years and stored in every cell. In other words, they are examples of programmable self-
organization—a concept not sufficiently explored so far, neither in complex systems science (for the 
“programmable” part), nor in traditional engineering (for the “self-organization” part). How do 
biological organisms achieve morphogenetic tasks so reliably? Can we export their self-formation 
capabilities to other complex systems? “Directing decentralization” is a seemingly paradoxical 
endeavor, but its resolution could reside in the change of level on which design operates, to become 
“meta-design”: instead of building a puzzle directly at the architectural level (by design or evolution), 
shape its pieces in a generic way (by design or evolution) so that they build it for you. 
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Figure 2.2: Various metaphorical illustrations of the exotic concept of non-random, “architectured 
swarm” (whether self-organized or not in their actual implementation). From left to right: CG 
animation of a car-shaped bird flock in a Citroën commercial (template-based trick); Olympic rings-
shaped fireworks in Beijing (five separate rocket launches); Actual image processing and tracking of 
the complex choreography of cell trajectories during zebrafish embryogenesis (Embryomics and 
Bioemergences project); Genuine surprising morphogenetic self-organization in a simulation of 
artificial collective motion mixing 4 different “species” (Sayama 2007). 

 
Projects 
 
This part presents three Alife projects that address all levels of system organization, multicellular 
morphogenesis, functional architectures, and population dynamics. Their topology can vary from 
regular or irregular lattices with nearest neighbor connectivity, to network topologies containing long-
range links. The former type is spatially extended, generally in 2-D or 3-D, while the latter type 
generally does not rely on a background notion of space or Euclidean distance. 
 
 
2.1. Project DEVO: Biological and Artificial Development 
 
Multi-agent modeling and simulation of the fundamental principles of the “self-made puzzle” of 
embryonic development, based on self-assembly, pattern formation and genetic regulation, with 
exportation to artificial systems.  
 
Abstract: The spontaneous making of an entire organism from a single cell is the epitome of a self-
organizing and programmable complex system. Through a precise spatiotemporal interplay of genetic 
switches and chemical gradients, an elaborate form is created without explicit architectural plan or 
engineering intervention. This original study, which I single-handedly designed and developed, 
proposes a multi-agent simulation and exploitation of these fundamental morphogenetic mechanisms. 
 
 
2.2. Project PROGNET: Programmed Attachment Networks 
 
The self-assembly of complex but precise network topologies by programmed attachment: An 
extension of the artificial development project from 2-D/3-D multicellular organisms to n-D 
networks. 
 
Abstract: In this original model of autonomous network construction and dynamics, which I created 
during a collaboration with Mihaela Ulieru (Canada Research Chair; Computer Science Department, 
University of New Brunswick), nodes execute the same program in parallel, communicate and 
differentiate, while links are dynamically created and removed based on “ports” and “gradients” that 
guide nodes to specific attachment locations. As the network expands, nodes switch different rules on 
and off, creating chains, lattices, and other composite topologies. 
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2.3. Project EVOSPACE: Spatial Evolutionary Dynamics 
 
A spatially extended model of endogenous speciation in the absence of external environmental 
constraints. 
 
Abstract: A commonly held view in evolutionary biology is that speciation, i.e., the emergence of 
genetically distinct and reproductively incompatible subpopulations, is driven by external 
environmental constraints. Guy Hoelzer, Rich Drewes (University of Nevada, Reno) and myself 
have developed a spatially explicit model of a biological population to study the emergence of spatial 
and temporal patterns of genetic diversity in the absence of predetermined domains. We propose a 
2-D cellular automata model showing that an initially homogeneous population might spontaneously 
segment into different species through sheer isolation by distance. 

10 
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2.1. Project DEVO: Biological and Artificial Development 
 
Multi-agent modeling and simulation of the fundamental principles of the “self-made puzzle” of 
embryonic development, based on self-assembly, pattern formation and genetic regulation, with 
exportation to artificial systems.  
 
The spontaneous making of an entire organism from a single cell is the epitome of a self-organizing 
and programmable complex system. Through a precise spatiotemporal interplay of genetic switches 
and chemical gradients, an elaborate form is created without explicit architectural plan or engineering 
intervention. This original study, which I single-handedly designed and developed, proposes a multi-
agent model and simulation (or, equivalently, “agent-based” model; see Macal & North 2006, Treuil 
et al. 2008) to understand and exploit these fundamental morphogenetic mechanisms. 
 
Overview: From Embryogenesis to Embryomorphic Engineering 
 
On the one hand, research in self-assembling (SA) systems, whether natural or artificial, has 
traditionally focused on pre-existing components endowed with fixed shapes (e.g., Whitesides & 
Grzybowski 2002). Biological development, by contrast, dynamically creates new cells that acquire 
selective adhesion properties through differentiation induced by their neighborhood (e.g., Wolpert et 
al. 2006). On the other hand, biological pattern formation (PF) phenomena (Turing 1952, Gierer & 
Meinhardt 1972, Young 1984, Nijhout 1990, Kondo & Asai 1995, Meinhardt 1998) are generally 
construed as orderly states of activity on top of a quasi-continuous and fixed 2-D or 3-D cell substrate. 
Yet, again, the spontaneous patterning of an organism into regions of gene expression arises within a 
multicellular medium in perpetual expansion and reshaping. Finally, both phenomena (SA and PF) are 
often thought of in terms of stochastic events—whether mixed components that randomly collide in 
self-assembly, or spots and stripes that crop up unpredictably from instabilities in pattern formation 
(Fig. 2.1.1). Here too, these notions need significant revision if they are to be extended and applied to 
embryogenesis. Cells are not randomly mixed but pre-positioned where cell division occurs. Genetic 
identity regions are not randomly distributed but highly regulated in number and position. 
 

Figure 2.1.1: “Free” vs. 
“guided” morphogenesis. A 
simple activator-inhibitor model
with cellular automata, such as 
Young’s (1984), creates (a) 
stripes and (b) spots in variable 
positions and unpredictable 
numbers. By contrast, (c) the 
stripes and (d) the spots of 
developing animal segments are 
tightly controlled by multiple 
sets of genes, leaving very little 
room for chance arrangements 
(from Doursat 2008b).  

 
This work presents a spatial computational model of programmable and reproducible morphogenesis 
that integrates SA and PF under the control of a nonrandom gene regulatory network (GRN) stored 
inside each cell of a swarm. The differential properties of cells (division, adhesion, migration) are 
determined by the regions of gene expression to which they belong, while at the same time these 
regions further expand and segment into subregions due to the self-assembly of differentiating cells. 
To follow an artistic metaphor (Coen 2000), SA is similar to “self-sculpting” and PF to “self-
painting”. The model can be construed from two different vantage points: either (a) pattern formation 
on moving cellular automata, in which the cells spatially rearrange under the influence of their own 
activity pattern, or (b) collective motion in a heterogeneous swarm, in which the cells gradually 
differentiate and modify their interactions according to their positions and the regions they form. It 
offers a new abstract framework, which I call Embryomorphic Engineering (coined after 
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Neuromorphic Engineering) to explore the causal and programmable link from genotype to phenotype 
that is needed in many emerging computational disciplines, such as artificial embryogeny (Stanley & 
Miikkulainen 2003, Bentley & Kumar 1999, Miller & Banzhaf 2003). 
 
Summarized Description of the Model 
 
First, the motion of a homogeneous swarm of cells (pure SA) and the patterning by gradient 
propagation on a fixed swarm (pure PF) are introduced separately. Then, these two components are 
combined to form reproducible growing patterns (SA + PF). The genetic program controlling these 
arrangements inside every cell is also explained. Finally, this combination is repeated as modules 
(SA(k) + PF(k)) inside a larger, heterogeneous system to create complex morphologies by recursive 
refinement of details. 
 
Development of One Module 
 
Self-assembly by division and adhesion (SA) In its current version, the embryomorphic model 
consists of a 2-D swarm of cells with dynamically changing neighbor interactions calculated by a 
Delaunay-Voronoi tessellation (Fig. 2.1.2). Each cell follows two major laws of cellular biomechanics 
in a simplified format: (i) cell division, coded by a uniform probability p for any cell to split into two, 
and (ii) cell adhesion, represented by elastic forces derived from a quadratic potential V with resting 
length re, hard-core radius rc, and scope of visibility r0, similarly to collective motion models (Vicsek 
et al. 1995, Grégoire & Chaté 2004) but with a zero velocity vector. These parameters are collected in 
genotype GSA. Laws of motion are derived from a spring-damper system with negligible mass/inertia 
effects. Under potential V, starting from a compressed swarm, cells quickly relax to a resting state, in 
which they tend to form a quasi-regular hexagonal mesh. 
 

 
 

Figure 2.1.2: Deployment of a homogeneous swarm (SA). (a) Agent-level interaction potential V 
similar to elastic springs. (b) Relaxation of a 400-agent swarm from an initially compressed state. 
(c) The same swarm viewed from its mesh of pairwise interactions obtained by Delaunay triangulation 
and pruning of edges longer than r0. (d) Genetic SA parameters inside every agent (here, attractive 
mode only) (from Doursat 2008d). 
 

Propagation of positional information in gradients (PF-I) Pieces of a jigsaw puzzle are defined not 
only by their position and shape but also by the “image” they carry. In the self-organized swarm, this 
translates into state variables inside each cell that determine their PF activity. The present model 
distinguishes between two kinds of PF-specific state variables (i.e., signals that cells continuously 
exchange and process): gradient variables (PF-I) and pattern variables (PF-II). 

Gradient values (PF-I) propagate from neighbor to neighbor and establish positional information 
across the swarm (Wolpert 1969). For example, a cell W containing a counter variable gW = 0 
increments this counter to 1 before passing it to its neighbors, which in turn instruct their neighbors to 
set it to 2, and so on (Fig. 2.1.3). The result is a roughly circular wave pattern of gW values centered on 
W. Together with W, three other gradients, E, N and S contribute to form a 2-D coordinate system via 
“equatorial” midlines WE and NS (in which cells have identical counter values). Note that the four 
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sources W, E, N, S are not placed by hand but also self-position by migrating away from each other 
inside the swarm. Discrete counter increments and midlines are used to create positional information 
in amorphous and spatial computing systems, too (Coore 1999, Nagpal 2002, Beal & Bachrach 2006). 

 

 
 

Figure 2.1.3: Propagation of positional information (PF-I). (a) Circular gradient of counter values 
originating from source agent W (blue circles mark end points). (b) Same gradient values viewed by a 
cyclic color map. (c) Opposite gradient coming from antipode agent E. (d) Set of agents WE whose W 
and E counters are equal ±1. (e) Planar gradient triggered by WE. (f,g) Complete coordinate compass, 
with NS midline (from Doursat 2008d). 

 
Programmed patterning by gene expression levels (PF-II) Pattern values (PF-II) correspond to 
gene expression levels that are calculated on top of the X and Y gradient values to create different cell 
types (which in turn affect the SA behavior; see SA + PF integration below). This calculation relies on 
a gene regulatory network (GRN), whose weights constitute the genetic parameters of the PF process 
and are denoted by GPF (Fig. 2.1.4). Thus the core architecture of the virtual organism is a network of 
networks, i.e., an irregular 2-D lattice of identical GRNs locally connected to each other via “chemical 
signalling” nodes (Mjolsness et al. 1991, Salazar-Ciudad et al. 2000, von Dassow et al. 2000). 
 

 
 

Figure 2.1.4: Programmed patterning (PF-II). (a) The same swarm viewed under different colormaps 
highlighting the agents’ internal patterning variables X, Y, Bi and Ik (virtual equivalent of in situ 
hybridization in biology). (b) Consolidated view of all identity regions Ik for k = 1...9. (c) Gene 
regulatory network used by each agent to calculate its expression levels, here: B1 = σ(1/3 − X), B3 = 
σ(2/3 − Y), I4 = B1B3(1 − B4), etc. (from Doursat 2008d). 

 
The patterning process represents the emergence of heterogeneity, i.e., the segmentation of the swarm 
into “identity regions” corresponding to high levels of expression of particular genes Ik of the GRN. A 
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well-known example is the early striping of Drosophila (see review in Carroll et al. 2001) controlled 
by a 5-layer hierarchy of segmentation genes along the anteroposterior axis (maternal, gap, primary 
and secondary pair-rule, segment polarity). The present model relies on a 3-layer caricature of the 
same principle along the two intersecting X and Y axis: (1) the bottom layer of the GRN contains the 
two positional variables gWE and gNS seen above; (2) the middle layer contains “boundary” genes Bi 
that segment the embryo into horizontal and vertical half-planes of strong and weak expression levels 
via 2-D step functions; (3) the top layer contains the identity nodes Ik derived from positive and 
negative products of Bi’s, i.e., various intersections of the Bi half-planes. 
 
Simultaneous growth and patterning (SA + PF) After describing the self-assembly of a non-
patterned swarm (SA) and the patterning of a fixed swarm (PF), the embryomorphic SA and PF 
behaviors are combined to create growing patterns at every stage (Fig. 2.1.5). Cells continually adjust 
their positions according to the elastic SA constraints, while continually exchanging gradient values 
and PF signals over the same dynamic links. This dual dynamics is guided by the combined genotype 
G = (GSA, GPF). Daughter cells inherit all the attributes of mother cells, including G and internal PF 
variables (current gradient counters and gene levels). The SA variables (coordinates and 
adhesion/signalling edges of the lattice) are recalculated from a position close to the original cell. 
Both sets of variables are immediately updated, as the newly born cell starts contributing to SA forces 
and the traffic of PF gradients that maintain the pattern’s consistency at all times in the swarm. 
 

 
 
Figure 2.1.5: Simultaneous growth and patterning (SA+PF). (a) Swarm growing from 4 to 400 agents 
by division. (b) Swarm mesh, highlighting gradient sources and midlines. Gradients and pattern are 
continually maintained by source migration, e.g., N moves away from S and toward WE. (c) Agent B 
created by A’s division quickly submits to SA forces and PF traffic. (d) Combined genetic programs 
inside each agent (from Doursat 2008d). 

 
Multiscale Modular Development 
 
Modular, recursive patterning (PF[k]) Natural embryological patterns, however, do not develop in 
one shot but in numerous incremental stages (Coen 2000). An adult organism is produced through 
modular, recursive growth and patterning. In Drosophila, regions of the embryo that acquire leg, wing 
or antenna identity (“imaginal discs”) start developing local coordinate systems of morphogen 
gradients to support the prepatterning and construction of the planned organ (see review in Carroll et 
al. 2001). Correspondingly, the present embryomorphic model includes a pyramidal hierarchy of 
network modules able to generate patterns in a recursive fashion (Fig. 2.1.6). First, the base network 
GPF

(0) establishes main identity regions as above, then subnetworks GPF
(k) triggered by the identity 

nodes Ik of GPF
(0) further partition these regions into smaller, specialized compartments at a finer scale. 

This type of fractal patterning has also been explored in generative algorithms such as “L-systems” 
(Siero et al. 1982, Prusinkiewicz & Lindenmayer 1990). These systems, however, are mostly self-
similar, and use symbolic rules and explicit geometrical features instead of coupled dynamical units. 
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Figure 2.1.6: Modular, recursive patterning (PF[k]). (a) 9-region swarm, as in Fig. 2.1.4b. (b) Agents 
at the border between two domains are highlighted in yellow circles. (c) These border agents become 
new gradient sources (red circles) at a lower scale inside certain identity regions. (d) Missing border 
sources arise from the ends (blue circles) of other gradients. (e,f) Subpatterning of the swarm in I4 and 
I6. (g) Corresponding hierarchical gene regulation network (from Doursat 2008d). 

 
Modular, anisotropic growth (SA[k]) So far missing from the model is a true topological 
deformation dynamics, or “morphodynamics”, that can confer non-trivial shapes to the organic system 
beyond simple blobs. To this aim, cells must be able to diversify their SA characteristics, depending 
on their PF type and spatial position, thus closing the feedback loop between genetics and geometry 
(e.g., Coen et al. 2004). In particular, they have to exhibit inhomogeneous, anisotropic cell division 
(varying p) and differential adhesion (varying V). For example, the growth of limb-like structures can 
be achieved by a coarse imitation of meristematic plant offshoots (Fig. 2.1.7). In this process, only the 
tip or “apical meristem” of the organ is actively dividing at any time (whereby cells forming the tip 
self-identify as being the local maxima of a gradient generated by the base of the limb). Moreover, 
potential V is attractive only among cells within the limb region, while it is repelling between the limb 
and other areas. Just like inhomogeneous division, differential adhesion is an essential condition of 
complex shape formation (Hogeweg 2000, Marée & Hogeweg 2001). 
 

 
 

Figure 2.1.7: Modular, anisotropic growth (SA[k]). (a) Genetic SA parameters are augmented with 
repelling V values r'e and r'0 used between the growing region (green) and the rest of the swarm (gray). 
(b) Daughter agents are positioned away from the neighbors’ center of mass. (c) Offshoot growth 
proceeds from an “apical meristem” made of gradient ends (blue circles). (d) Cyclic coloring of the 
gradient underlying this growth (from Doursat 2008d). 

 
Modular growth and patterning (SA[k] + PF[k]) Putting everything together, full morphologies 
can develop and self-organize from a few cells (Fig. 2.1.8). These morphologies are complex, 
programmable and reproducible. They are architecturally complex because they can be made of any 
variety of modules and parts that are not necessarily repeated in any periodic or self-similar way. 
They represent programmable phenotypes emerging because they emerge from the same given 
genotype carried by every cell of the swarm. They are reproducible, as their structure and shape are 
not left to chance but tightly controlled by the genotype. Naturally, the exact positions of the cells at 
the microscopic level are still random, but not the positions of the mesoscopic and macroscopic 
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regions that they form. Moreover, the modularity of the phenotype is a direct reflection of the 
modularity of the genotype. The hierarchical SA and PF dynamics recursively unfolds inside the 
different regions and subregions that it creates. Each module G(k) = (GSA

(k), GPF
(k)) can be reused by 

exact duplication, but can also diverge from other blocks through different internal genetic SA and PF 
parameters, potentially giving each region a different morphodynamic behavior and different gene 
activity landscape. Duplication followed by divergence is the basis of serial homology (e.g., 
vertebrae, teeth, digits), a major natural evolutionary mechanism (Carroll et al. 2001). The integration 
between SA and PF is controlled by the identity nodes Ik: these nodes switch on the execution of 
subordinate modules G(k), i.e., their gene expression activity (parametrized by GPF

(k)) to create new 
local segmentation patterns, and their mechanical behavior (parametrized by GSA

(k)) to create new 
morphodynamical behaviors. 
 

 
 

Figure 2.1.8: Modular growth and patterning (SA[k] + PF[k]). (a) Example of a three-tier modular 
genotype giving rise to the artificial organism on the right. (b) Three iterations detailing the 
simultaneous limb-like growth process (Fig. 2.1.7) and patterning of these limbs during execution of 
tier 2 (modules 4 and 6). (c) Main stages of the complex morphogenesis, showing full patterns after 
execution of tiers 1, 2 and 3 (from Doursat 2008d). 

 
Evolution: The Generation of Variation by Modules 
 
This part presents preliminary experiments involving hand-made mutations of the genotypes of 
embryomorphic systems and their corresponding phenotypes. For now, these systems are purely 
developmental and do not serve a specific function. No organism “fitness” is defined (neither 
structural, nor functional) and no selection is performed by systematic search. This will be part of 
future projects (see below). The goal here is to illustrate the link between genotype modularity and 
phenotype modularity, and the programmable and predictable effect that mutations in the former can 
have on the evolution of the latter, via a self-organized developmental process, suggesting that 
modularity is an essential condition of evolvability (Schlosser & Wagner 2004, Callebaut & Rasskin-
Gutman 2005, Watson & Pollack 2005). 

Figures 2.1.9-11 show several examples of modular embryogenesis and how certain mutations in 
the genotype correlate with quantitative or qualitative changes in the phenotype. The organism of 
Fig. 2.1.9a is taken as the reference or “wild type”. To simplify the illustration, its genotype is 
composed of only two different modules: a base module establishing the body plan (lower module) 
and a specialized module in charge of growing a limb-like appendage (upper module). As described 
previously, each module consists of two types of “genes” or genetic parameters: self-assembly genes 
GSA, coding how cells divide and spread spatially, and pattern formation genes GPF, coding how cells 
acquire their types. In the simplified display of Figs. 2.1.9-11, the gene regulatory network of GPF is 
not shown. Instead, only the type of checkered pattern it produces (explained below) and the switch 
identity genes are displayed. 
 
Quantitative Variations 
 
Varying limb thickness by GRN weights (PF) In Fig. 2.1.9b, the same organism has been affected 
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by a “thin-limb” mutation of the base body plan. Although not shown, the weights of the base 
module’s gene regulatory network GPF have been modified in such a way that they now create a 
checkered pattern with a narrower central row allowing less space for the limbs to grow, hence 
making them actually thinner. The reverse, “thick-limb” mutation is shown in Fig. 2.1.9c, with 
coefficient 2. This is a good example of the compactness of the developmental genotype (Floreano & 
Mattiussi 2008, Stanley & Miikkulainen 2003) and its large-scale effect on the phenotype: just 
varying the sensitivity of a couple of genes can result in dramatic morphogenetic changes. 
 
Varying limb length by division signals (SA) By modifying the division rate and/or the stop 
conditions of proliferation, the size of various parts of the embryo can also be modulated. For 
example, in Figs. 2.1.9d and 2.1.9e cell proliferation is regulated only in the limbs, respectively by 
stopping it sooner (g’= 10) and later (g’= 40). In Fig. 2.1.9f, both body plan and limbs stop growing 
beyond gradient values g’= 8, producing a phenotypic shape that is proportionally smaller to the wild 
type. Note that similar effects can also be achieved by decreasing or increasing the probability of 
division p, while keeping the maximum gradient values constant (see Fig. 2.1.10c). 
 

 

 
 
Figure 2.1.9: Simulations from the multiagent model showing quantitative variations. (a)-(c) Varying 
limb thickness by modifying GRN weights (see text). (d)-(f) Varying length and size by stopping 
division earlier/later (see text) (from Doursat 2009g). 

 
Structural Variations 
 
Changing limb position by module switching In Fig. 2.1.10, the modularity of the limb component 
is demonstrated through various mutations reminiscent of experiments on biological organisms such 
as Drosophila. The identity genes marking the regions (“imaginal discs”) responsible for the growth 
of a specific appendage (see review in Coen 2000, Carroll et al. 2001) can be literally turned on or off 
in new regions with respect to the wild type of Fig. 2.1.9a. For example, in Fig. 2.1.10a, a virtual case 
of “antennapedia” (the growth of a leg where there should be an antenna) is obtained by connecting a 
new identity region to the limb module, here region I2 instead of region I6. This means rewiring the 
gene regulatory network GPF to reflect the fact that the limb genes’ regulatory sites in the DNA have 
mutated and now accept gene I2’s proteins as a promoters instead of gene I6’s proteins. In the three-
limb mutation of Fig. 2.1.10b, these regulatory sites have duplicated themselves before mutating, 
accepting gene I2 in addition to gene I6 (not just in replacement), so that the limb module is now 
executed three times instead of twice. 
 
Serial homology by duplication & divergence Later in the course of evolution, similar copies of the 
same organ can diverge and acquire specialized characteristics, as Fig. 2.1.10c illustrates. In this 
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scenario, three copies of the entire limb module were produced by duplication. Then, these copies can 
mutate independently from each other, e.g., through different cell division rates p’ creating a shorter 
or longer limbs. Serial homology is a major evolutionary process, resulting from duplication followed 
by divergence (Carroll 2005, Gerhart & Kirschner 2005). Biological organisms often contain 
numerous repeated parts in their body plan. This is most striking in the segments of arthropods 
(several hundreds in millipedes; see the simulated “arthromorphs” of Dawkins 1996) or the vertebrae, 
teeth and digits of vertebrates. After duplication, these parts tend to diversify and evolve more 
specialized structures (lumbar vs. cervical vertebrae, canines vs. molars, etc.). Homology exists not 
only within individuals but also between different species, as classically shown by comparing the 
forelimbs of tetrapods from the bat to the whale. Homology could also be explored as an important 
routine of artificial self-developing systems. 
 

 
 
Figure 2.1.10: Simulations showing structural variations. (a)-(c) Changing limb configuration by 
switching the limb-triggering genes and/or duplicating the limb module (see text). (d)-(e) Adding limbs 
by body plan expansion (see text) (from Doursat 2009g). 
 

Adding limbs by body plan expansion In the scenario of Fig. 2.1.10d-e, new limbs are generated not 
by reusing the same body plan differently (Fig. 2.1.10a-b) or by duplicating the limb module 
(Fig. 2.1.10c), but rather by expanding the gene regulatory network GPF of the body plan in order to 
create new regions of gene identity that can host limb growth. The embryo’s geography is increased 
from a 3×3 = 9-type checkered pattern to a 5×3 = 15-type (Fig. 2.1.10d) or a 9×3 = 27-type pattern 
(Fig. 2.1.10e). The SA part of the body plan is also slightly modified to accommodate these new 
regions. It assumes an oval shape resulting from a nonuniform distribution of the division rate p that 
follows the NS midline gradient (see Fig. 2.1.3), i.e., greater toward the north and south poles and 
lower in the center. 
 
Adding digits by modular hierarchy Finally, along the same principles, Fig. 2.1.11 shows a few 
cases of simulations of three-tier organisms. Fig. 2.1.11a is taken as the new wild type. After the 
usual development of two limbs from the 3×3 body plan, extra “digits” grow from these limbs, guided 
by the top module of the hierarchical genotype. To make room and support the growth of these new 
digits, limbs have expanded their internal pattern from 1×1 to 2×4 (see previous section). Fig. 2.1.11a 
presents a double bilateral symmetry, with respect to both horizontal and vertical axes. Fig. 2.1.11c is 
a further mutation of Fig. 2.1.11b, in which region I6’s limb has accelerated its growth and expanded 
its checkered pattern to support the development of two new digits, whereas, on the contrary, region 
I4’s limb has continued to regress back to an undifferentiated stump. Figure 2.1.11d gives an overview 
of a possible phylogenetic tree based on the different forms detailed above. Dashed branches suggest 
“convergent” speciation pathways. 
 
Future Directions 
 
Embryomorphic engineering is inherently interdisciplinary, as it closely follows biological principles 
at an abstract level, but does not attempt to model detailed data from real genomes or organisms. 
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Thus, it sits at crossroads between different families of works, from developmental and systems 
biology to artificial life, in particular spatial computing, evolutionary programming and swarm 
robotics. It is an original attempt to integrate the three mechanisms of SA, PF and GR discussed 
above. Only few previous theoretical models of biological development or bio-inspired artificial life 
systems have combined them in various ways. The evo-devo works of Eggenberger (1997), Hogeweg 
(2000), Salazar-Ciudad & Jernvall (2002), or with lesser morphogenetic abilities Shapiro et al. (2003), 
Nagpal (2002), are among these notable achievements. Other interesting studies have explored the 
combination of two out of three: SA and PF, no GR—self-assembly based on cell adhesion and 
signalling pattern formation, but using predefined cell types without internal genetic variables (e.g., 
Marée & Hogeweg 2001); PF and GR, no SA—non-trivial pattern formation from instruction-driven 
intercellular signalling, but on a fixed lattice without self-assembling motion (e.g., von Dassow et al. 
2000, Coore 1999); SA and GR, no PF—heterogeneous swarms of genetically programmed, self-
assembling particles, but in empty space without mutual differentiation signals (e.g., Sayama 2007). 
 

  

(d) 

 
Figure 2.1.11: (a)-(c) Adding digits via a third tier in the modular hierarchy of the developmental 
genotype (see text). (d) A possible phylogenetic tree (from Doursat 2009g). 

 
Abstracting from biological development, an important goal is also to contribute to a novel 
engineering paradigm of system assembly that would replace omniscient architects with large-scale 
decentralized collectivities of agents. Many research works (see next section) have investigated the 
possibility of obtaining self-formation capabilities from a variety of complex computing components: 
nano-units, software agents, robot parts, mini-robots, etc. Since functionality is distributed over a 
great number of components, it would be an insurmountable task to assemble and instruct each of 
them individually. Rather, in a way similar to biological cells, these components should be easily 
mass-produced, initially as identical copies of each other, and only acquire their specialized positions 
and functions by themselves within the system, once mixed together (Abelson et al. 1999). Thus 
beyond the proof-of-concept simulations presented above, a more systematic exploration is needed. 
The next steps must involve the mass-production of virtual organisms during an evolutionary search. 
This in turns requires the definition of a purpose or function to these organisms, and a fitness 
functional of how well this function is fulfilled by each developed individual. 
 
From form to function While the task of “meta-designing” laws of artificial development inspired 
from biology is challenging, it only constitutes the first part of an embryomorphic engineering effort. 
Another important question is functional meta-design: once a self-developing infrastructure is mature, 
what computing capabilities can it support? What do its cell-agents and organ-regions actually 
represent in practice? In biological organisms, although cell physiology often partakes in development 
(e.g., electrical signals of neurons guiding synaptogenesis), there seems to be a broad distinction 
between developmental genes and the rest of the genome. In computing systems, these two modes 
could also be decoupled into two different sets of agent variables. After reaching developmental 
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maturation, and while still fulfilling maintenance and self-repair tasks, the morphogenetic SA and PF 
activity (i.e., division, position information and patterning signals) would give way to another type of 
activity subserving functional computation. Obviously, the type of computation would entirely depend 
on the nature of the agents. 

In fact, in many computing domains, the problem is reverse: there is already a demand for precise 
self-formation capabilities in a variety of distributed systems made of otherwise functionally 
computing agents, and morphogenetic-like approaches have also been proposed in some applications. 
For example, MIT’s “amorphous computing” has set the stage for a myriad of micro-processors 
containing the same instructions to self-organize without exact blueprint map or functional reliability, 
unlike traditional VLSI (e.g., Abelson et al. 1999, Coore 1999, Nagpal 2002). Such self-assembling 
components can also represent mobile sensors and actuators in complex self-managing networks 
(Beal & Bachrach 2006). In software applications (servers, security, etc.), a swarm of small-footprint 
software agents could diversify and self-deploy to achieve a desired level of application functionality 
and service (e.g., “immune” security; Hofmeyr & Forrest 2000). In robotics, too, whether articulated 
parts of reconfigurable devices (Lipson & Pollack 2000, Komosiński & Rotaru-Varga 2001, Hornby 
& Pollack 2002, Goldstein et al. 2005), or mobile formations of mini-robots (Gross et al. 2006, 
Christensen et al. 2007, Winfield et al. 2005), there is also great demand for guidance by complex but 
controllable morphologies. It is also an important challenge in complex techno-social networks made 
of myriads of mobile devices, software agents and human users, all relying on local rules and peer-to-
peer communication (Dressler 2007; see Section 2.2 below). 
 
From ontogeny to phylogeny After adding function to growth, one must also define how the 
embryomorphic system evolves, i.e., how it varies (randomly) and how it is selected (non-randomly). 
Different selection strategies are possible, either focusing on prespecified forms, or prespecified 
functions, or allowing unspecified outcomes. When selecting for form, a hard reverse engineering 
problem must be addressed: given a desired phenotype, what is the genotype that can produce it? 
While deterministic reverse compilation is possible in some cases (Nagpal 2002), parameter search is 
difficult in general. Fitness criteria that reward only the target shapes create jagged landscapes of 
unreachable peaks. A smoother approach is to define a “shape distance” as an increasing function of 
favorable mutations. It is conjectured here that this kind of gradual search might actually benefit, not 
suffer, from the high genotype dimensionality of an embryomorphic model, compared to the direct 
mappings of genetic algorithms. Hierarchical gene regulatory networks might be better at providing 
the fine-grain mutations required by the gentle-slope search toward increasingly sophisticated 
innovation (Dawkins 1996, Nilsson & Pelger 1994). Complex systems inherently have greater 
variational power, as they allow combinatorial tinkering on highly redundant parts. 

However, beside gaining self-repair properties, why constrain a self-assembling system to 
produce a predefined shape? More benefits might come from such systems by selecting for function 
while leaving freedom of form. Gradual optimization could rely on a distance of performance to 
predefined goals, instead of shapes, allowing the most successful candidates to reproduce faster and 
mutate. Functional selection under free form or organization is the strategy adopted by most 
evolutionary computation works that also contain elements of distributed architectures or (small-size) 
complex systems. For example, this is the case of the logical functions computed by randomly 
composed multi-instruction programs in Avida (Lenski et al. 2003), the locomotion abilities created 
by randomly articulated multi-segment robots in Golem (Lipson & Pollack 2000) or Framsticks 
(Komosinski & Ulatowski 1999), or the shooting skills of intelligent video game agents emerging 
from randomly assembled multi-neuron networks in NERO (Stanley et al. 2005). However, most of 
these works are based on macroscopic genotype-phenotype encodings. Again, it is argued here, 
although not yet proven, that a larger number of agents, such as in multicellular embryogenesis, 
would be even more favorable to a successful evolutionary search. 
 
Spinoff Projects 
 
In summary, I intend to push the DEVO project from its current abstract state into two directions: one 
direction toward more realistic biological development and one direction toward more practical 
artificial development. 

20 



René Doursat  Habilitation à Diriger des Recherches 

Biological development: Toward a more realistic model of morphogenesis 
• add more realistic details derived from biological observations and measures of multicellular 

developmental behavior 
• design a more sophisticated model of biomechanics (the “SA” part), based on 3-D polygonal 

cell geometry and active structural reshaping (e.g., tensegrity) 
• use a finer model of gene regulation dynamics (the “PF” part), based on differential equations 

of concentration kinetics in recurrent gene circuits (Sharp & Reinitz 1998), and the concept of 
dynamical “attractor” states (Kauffman 1969, 1993) 

• fine-tune the parameters of, and mutual feedback between, biomechanics and gene regulation 
by conducting an evolutionary exploration of the genotype → phenotype causal link, where the 
fitness function is defined as the resemblance with specific stages of natural embryogenesis 
(epiboly, gastrulation, somitogenesis, etc.) 

 
Artificial development: Toward a more practical morphogenetic engineering system 
• build an application of morphogenetic self-formation to swarm robotics (virtual and physical) 
• establish a link with spatial and amorphous computing, e.g., reimplement the model in MGS 

language (Giavitto & Michel 2002, Giavitto & Spicher 2008) or MIT’s Proto language (Beal & 
Bachrach 2006) 

• study the balance between endogenous dynamics and environmental influences (polymorphism) 
• demonstrate the theoretical usefulness of “devo” in “evo” through quantitative, statistical 

measures over many trials 
 
These future directions will take shape through several “spinoff projects”, each in collaboration with 
one or more colleagues whom I personally know: either we are already close collaborators, or we 
have frequently met, or at the minimum I have already visited them in their lab and have had 
extensive discussions with them. They all have expressed a clear interest in working or continuing to 
work with me on these topics. 
 
Project DEVO-MECAGEN 
 
How the embryomorphic DEVO model can expand into a biologically realistic multiscale 
computational and mathematical model of animal morphogenesis, based on mechano-chemical 
coupling between genetic and cellular dynamics. 
 
Collaborators: Nadine Peyriéras, Development, 
Evolution, Plasticity of the Nervous System 
(DEPSN), CNRS, Gif-sur-Yvette – Paul Bourgine, 
Center of Research in Applied Epistemology 
(CREA), Ecole Polytechnique, Paris – Julien Delile, 
PhD student, “Frontiers in Life Sciences” Doctoral 
Program. 
 
Abstract: [From our common ANR grant 
application Mecagen, February 2009] This project 
aims to construct a theoretical model of the 
multiscale dynamics of the early stages of animal 
morphogenesis, under the control of quantitative 
reconstructions of experimental development. This 
theoretical reconstruction will take the form of a 
discrete multi-agent computational model combined 
with a continuous mathematical formulation. In this 
approach, embryonic development is construed as an 
emergent, self-organized phenomenon based on the 
individual behavior of cells and their genetically 

Figure 2.1.12: Top: 3-D voxel snapshot of a 
developing zebrafish and its reconstruction by 
image processing (Embryomics and BioEmergences
projects). Bottom: Preliminary 3-D embryomorphic 
simulations (DEVO-MECAGEN project). 
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regulated, and regulating, biomechanics. Measurements will be made from 4-D imaging observations 
of the first 15 hours of a model vertebrate’s embryogenesis—the zebrafish Danio rerio. The 
MECAGEN project will draw from the previous FP6-NEST projects Embryomics and BioEmergences 
to implement (a) the quantitative multiscale reconstruction of the morphodynamics of Danio rerio’s 
early embryogenesis, from the egg to the beginning of somitogenesis, and (b) the modeling of the 
gene regulation, cellular dynamics and biomechanical constraints that govern morphogenesis 
(Fig. 2.1.12). Model and experiments will be coupled in a feedback loop, whereby the model is 
optimized and falsified by experimental trials of gain and loss of function. 
 
Project DEVO-SYNBIOTIC 
 
Translation of the basic principles of the embryomorphic DEVO model (pattern formation, 
collective motion, and gene regulation) into a stack of formal languages ultimately compiled and 
implemented in a synthetic biological substrate or “bioware”. 
 
Collaborators: Jean-Louis Giavitto, Computer Science, Integrative Biology and Complex Systems 
(IBISC), Université d’Evry Val d’Essone / Genopole – Olivier Michel and Antoine Spicher, 
Laboratory of Algorithmic, Complexity and Logic (LACL), Université Paris 12 Val-de-Marne 
 
Abstract: [From our common ANR grant application Synbiotic, January 2010] Synthetic biology is 
an emerging science that promotes a standardized design and manufacturing of biological system 
components without natural equivalents (Endy 2005). It is currently in search of design principles to 
achieve a reliable and secure level of functionality from reusable biological parts (such as BioBricks; 
Knight 2003). Beyond genetic engineering problems, which require the development of dedicated 
software tools, computer scientists identify this challenge with systems design (e.g., electronic circuits 
or large software systems). In this context, the objective of DEVO-SYNBIOTIC is to design and 
develop tools to literally “compile” (as in programming languages) the overall behavior of a 
population (of bacteria) into cellular processes local to each entity (one bacterium). The ultimate 
motivation is to exploit the collective properties of a bacterial population to create artificial 
biosystems that can meet various needs in the fields of health care, nanotechnology, energy and 
chemistry. This long-term core research project is a type of “unconventional” computing at the 
interface between computer science and biological engineering. It relies on the development of new 
approaches (spatial computing, amorphous and autonomic computing) to deal with new classes of 
applications characterized by the emergence of global behaviors in a large population of entities that 
are irregularly located and dynamically interconnected. 
 
Project DEVO-EVO 
 
Using the embryomorphic DEVO model as a virtual phenotype platform for the theoretical 
exploration of “tinkered” and convergent evolution, in particular through the duplication and 
rewiring of complex gene regulation networks. 
 
Collaborator: Ricard Solé, Complex Systems Lab, Catalan Institution for Research and Advanced 
Studies (ICREA), Universitat Pompeu Fabra, Barcelona 
 
Abstract: [From RS’s James S. McDonnell Foundation Research Award Origins of Innovation in 
Tinkered Networks, 2006] Nature abounds in complex forms and structures and seems to have an 
infinite power of generating complexity. Yet, biological complexity is the result of an apparently 
inefficient mechanism of change: tinkering. Indeed, evolution operates by extensively reusing 
previous structures, and it is unable to “foresee” the future, as an engineer would. An additional 
feature of evolution is the presence of widespread convergence of innovations: common solutions are 
found to common problems. Evolution often reinvents similar structures and functional traits by 
tinkering from available components, as if only some special solutions could be achieved. Are there 
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common rules imposing limitations on what is possible? This project involves an exploration of the 
question of how tinkered evolution generates successful innovations and why these innovations 
usually converge to common solutions. Complex networks, such as gene regulatory networks, have 
been shown to display common patterns of organization, often resulting from simple rules of 
duplication and rewiring. Tinkered networks exhibit a high fragility under the removal or damage of 
hubs and a high robustness under random mutations. The presence of these common traits might 
pervade the convergent designs found in nature. Understanding the origins of this dual character of 
tinkering, i.e., its efficiency and limited repertoire, can be achieved by studying the underlying 
landscapes where these evolutionary paths take place. A model of development of embodied 
organisms will be constructed in order to explore the requirements for pattern formation to allow 
animal diversity to emerge and flourish, and determine the role of emergent dynamics versus selection 
under tinkered evolution. 
 
Project DEVO-PROTO 
 
Construing the embryomorphic DEVO model as a spatial computing paradigm, and porting it to 
the MIT Proto language. 
 
Collaborator: Jacob Beal, BBN Technologies / Computer Science and Artificial Intelligence 
Laboratory (CSAIL), MIT, Cambridge, Massachusetts 
 
Abstract: [From JB’s original programming language Proto; Beal & Bachrach 2006] Many complex 
systems are “spatial computers”—collections of local computational devices distributed through a 
physical space, in which the difficulty of moving information between any two devices is strongly 
dependent on the distance between them, and the “functional goals” of the system are generally 
defined in terms of the system’s spatial structure. Systems that can be viewed as spatial computers are 
abundant, both natural and man-made, and include sensor networks, robotic swarms, engineered 
biofilms, cells during morphogenesis, ad-hoc peer-to-peer wireless networks, cellular automata, and 
FPGAs. MIT Proto is a language and toolkit that makes it easy to write complex programs for spatial 
computers using a continuous space abstraction. Rather than describe the behavior of individual 
devices, the programmer views the space filled by the devices as an amorphous medium—a region of 
continuous space with a computing device at every point—and describes the behavior of regions of 
space. These programs are automatically transformed into local actions that are executed 
approximately by the actual network of devices. When the program obeys the abstraction, these local 
actions reliably produce an approximation of the desired aggregate behavior. 
 
Project DEVO-BOTS 
 
How the embryomorphic DEVO model can be expanded and applied to large swarms of robots that 
evolve and adapt together into different organisms based on bio-inspired approaches. 
 
Collaborators: Alan F. T. Winfield, Faculty of Environment and Technology, Bristol Robotics Lab 
(BRL), University of the West of England, Bristol – and/or – Marco Dorigo, Institut de Recherches 
Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université Libre de 
Bruxelles 
 
Abstract: [Text example from the FP7-FET project Symbrion, in which BRL is a partner] The aim is 
to investigate and develop novel principles of behavior, adaptation and learning for self-assembling 
robot “organisms” based on artificial evolution and evolutionary computational approaches 
(Fig. 2.1.13). The plan is to combine bio-inspired evolutionary paradigms with robot embodiment and 
swarm-emergent phenomena thus enabling the “organism” to autonomously manage its own hardware 
and software organization. We hope that such artificial organisms will become self-configuring, self-
healing, self-optimizing and self-protecting from hardware and software points of view. This may lead 
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not only to extremely adaptive, evolvable and scalable robotic systems, but might also enable the 
robot organisms to reprogram themselves without human supervision; to develop their own cognitive 
structures and, finally, to allow new functionality to emerge: the most suitable for the given situation. 

Symbrion will for the first time consider a truly 
symbiotic multi-cellular construction of real-
world artificial organisms. Elementary robots 
equivalent to single cells will build artificial-life-
forms with a central nervous system, common 
energy resources and homoeostasis at the level of 
the whole organism. The heterogeneous 
elementary robots will be capable of autonomous 
aggregation and disaggregation into/from the 
organism (without human assistance) and will be 
capable of autonomous energy collection 
(survival) in their habitat. 
 

Relevant Publication

Figure 2.1.13: Project Symbrion’s mockup 
illustration (from http://www.symbrion.eu)
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2.2. Project PROGNET: Programmed Attachment Networks 
 
The self-assembly of complex but precise network topologies by programmed attachment: An 
extension of the artificial development project from 2-D/3-D multicellular organisms to n-D 
networks. 
 
In this original model of autonomous network construction and dynamics, which I created during a 
collaboration with Mihaela Ulieru (Canada Research Chair; Computer Science Department, 
University of New Brunswick), and which was later implemented under my guidance by Adam 
MacDonald, MSc student at UNB, nodes execute the same program in parallel, communicate and 
differentiate, while links are dynamically created and removed based on “ports” and “gradients” that 
guide nodes to specific attachment locations. As the network expands, nodes switch different rules on 
and off, creating chains, lattices, and other composite topologies. 
 
Introduction 
 
Imagine self-assembling circuits, computers, cars, buildings, etc., composed of a swarm of small 
components, parts, and modules (self-propelled or carried by mini-robots) that would aggregate in an 
orderly fashion without following a central direction or global blueprint. Imagine a self-reconfiguring 
manufacturing plant (Ulieru et al. 2002), a self-stabilizing energy grid (Silberman 2001, McMillin et 
al. 2006, Grobbelaar & Ulieru 2006, Carreras et al. 2009), or a self-deploying emergency taskforce 
(Ulieru & Unland 2004), all relying on a myriad of mobile devices, software agents and human users 
that would build their own network on the sole basis of local rules and peer-to-peer communication. 
Whether in 3-D devices or n-D techno-social webs, decentralized automation based on emergent 
architectures promises to be the new paradigm of systems engineering and control. Traditionally, the 
role of an engineer is that of an active designer, who enforces hierarchical, top-down, linear 
thinking—even if “complicated”, but not “complex”. By contrast, new types of unplanned emergent 
behavior lead the engineer to only guide existing bottom-up interactions among a multitude of 
components (Carreras et al. 2007, 2009, Ulieru 2007). We need to design for emergence, i.e., for 
systems that fundamentally and continually adapt and evolve. It is hoped that it would bring many 
beneficial “self-x” properties improving, complementing or even replacing current human-led design 
and planning efforts (Boardman & Sauser 2007). For example, it could allow remote operations in 
hostile places, faster organization without the usual delays tied to a central command node, greater 
robustness and reactivity to new events or environments, better scalability if the system needs to 
grow, and possibly the greatest achievement of all: the ability to learn and evolve. 

The past few years have seen a remarkable increase in research activities across many disciplines 
to bring this future closer to us. In fact, the march toward decentralization and self-organization has 
already spontaneously begun—but we are not prepared for it. The explosion in size and complexity of 
information and communication technologies (ICT) and, generally, all networked systems (Internet, 
utility infrastructures, business, urban planning, transportation, military, health, etc.) has preceded our 
ability to fully master them. To some degree, engineers and planners are losing sight of their own 
creation, which has grown beyond the capacity of a single mind. Considering how Internet, for 
example, has evolved into today’s complicated network prone to many pitfalls (Willinger & Doyle 
2002), one notices that the classical engineering paradigm has in fact led to a spiral of increasing but 
unwanted complexity characterized by continual “patching”, hence fragility. The traditional view of 
control engineering is that the controller is a separate entity that monitors and affects the main system, 
generally by feedback from its output variables onto its input variables (Isermann 1981). In the 
paradigm shift towards emergent engineering, this system/controller pair becomes fragmented into a 
myriad of micro-system/micro-controller pairs (represented in the model below as simple agents and 
their individual rules; see also Müller-Schloer & Sick 2008). Rather than attempting to stabilize the 
whole complex system in a centralized manner, the emergent controller is implemented in the form of 
generic control mechanisms located in every component. 

Thus instead of trying to cling to an increasing elusive global control, we should now ride the 
wave of complexity and focus on the generic and distributed conditions that will organize it. It 
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becomes necessary to drastically revise the traditional top-down perspective on systems design and 
control, which aimed at imposing order exogenously, and rather let systems grow, function, and 
stabilize—even adapt and improve—endogenously, in a bottom-up fashion. In future emergent 
engineering, the role of humans toward machines will shift from “micro-managers” to “lawmakers”. 
 
An Abstract Model of Self-Made Network 
 
Toward this goal, I present here an original model of autonomous network construction and dynamics, 
which I created as a generalization of the embryomorphic project (Section 2.1) from 2-D/3-D 
multicellular organisms to n-D networks, and its potential for concrete applications. The challenge is 
to design a set of rules or protocols that individual agents in a multitude should follow to 
independently create links between each other, such that the end result is a network that consistently 
represents an intended structure. This ability to form programmed structures in a distributed, self-
organized way, can be then applied to a number of real-world situations where networking accuracy 
and reliability is important. Here, agents will be called “nodes”, which can for example represent 
human users equipped with personal digital assistant (PDA) devices communicating via wireless 
connectivity. They can also represent software agents (see, e.g., Wooldridge 2002) acting as proxies 
for physical machines, devices or other resources that need to function together, e.g., in a 
manufacturing chain. In any case, nodes execute the same program in parallel, but gradually 
differentiate according to local and limited positional information. The self-assembly program carried 
by each node includes routines for the exchange of messages and the dynamical creation or removal 
of links. It relies on a combination of “ports” and internal state variables derived from discrete 
“gradients”. Ports and gradients guide the new nodes to specific attachment locations in the 
developing network. As the network expands and node positions change, nodes adapt by switching 
different subsets of rules on or off—analogous to gene activation/repression in biological DNA—thus 
triggering the growth of specific structures. 

This part describes the basic mechanisms used by the model of self-constructing networks from 
an abstract viewpoint. We start with elementary chains and lattices, and progress toward more 
complicated, composite topologies, including branching and randomized redundancy. Initially, a 
simulation consists of an empty system with no nodes. Over time, the system periodically adds new 
nodes, which communicate and form a network of links in order to build a specifically engineered 
structure. This global structure is geometrically predesigned, but the local rules within the nodes take 
a different form. They represent a logical program of instructions, which is identical in each node and 
defines its actions given a specific state of the information it contains. 
 
Constructing simple chains Chains are the simplest self-assembling structures. In this first scenario, 
nodes possess two ports, X and X’, and two corresponding gradient values x and x’. Ports can be 
“occupied” (linked to other node ports) or “free” (not linked), while free ports can be “open” 
(available for a link) or “closed” (disabled). New nodes that just arrived in the system’s space, or 
nodes that are not yet connected, have both ports open and gradients set to 0. A node i can create a 
link with another node j only through a pair of complementary open ports, here X and X’, with one 
link per port. Thus the only possible links between i and j are iX ↔ jX’ and iX’ ↔ jX. As soon as a new 
link is made, its two ports are occupied, i.e., cannot accept new links, and gradients are immediately 
updated according to the following rules: (a) a free port always maintains its value at 0 (gradient 
source), and (b) value x is sent out on link X’ → X with an increment of +1, so that X receives a new 
value x’ = x + 1 (and conversely with x’, X → X’ and x = x’ + 1). This is similar to the gradient rule of 
the embryomorphic model presented in Section 2.1. 

Figure 2.2.1 shows the self-assembly of a short chain. A new node can connect to any available 
open and complementary port at random, including the most recent and oldest nodes of the chain: all 
valid links (here, two at any time) have an equal probability to be formed. The gradient counters keep 
track of the nodes’ positions in the chain. This allows, for example, to build chains of a fixed length n 
by closing any remaining open ports as soon as x + x’ = n − 1. Again (see Section 2.1), discrete 
counter increments are also the method of choice for spreading positional information in amorphous 
and spatial computing systems (Coore 1999, Nagpal 2002, Beal & Bachrach 2006). In the present 
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model, the role of the gradient source can be transferred to another node, thereby shifting gradient 
chains in successive corrective waves, as nodes continually communicate with each other to adjust 
their counters. Figure 2.2.1b shows an example of a step-by-step decomposition of a gradient update 
after a new node (dashed) has connected to the system. In general, the new x value of a node i, 
denoted by xi(t+1), is set to xj(t) + 1 if j is the neighbor attached to iX (same with x’ and iX’). This 
ensures a natural propagation of gradient value corrections and converges after O(n) time steps. 

 

 
 
Figure 2.2.1: Self-assembly of a simple chain. (a) The five main steps leading to a 5-node chain. 
Through the link creation routine, incoming nodes attach to either open ports, X or X’ (dark blue), of 
the forming chain. When a link is created, its ports become “occupied” (light blue) and gradient values 
are updated in all nodes (see b). When chain length is 5 (i.e., x + x’= 4), all open ports are closed (gray; 
see c). (b) Detailed substeps of the value-passing gradient update routine. (c) Port management routine 
of the “DNA” program in each agent: ports close when length is 5 (from Doursat & Ulieru 2008b). 

 
Node routines Thus all nodes carry the same program (their “genotype” or “DNA”), which consists 
of three main routines: gradient update (G), port management (P), and link creation (L). The gradient 
update routine G (explained above, see Fig. 2.2.1b) is generic code that provides nodes with the 
positional information they need to make further decisions, and is used in all network structures (see 
next sections). The port management routine P (Fig. 2.2.1c) contains the heart of the logic that is 
specific to the topology of a target architecture—whether a chain, a lattice or a more complicated 
composite graph. For example, in the case of a 5-node chain, it simply commands a node to shut its 
ports whenever x + x’ = 4 (the “open” and “close” commands apply only to free ports, and are ignored 
on occupied ports). Finally, the link creation routine L (Fig. 2.2.1a) is also generic logic that prompts 
new nodes to pick one of the open ports of the network at random to make a new connection. 
Routines G and P are executed only by the nodes that are already involved in the network, paving the 
way for newcomer nodes to execute routine L. 

 
Lattice formation by guided attachment With two pairs of ports, (X, X’) and (Y, Y’), and two pairs 
of associated gradient variables (x, x’) and (y, y’), also set to 0 when the node is new, lattices can grow 
(Fig. 2.2.2). Here, two nodes i and j can form four possible links involving pairs of complementary 
ports, i.e., iX ↔ jX’ or iX’ ↔ jX or iY ↔ jY’ or iY’ ↔ jY (Fig. 2.2.2a). If left without structure-specific 
constraints (i.e., only routines G and L, but no P), the networking process will grow branches that 
criss-cross randomly, where each branch maintains its own gradient system along its length 
(Fig. 2.2.2b). To be able to program a more orderly network, such as a regular square lattice of fixed 
size n × m, routine P must contain specific port-shutting commands that strictly regulate the pool of 
open ports at any time during the life of the structure. Node attachment must be directed toward a 
restricted set of available locations, resembling blinking beacons on a landing runway (Fig. 2.2.2c). 
Then, through routine L, a new node can randomly choose among one of these few locations. 
 
Robustness by cluster redundancy The previous examples involved exact structures of connections 
that were programmed at node-level by a (quasi) deterministic algorithm. Despite minimal 
randomness in the choice of locations for new attachments, there was a unique possible final outcome: 
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a chain or a lattice planned in advance. While we want to preserve this essential aspect of 
programmability (the whole focus of this work), it is also important to reintroduce an element of 
variability and redundancy in the system—albeit at a smaller scale. In biological development, the 
position and number of individual cells is very imprecise, while the structures and organs they form 
are reliably placed. Similarly, programmed network self-assembly can also afford to be irregular at the 
microscopic level of the nodes, while retaining an orderly arrangement at the higher, mesoscopic 
levels of clusters of nodes. 
 

 
 
Figure 2.2.2: Self-assembly of a lattice. (a) Nodes have four ports, X, X’, Y, and Y’, and can form 
either X↔X’ or Y↔Y’ links. (b) Without any port management routine P, node chains (schematized by 
curved lines) form and intersect in a random manner. (c) Condensed view of an example of 5×3 lattice 
self-assembly in oderly “waves” of node attachment: the only available spots offered by open ports are 
internal “corners”. (d) An excerpt of the P routine in every node (rules P2 and P3 explained in the text). 
(e) A generic illustration of lattice-building attachment waves (from Doursat & Ulieru 2008b). 

 
One solution to implement this idea is to simply “thicken” chains and lattices (Fig. 2.2.3) by replacing 
single nodes with clusters of nodes. This can be done through one additional port, C (as in “cluster” or 
“clique”) that allows multiple nodes with identical x and y gradient coordinates to form random 
connections with each other. The C port represents an extra “nonlinear” dimension added to the single 
pair of ports (X, X’) of linear 1-D chains, or the two pairs of ports (X, X’), (Y, Y’) of bilinear 2-D 
lattices. Another new feature is that nodes are also allowed to make multiple connections per port, 
whether X, Y or C (Fig. 2.2.3a). As a result, nodes cluster into families according to their gradient 
values. Thus, in the case of a chain, a new node has two possibilities of attachment: it can either 
thicken or lengthen the chain. Similar to cellular proliferation in morphogenetic tissues and organs, 
this proliferation of nodes in structured networks introduces redundancy and “failover” safety. 
Overall, it remains a deterministic structure (guided by the genotype of the attachment rules G, P and 
L) but with fine-grain stochasticity. 

 
 

Figure 2.2.3: Cluster chain. (a) Detailed 3-cluster chain: internal (orange) links connect the C ports of 
nodes with same (x, x’) values, while (blue) links between clusters form the chain. A new node (gray) 
connecting through C adopts the cluster’s values. (b) Simulation with 5 clusters and ~20 nodes/cluster 
(from Doursat & Ulieru 2008b). 
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Branching and modular structures by local gradients More complicated structures can then be 
developed by composing multiple chains and lattices. To allow the creation of modules with their own 
identities and local positional information, one can find again inspiration from biology, in particular 
the concepts of modularity and homology that are central in evo-devo (Carroll et al. 2001, Müller & 
Newman 2003, Kirschner & Gerhart 2005). Modules are similar to “limbs” that have distinct 
morphologies and geographies. They are implemented here by distinguishing chain segments and 
branches through independent coordinate systems based on different “tags” a, b, c, etc. To start with a 
simple example, a chain can branch off from the middle of another chain (Fig. 2.2.4). The gradient 
ports in the initial chain of the system are denoted by (Xa, X’a), while the ports of the branches will be 
(Xb, X’b), (Xc, X’c), and so on. Accordingly, routine L is modified so that links cannot be created 
between ports with different tags. 

 
 

Figure 2.2.4: Branching scenario (see text). (a,b) Beginning of chain a. (c) Branch b starts. (d) Two 
possible next steps. (e) Chain b stops at length 3. (f) Final outcome, including a 4-node branch c. 
(g) This exact structure is prescribed by the port management program P carried by each node (from 
Doursat & Ulieru 2008b). 

 
In the elementary scenario of Fig. 2.2.4, 
when the third node has attached (i.e., 
when xa = 2), the P routine commands 
that a new pair of ports (Xb, X’b) be 
created on that node and only port X’b be 
open (Fig. 2.2.4c). Afterwards, new 
nodes can attach to either open port, X’a 
(lenghtening the initial chain) or X’b 
(starting the new branch; Fig. 2.2.4d). 
The order of node attachment, however, 
does not influence the final structure. 
Another example of branching structure 
based on lattices instead of chains is 
shown in Fig. 2.2.5a: here, once a 3×3 
lattice tagged a has finished self-

assembling, its last node (xa, x’a, ya, y’a) = (2, 0, 2, 0) creates a new quartet of ports (Xb, X’b, Yb, Y’b) 
that spins off a new 3×3 lattice tagged b, and so on. Finally, whether based on 1-D chains or 2-D 
lattices, modular composite structures can also be “thickened” with clusters of nodes by adding a C 
port to each node, as explained in the previous section. An example of complex programmed network 
made of a branching chain (including a cycle) of clusters is shown in Fig. 2.2.5b. 

Figure 2.2.5: Two simulations of programmed modular 
networks. (a) Branching 3×3 lattices attached by their 
corners. (b) Complex branching chain of node clusters, 
including a cycle (from Doursat & Ulieru 2008b). 
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Future Directions 
 
The previous section described abstract principles of self-made networks that have a purely 
endogenous ability to form precise topologies. It established new foundations for the emergence of 
non-random, programmable patterns exhibiting intrinsic structures that are neither repetitive nor 
imposed by the environment. Starting from these premises, the model will be completed with other 
important features in order to be applicable to concrete problems: (1) physical space, (2) external 
events, (3) agent functionality, and (4) action plans. 
 
Physical space Most real-world networks combine non-spatial graph topologies (e.g., connecting 
software agents or organizations) with Euclidean graph topologies (e.g., connecting people and 
equipment on the field) at different degrees. For example, many cyber-physical systems inherently 
have a dual spatial/nonspatial nature, as they often include a physical infrastructure at a “lower” 
communication level, with a virtual overlay network at a “higher” application level (Ulieru & Unland 
2004, Grobbelaar & Ulieru 2007). The abstract mechanisms of programmed attachment described 
above create purely non-spatial graphs that are displayed in 2-D figures only for convenient viewing. 
Nodes can potentially “see” all other nodes and the discrete gradient information is internal to the 
graph. Thus if nodes must represent agents and devices interacting in real space, the dynamics must 
be modified to take into account the effects of metric distance. Space can intervene at two levels: by 
limiting the scope of pre-attachment detection (nodes can connect only to nearby nodes, within a 
certain radius), and by giving a mechanical meaning to the nodes and links. For example nodes can be 
interpreted as electrically charged particles, and links as elastic springs, as in force-based layout 
algorithms (Fruchterman & Reingold 1991). 
 
External events Naturally, the propensity to 
create structured network formations must also be 
influenced and modified by the environment in 
which those formations will function. In a rapidly 
changing situation, it is critical that programmed 
networks be able to dynamically co-develop with 
the situation (i.e., disassemble and reassemble into 
different configurations, by switching on and off 
different sets of rules stored in their nodes) and/or 
co-evolve (by creating new rules on the fly). In 
the model above, node attachment was based on 
port availability driven only by positional gradient 
values. This internal dynamics must now interact 
with the external dynamics of the system’s 
context, along with its boundary conditions and 
unexpectedly occurring events (Figs. 2.2.6-7). 
Environmental landmarks can play different roles 
in the self-structuring process: they can act toward 
the groth process as triggers (warning signals 
starting a new network formation), attractors 
(points of particular interest pulling a network 
formation toward them) or obstacles (avoidance 
areas bending or stopping a network formation). 

Figure 2.2.6: This numerical simulation of self-
organized network morphologies—in which nodes 
execute a program similar to Fig. 2.2.4—shows that 
they can exhibit a high degree of adaptation to 
environmental constraints, such as spatial boundary 
conditions. Each network is based on the same node 
program (genotype), yet grows differently 
(“polymorphism” of the phenotype) as it senses its 
environment (e.g., anti-collision rules between the 
nodes and walls) (from Ulieru & Doursat 2010). 

 
Agent functionality Another important aspect not included in the abstract model is the diversity of 
functional roles that agents may take on, in addition to their self-assembly capabilities. In practical 
situations the problem is in fact reverse: the challenge is to make already functional and specialized 
agents (PDAs, software agents) interact in a less centralized and more autonomous way (e.g, by 
carrying automated positioning devices that guide them toward optimal places). In any case, the 
model must now mix various predefined agent identities before they further differentiate by gradient 
position inside the structure. This natural heterogeneity of agents could be reflected in the model by a 
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heterogeneity of ports and gradients, and diversified attachment rules that depend on agent types. This 
would result in various subnetworks of two kinds: “intra-category” subnetworks linking agents of the 
same type and “inter-category” subnetworks combining agents of different types together. 
 
Action plans Finally, the adequacy or “fitness” of the deployed network to the situation, both in its 
structure and function, might still have to depend on a two-way communication between the agents 
and a remainder of centralized command. Effective deployment might not always be able to rely on 
pure peer-to-peer self-organization at the local level. Depending on the problem at hand, certain types 
of techno-social networks might still need some amount of global monitoring and orchestration. 
Dynamical adaptation to a situation basically happens at two levels: (a) quick adaptation to local 
circumstances at the level of the agents (e.g., attraction, collision avoidance) under the same rules of 
deployment (Fig. 2.2.7a-d) and (b) major changes of strategy at the command level that change the 
rules of deployment (Fig. 2.2.7e). High-level action plans would set only the global course of the 
action (e.g., based on symbolic codenames), while the low-level implementation details are carried 
out by individual agent protocols (real-time positioning and linking). Action plans would be compiled 
down into local rules of attachment and broadcast to all agents. Thus, the network could adapt to new 
episodes by reprogramming the agents on the fly to create new formations. 
 

   

Figure 2.2.7: Schematic illustration of developmental vs. evolutionary changes. Top: Polymorphism. 
Endogenous network topologies (driven by an internal genotype) should have the ability to modify 
their growth according to the environment, under the same rules of self-assembly (same genotype), i.e., 
exhibit some degree of plasticity. For example, a free growing structure could (a) hit an obstacle and 
stop growth locally, (b) work around an obstacle, (c) be attracted by, and mold around a location of 
interest, (d) be triggered by, and connect certain cues in the environment. Bottom: Evolution. 
Endogenous topologies can also modify their rules (genotype) and create new modules and new 
structures. This is more drastic than polymorphism, as it involves qualitative innovation rather than 
limited quantitative plasticity. For example, (e) by switching between different prepared rulesets 
(stored or broadcast to all agents) or (f) by mutating and trying out new rulesets that were not written 
in advance. Note that, unlike biological evolution, this artificial evolution could happen on the same 
fast time scale as the development of the structure (“on-the-spot evolution”). 
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In summary, future work should expand the abstract algorithmic rules (gradient update G, port 
management P, and link creation L) to take into account spatial extension, external events, agent 
diversity, and hierarchical command. By implementing these four principles, in addition to intrinsic 
self-connectivity, scenarios of a self-organized and structured network could become practical. It 
would involve groups of agents that can create specific, but adaptive, spatial architectures to deal with 
specific situations. This dynamical process would be continuously adjusting to the dynamics of the 
external circumstances, including unexpected events and new effects. 
 
Spinoff Projects 
 
Project PROGNET-SOS 
 
Emergent Engineering for the Management of Complex Crisis Situations 
 
Possible collaborators: Mihaela Ulieru, Canada Research Chair; Computer Science Department, 
University of New Brunswick – Valeriy Viatkin, Program Director of Software Engineering, 
Department of Electrical and Computer Engineering, University of Auckland, New Zealand 
 

Abstract: [From (Doursat & Ulieru 
2008a)] We propose a methodological 
framework termed emergent engineering 
for deploying large-scale “eNetwork” 
systems in Self-Organized Security 
(SOS) scenarios (Ulieru 2008). It 
involves an abstract model of 
programmable network self-construction 
in which nodes execute the same code, 
yet differentiate according to position. 
These principles could lead to a future 
SOS application, in which a new type of 
controllable self-organization is able to 
dynamically co-evolve the system with 
its environment. During emergency 
response to an acute and developing 
disaster, several first responders come 
together in a collaborative endeavor and 
form joint teams, or “SOS networks”, to 
contain and manage a crisis situation. 
These teams are dynamic, short-lived 
meta-organizations deployed on the fly 

from units belonging to different organizations such as military forces, police, firefighters, 
paramedics, or non-governmental organizations (Fig. 2.2.8). SOS consists of networks of agents 
interacting intensely with each other and generating a collective behavior that co-evolves with the 
environmental dynamics. The key issue when deploying emergency operations in an SOS system is to 
find the right balance between individual protocols and high-level policies in order to achieve the best 
possible collective meta-organizational behavior. 

Figure 2.2.8: Schematic mockup view (not a simulation) of a 
possible SOS scenario within the space of a stadium, which
would combine programmed networking and dynamic 
interaction with the environment. Growing cordons of 
security agents (orange) encircle the threat (red), guide the 
crowd (green) toward the exits, carry victims to emergency 
vehicles (blue, driving in and out through gates under the 
bleachers), and create special enclosed spaces on the field 
(cycle) (from Doursat & Ulieru 2008b). 

 
 
Project PROGNET-ENERGYWEB 
 
Providing a framework for reducing energy consumption and encouraging the adoption of 
renewable energy sources by fostering the active involvement of prosumers and leveraging their 
potential for bottom-up innovation in a complex techno-social system. 
Possible collaborators: Mihaela Ulieru, Canada Research Chair; Computer Science Department, 
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University of New Brunswick – Daniele Miorandi, Iacopo Carreras, Center for REsearch And 
Telecommunication Experimentation for NETworked communities (CREATE-NET), Trento – Falko 
Dressler, Autonomic Networking Group, Universität Erlangen 
 
Abstract: [From our common FP7-ICT grant application EnergyWeb, April 2008] EnergyWeb 
aspires to develop the tools, theory, and methodology that can enable a novel, decentralized and 
collaborative energy grid paradigm (Silberman 2001, McMillin et al. 2006). It focuses on a projected 
future development in which energy production and consumption are distributed at the microscopic 
level of individual users, or “prosumers”. As a consequence, the degree of complexity increases 
dramatically as massive numbers of prosumers interact, making the EnergyWeb system 
fundamentally a complex system, akin to large self-organized sensor and actor networks (Dressler 
2007) and autonomic computing (Kephart & Chess 2003). The migration from a centralized power 
production architecture to a distributed and autonomous grid production poses many new and 
important challenges. It cuts across various disciplines, including complex systems, network theory, 
agent-based modeling and simulations, distributed control, peer-to-peer architectures, economics, 
marketing and sociology. The spontaneous dynamics of traditional models of agent coalition 
(synchronization, clustering, pattern formation, swarm intelligence, etc.) need to be complemented 
with innovative control dynamics. In this context, an open research question is thus how to 
reintroduce a certain dosage of “programmability” inside free self-organization, but instead of being a 
top-down, external enforcement of global structures, the new controls would take the form of local 
internal instructions. Both the control and evolution of self-organization must rely on the existence of 
a “microprogram” inside every agent of the system, i.e., a set of parameters or instructions otherwise 
referred to as “genotype”. Through their genotype, agents can be controlled to display specific 
characteristics and can also be gradually modified toward new and improved behaviors. The more 
sophisticated the genotype becomes, the richer the variety and complexity of the overall performance, 
or “phenotype”, can be. Therefore, genetic-like regulation at the agent level could also be the key to 
controlling self-organization in techno-social complex systems such as EnergyWeb. 
 
Relevant Publications 
 
Full Papers – Books, Journals, Conferences, Workshops, Reports 
 
Doursat, R. & Ulieru, M. (2008b) Emergent engineering for the management of complex situations. 2nd 

International Conference on Autonomic Computing and Communication Systems (Autonomics 2008), 
September 23-25, 2008, Telecom Italia Labs, Turin, Italy. 

Doursat, R. & Ulieru, M. (2010) [TBA]. In Preparation. 
Ulieru, M., Palensky, P. & Doursat, R., eds. (2009) IT Revolutions: 1st International ICST Conference, Venice, 

Italy, December 17-19, 2008, Revised Selected Papers, LNICST 11, Springer-Verlag. 
Ulieru, M. & Doursat, R. (2010) Emergent engineering: A radical paradigm shift. ACM Transactions on 

Autonomous and Adaptive Systems (TAAS). To appear. 
 
Invited Keynote Presentations & Talks (with Abstracts) – Conferences, Workshops 
 
Doursat, R. (2008h) Paradox in approaching complexity: From natural to engineered complex systems. IT 

Revolutions 2008, December 17-19, 2008, Telecom Italia Future Centre, Venice, Italy. 
Doursat, R. (2010a) Embryomorphic engineering: From biological development to self-organized computational 

architectures. 4th EmergeNET Meeting: Engineering Emergence (EmergeNET4), April 19-20, 2010, St 
William’s College, York, UK. Keynote address. 

Doursat, R. (2010b) Architecture and self-organisation: Heading for the best of both worlds. Gartner Enterprise 
Architecture Summit, May 17-18, 2010, London, UK. Keynote address. 

Doursat, R. (2010d) [TBA]. 2nd Summer Solstice International Conference on Discrete Models of Complex 
Systems (SOLSTICE 2010), June 16-18, 2010, LORIA, CNRS, Nancy, France. 

Doursat, R. & Ulieru, M. (2008a) Guiding the emergence of structured network topologies: A programmed 
attachment approach. “Dynamics On and Of Complex Networks II” Workshop (DOON II), at 5th European 
Conf. on Complex Systems (ECCS 2008), September 14-19, 2008, Hebrew University, Jerusalem, Israel. 
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2.3. Project EVOSPACE: Spatial Evolutionary Dynamics 
 
A spatially extended model of endogenous speciation in the absence of external environmental 
constraints. 
 
A commonly held view in evolutionary biology is that speciation, i.e., the emergence of genetically 
distinct and reproductively incompatible subpopulations, is driven by external environmental 
constraints. Guy Hoelzer, Rich Drewes (University of Nevada, Reno) and myself have developed a 
spatially explicit model of a biological population to study the emergence of spatial and temporal 
patterns of genetic diversity in the absence of predetermined domains. We propose a 2-D cellular 
automata model showing that an initially homogeneous population might spontaneously segment into 
different species through sheer isolation by distance. 
 
Speciation in Spatial Evolutionary Dynamics 
 
The most common framework for understanding the process of biological speciation is a geographical 
one (Silvertown & Antonovics 2001). For example, instances of speciation are typically allocated into 
three categories based on the extent of geographical separation between the daughter species 
(Fig. 2.3.1a). Allopatric speciation, in which a species range becomes severed and leads to population 
fragments that are not linked by gene flow, has been viewed as the most common means of speciation 
(Mayr 1942). This process is easy to understand, because the independence of evolutionary processes 
(mutation, drift, selection) in populations that no longer communicate with one another would 
inevitably lead to reproductive incompatibility between such populations given enough time in 
isolation. It is also easy to observe the “fingerprints” of allopatric speciation in many instances, such 
as the endemism of terrestrial species on islands (e.g., Darwin’s finches; Grant & Grant 1997). 

The other two categories involve speciation in the face of gene flow, and it is less clear what the 
compelling “fingerprints” of these processes might look like. In the second category, parapatric 
speciation, one species becomes two, where the daughter species occupy contiguous ranges. This has 
most often been modeled as a consequence of habitat variation and divergent local adaptation by 
subpopulations (e.g., Gavrilets 2004). Sympatric speciation, in which the ranges of the daughter 
species overlap, has similarly been modeled as a consequence of habitat variability (e.g., Dieckmann 
et al. 2004). Models of sympatric speciation suggest that discretely different microhabitats or 
resources are most effectively exploited by permitting specialization by two species rather than one. 

 

(c)
  

(a) 
Figure 2.3.1: (a) Schematic illustration of the different geographical modes of speciation: allopatric 
(1: dichopatric, 2: peripatric), parapatric, and sympatric. (b) Rules of virtual genomics and sexual 
reproduction in the model (see text). (c) Outbreeding depression curve in the model: offspring survival 
probability as a function of genetic difference (see text) (from Hoelzer et al. 2008). 

 
A common theme among all three of these categories is that speciation is induced by divisive, external 
factors and that the inherent tendency of biological populations is to remain unified in the absence of 
these factors. In other words, the conventional wisdom is that it is the environment that tears species 
apart. One well-known, but rare, situation where this view breaks down is in the case of ring species 
(such as seagulls; Irwin et al. 2001). In this paper we describe a model of a spatially extended 



René Doursat  Habilitation à Diriger des Recherches 

biological population suggesting that biological populations inherently and regularly tend to tear 
themselves into reproductively incompatible daughter species without influence by external factors. It 
illustrates the potential for functional decoherence (speciation) under “isolation-by-distance” (Wright 
1943, Slatkin 1993). 
 
Grid Model 
 
We have implemented a generalized cellular automaton model of evolutionary processes called 
EVOSPACE. The simulated world is an N×N grid, where each cell is occupied by a certain of number 
of individuals from a population. An individual contains genetic information in the form of a set of 
chromosomes and can migrate and mate with other individuals within a certain distance. A 
chromosome consists of a string of characters that can take one of four values representing the 
nucleotide bases A, C, G, and T. The number and length of chromosomes are the same for all 
individuals. During mating, an offspring is constructed by randomly selecting and combining two 
haploid genomes from the two diploid parents, possibly introducing random mutations in the process 
(Fig. 2.3.1b). Thus reproduction in our model is sexual, because genomes from two parents are 
combined to produce the offspring; but individuals are also hermaphrodites, as any adult can 
potentially mate with any other adult. 

At every generation, i.e., time step in the model, migration, mating and mutations create similarly 
structured but genetically distinct offspring for the next simulated generation. First, individuals can 
randomly move on the grid world within bounds determined by a dispersal distance. Then, they can 
choose a mate within similar bounds. Finally, after mating, each offspring is placed in a random cell 
in the vicinity of one of the parents while the parents die, so only one generation lives on the grid at 
each time step. The mean reproductive rate in the population is regulated each generation to buffer 
swings in population size resulting from a variety of factors, such as stochastic mortality (see below). 
This is achieved by randomly removing individuals or generating additional offspring. Simulations 
begin at generation 0 with a population of genetically identical individuals, set to some fraction of the 
maximum potential population size, and the system is allowed to evolve for hundreds to millions of 
generations. 

For the experiments described in this work, the habitat across the grid environment is 
homogeneous, so location per se does not influence the fitness of individuals. However, we introduce 
one important dependency: the offspring’s survival probability as an increasing function of the 
genetic difference or “incompatibility” between merging gametic genomes. Expressing the genetic 
difference between two chromosomes as a fraction between 0 (nucleotide identities at all positions of 
the DNA sequence were identical) and 1 (nucleotide identities at all positions of the DNA sequence 
were different), offspring resulting from gametes with a genetic difference greater than a threshold θ 
has zero survival probability (we use θ = 0.6 in this study). This function of declining reproductive 
compatibility with genetic difference, or outbreeding depression (Fig. 2.3.1c), is central to the 
exploration of speciation in this model because reproductive isolation between sexual species lies at 
the core of the concept of speciation. It is, in fact, the fundamental criterion embodied in the definition 
most commonly assumed in the context of evolutionary biology, the “Biological Species Concept” 
(BSC) (Mayr 1942). Our rule for reproductive isolation between species is somewhat more restrictive 
than the BSC requires, because real species can be genetically compatible, but behaviorally 
incompatible. For a comprehensive discussion of reproductive compatibility functions in speciation 
models see Gavrilets (2004). 
 
Results 
 
To measure the performance of the model and produce graphs clearly showing that our model can 
exhibit speciation, we use different types of statistical quantities, among which mismatch distribution 
histograms and genetic cluster plots. To assess the emergence of genetically distinct subpopulations, 
all measurements are based on a common definition of genetic difference between gametes, as 
described above, which influences offspring viability. 
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Mismatch distribution histograms (Rogers & Harpending 1992) reveal the frequency distribution of 
genetic differences among the genomes in the population(s). The horizontal axis is the genetic 
difference and the vertical axis shows the number of pairs of gametes found with that degree of 
genetic difference (Fig. 2.3.2). In this plot, a population of genetically random individuals appears as 
a single distinct peak at .75 (with a small standard deviation), because of the 25% probability that two 
bases are identical at any particular position of the DNA sequence. In the case of a population of 
genetically identical genomes—the starting condition for our simulations—the plot shows a single 
sharp peak at 0. As mutations lead to genetic divergence, the general tendency for peaks is to spread 
out and travel to the right in the mismatch distribution. 

Observing time-sequence movies of these mismatch distributions under different model 
conditions reflects the spatiotemporal patterns of gain and loss of genetic diversity, especially as it 
reveals the origin and existence of distinct subpopulations (traveling waves along the distribution). 
We present a series of snapshots in Fig. 2.3.2 as a glimpse into the dynamics of these systems. In the 
absence of outbreeding depression, the single initial peak on the histogram centered on 0 spreads and 
moves to the right, as predicted. When the space is large enough, this primary peak becomes centered 
on a genetic difference of 75%, as expected under the Jukes-Cantor mutation model (Jukes & Cantor 
1969). However, for certain combinations of grid size (sufficiently large), dispersal distance 
(sufficiently short), and mutation rate, additional dynamical patterns emerge. We were particularly 
interested in tracking the diversity waves described by Rogers & Harpending (1992). Indeed, small 
secondary peaks arise at low levels of genetic difference (left side of the mismatch distribution), move 
to the right and often persist long enough to merge with the primary peak. This observation is 
consistent with previous findings on spatial self-organization under isolation-by-distance (e.g., 
Sayama et al. 2000, Hoelzer 2001, Hogeweg & Takeuchi 2003, Rauch et al. 2003). 

 
Figure 2.3.2: Time series of mismatch distribution histograms. Snapshots of frequency histograms of 
the genetic difference of randomly selected pairs of individuals from three runs, setting (A) low 
movement distance δ = 1.5 with outbreeding depression θ = 0.6, (B) low movement distance δ = 1.5 
with no outbreeding depression, and (C) larger movement distance δ = 5.0 with θ = 0.6. Plots are 
shown horizontally for a sequence of four generations (100,000, 125,000, 150,000, and 175,000) 
within each of the conditions A, B, C. Note that the number of peaks does not correspond directly to 
the number of distinct genetic types in the population (from Hoelzer et al. 2008). 

 
The patterns we detect in intraspecific dynamics are greatly enhanced by introducing the outbreeding 
depression function. Along with sharpening the degree of spatial organization that emerges (see next 
section), outbreeding depression strongly increases the frequency, amplitude and persistence of the 
secondary peaks appearing in the mismatch distributions. As these peaks move to the right of θ, the 
subpopulations being compared encounter an increasingly stringent demographic disadvantage, 
because when individuals from those subpopulations mate with each other their offspring are 
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decreasingly viable. Divergence occurs as a consequence of mutation in our model, so divergence 
continues as the demographic cost of outbreeding depression increases the chance of subpopulation 
extinction. Nevertheless, sometimes a peak becomes established to the right of θ indicating a 
comparison between subpopulations that have diverged to the point where individuals from these 
subpopulations can no longer interbreed. We believe that in this way our model is realistically 
modeling important aspects of speciation. 

We have further found that the development of new, stable peaks to the right of θ (new species, 
we argue) is quite sensitive to the interrelationship of the spatial scale of the simulation (grid size and 
dispersal distance), the mutation rate, and other factors. If the mutation rate is slightly too high, then 
overall genetic diversity increases rapidly until it is too hard to find viable mating pairs within 
reproduction range and the whole population goes extinct. If the mutation rate is slightly too low, 
subpopulations go extinct before speciation can be completed. We are working now to systematically 
examine parameters under which speciation occurs (see “Future work” below). 

 

 

 
 
Figure 2.3.3: False-color depiction of genetic clustering on the world grid. Dark blue represents 
unoccupied cells or cells not connected to any cluster. Each other color represents genomes identical at 
more than 40% (i.e., genetic difference < 60%). Using this threshold in combination with θ = 0.6 helps 
identify different species with different colors. (Note that colors were assigned anew in each plot; the 
clustering algorithm is probabilistic; and some clusters are too small to discern.) Plots (A1) through 
(A8) depict snapshots of the clustering state at eight different generations with distance δ = 1.5 and 
outbreeding depression threshold θ = 0.6. Plots (B1) and (B2) were generated under δ = 1.5 without 
outbreeding depression and show no evidence of clustering at the difference threshold of 60%. The (C) 
plots, for δ = 5.0 and θ = 0.6, present a similar lack of clustering (from Hoelzer et al. 2008). 
 

Genetic cluster plots prove useful in examining the spatial clustering of distinct subpopulations. 
Whereas the mismatch distribution provides good insight into the existence of distinct, internally 
homogeneous subpopulations, it does not demonstrate whether clusters are spatially segregated on the 
lattice or show where they are located. Genetic cluster plots are obtained by grouping pairs of 
individuals that have a genetic distance lower than a given level and displaying those groups in 
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different colors (Fig. 2.3.3). These plots clearly illustrate the spatial self-organization that emerges in 
our model. Visual examination indicates that the genetically homogeneous subpopulations revealed 
by the histogram plots also form distinct spatial clusters that occupy coherent, non-overlapping 
regions of the lattice. The borders between these regions tend to be unoccupied, or occupied with 
hybrid individuals that are not genetically similar enough to any neighboring region to be classified 
with them. 

Spatial plots such as isolation-by-distance and genetic clustering also demonstrate the strong 
sharpening effect of outbreeding depression. The intrinsic tendency of the grid world toward spatial 
order is greatly enhanced by introducing a dependence between compatibility and viability. It could 
be said that outbreeding depression plays a negative feedback role analogous to long-range inhibition 
in morphogenetic reaction-diffusion processes (Turing 1952, Gierer & Meinhardt 1972). In this 
analogy, mating plays the positive feedback role of short-range activation. Together, these effects 
contribute to the spontaneous formation of “spots” by encouraging neighboring elements to be similar 
and, at the same time, distant elements to be different. In a sense, our model represents “evolutionary 
pattern formation” at the scale of populations of organisms instead of molecules or cells. 
 
Future Directions 
 
New Measurement Tools 
 
We have already begun to statistically characterize the self-organizing behavior of the unconstrained 
version of EVOSPACE. We propose to do a thorough job of this as a basis for comparison with 
strategically constrained versions of the model. We specifically plan to characterize the following: 
 

• the threshold of boundary emergence as a function of the dispersal kernel and spatial scale; 
• the characteristic number of individuals in newly emerging subpopulations 
• the characteristic number of individuals in larger subpopulations that become unstable and 

subdivide; 
• the frequency distribution of lineage persistence times for both genetic lineages and 

subpopulations; 
• how all of these statistics are modified in the proximity of (1) hard edges at the limit of the 

landscape (straight, convex and concave edges) and (2) partial barriers to dispersal within the 
range of the system. 

 
This will lead to a quantitative demographic description of the spatial evolutionary dynamic at the 
scale(s) of emergent subpopulations (and species defined by total reproductive isolation). 
 
Phase Space Exploration 
 
We also plan to take advantage of the computational power of a computing grid to systematically 
explore key dimensions of phase space for the EVOSPACE model. EVOSPACE reaches a state of 
dynamic equilibrium where traces of the genetic homogeneity of the initial conditions have 
disappeared in roughly 50K generations, although this “burn-in” phase can vary with run conditions. 
Therefore, each simulation run on the grid will extend for 200K generations. There are four 
fundamental parameters we plan to investigate by systematically tuning their values, and run 
simulations for different combinations of factors: 
 
Dispersal distance is adjusted using the EVOSPACE variable δ, the radius of the individual 
movement neighborhood and the mating neighborhood. This variable will be set at increments of 1-
cell starting at δ = 1.5 and ending at the point where the system behaves as though it were well mixed 
(we estimate this to be about δ = 8 on an 800x800 grid). 
 
Mutation rates There is a range of mutation rates under which spatial self-organization will occur, 
given other parameter values. If mutation rate is too low, the system effectively mixes the little 
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variation that exists. In other words, the system is able to drift fast enough to keep up with mutation 
without subdividing. If the mutation rate is too high, the system is unable to spatially organize fast 
enough to keep up with mutation. We will discover the marginal mutation rates at which self-
organization manifests under the range of conditions we will explore, then divide that range of rates 
into 10 increments for exploration. 
 
Empty space It was clear from our study of speciation in EVOSPACE that empty space can affect 
spatial evolutionary dynamics. Therefore, we plan to explore behavior of the model with the amount 
of empty space set to 0, 10%, etc., up to 60%. Population size will be held constant for these 
comparisons, while the size of the grid is varied. 
 
Outbreeding depression There are two parameters to vary in our broken stick model of outbreeding 
depression: the degree of genetic difference at which outbreeding depression begins to appear and the 
degree of genetic difference at which reproductive compatibility is eliminated. We will set the former 
at 4%, 6%, 8%, and 10%. Previous observations suggest that this value determines the extent of 
genetic diversity allowed to accumulate within emergent subpopulations, so we expect it will also 
scale with the maximum size of subpopulations. The latter, the “speciation point”, will be set at 10%, 
30%, and 50%. This will address the effect of the outbreeding depression slope and the importance of 
speciation speed (assuming the “Biological Species Concept”) on spatial evolutionary dynamics. 
Closely related work by Gavrilets (2004) has assumed a stepped outbreeding depression function 
(sudden and complete onset of outbreeding depression), so varying our outbreeding depression 
function as described should help connect our results with his. 
 
Environmental Matrix 
 
EVOSPACE has been studied so far under a “null” environmental matrix to investigate the dynamics 
of spatially extended populations in the absence of external constraints. However, real landscapes 
generally impose constraints of various kinds on evolutionary dynamics. These constraints can be 
roughly divided into two kinds, local obstruction of dispersal and ecological selection, which have 
been previously identified as potential external causes of population subdivision. There is no doubt 
that such external factors can impose spatial boundaries on subpopulations. The question raised by 
EVOSPACE is: how does pattern formation through self-organization interact with external 
constraints? For example, we will explore “edge effects” (e.g., Minor et al. 2008), i.e., reflective 
boundaries on the grid space, such as: hard edges, periodic boundaries, curved “river” boundary 
through the middle of the grid, etc. 
 
Relevant Publications 
 
Full Papers – Books, Journals, Conferences, Workshops, Reports 
 
Hoelzer, G., Drewes, R., Meier, J. & Doursat, R. (2008) Isolation-by-distance and outbreeding depression are 

sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Computational 
Biology 4(7): e1000126 [doi:10.1371/journal.pcbi.1000126]. 

 
Abstracts (for Presentations or Posters) – Conferences, Workshops 
 
Hoelzer, G., Drewes, R. & Doursat, R. (2006) Temporal waves of genetic diversity in a spatially explicit model 

of evolution: Heaving toward speciation. 6th International Conference on Complex Systems (ICCS 2006), 
June 25-30, 2006, New England Complex Systems Institute (NECSI), Boston, MA (presenter: G. Hoelzer). 

Hoelzer, G., Drewes, R. & Doursat, R. (2008) Speciation through spatial self-organization of the gene pool. 12th 
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3. Neural Dynamics: Large-Scale Spiking Neural Networks 
 
Mesoscopic emergence, interaction and composition of spatiotemporal patterns of activity and 
connectivity. 

“How could you,” began Mackey, “how could you, a mathematician, a 
man devoted to reason and logical proof . . . how could you believe that 
extraterrestrials are sending you messages? How could you believe that 
you are being recruited by aliens from outer space to save the world?” ... 
“Because,” Nash said slowly in his soft, reasonable southern drawl, as if 
talking to himself, “the ideas I had about supernatural beings came to me 
the same way that my mathematical ideas did. So I took them seriously.” 

—Sylvia Nasar, A Beautiful Mind 
 
Toward a Mind-Brain “Modern Synthesis”, via Complex Systems 
 
The foundational thesis of cognitive science is that the mind relies on internal dynamical “states”, 
“regimes” or “representations” that correspond to (or are triggered by) states of the external world. It 
operates by creating, assembling and transforming these states, both under the influence of external 
stimuli and the constraints and meanders of its own internal dynamics. The nature and structure of 
these brain states, however, is still an open question, in particular their embodiment in the neural 
code, i.e., the laws of organization of electrophysiological signals. When trying to bring an answer to 
this deep problem, however, the multidisciplinary nature of cognitive science appears to be more of an 
obstacle than an advantage. According to Bechtel & Graham (1998, p3): “Cognitive science is the 
multidisciplinary scientific study of cognition and its role in intelligent agency”, and the same authors 
ask: “Do [these disciplines] interact substantively—share theses, methods, views—or do they simply 
converse?”. Currently, this field can only be defined extensionally as a vast federation of disciplines 
(psychology, AI, linguistics, logic, neuroscience, neural modeling, robotics, etc.) with widely different 
viewpoints, but fundamentally lacking a “central theory” that would unify them around a common set 
of laws—as was the case, for example, when molecular biology provided the missing connection from 
physics and chemistry to genetics and evolution. In fact, in many languages cognitive science is 
designated in the plural, such as sciences cognitives in French. 

Moreover, across these various cognitive disciplines, theoretical models are broadly divided 
between a logical paradigm, or “cognitivism”, and a dynamical paradigm, or “connectionism”. 
Similarly to the epistemological scale where physics, chemistry and biology occupy increasing levels 
of organization of the matter and emergent phenomena (particles → atoms → proteins → cells → 
organisms → ecosphere), cognitive science could also be viewed along a vertical axis, where 
dynamical systems occupy the lower levels (networks of neuronal activities) and formal systems, the 
higher emergent levels (psychological and linguistic entities). Toward the top of this axis, logical 
models define high-level symbols and formal grammars, but do not possess the microstructure needed 
to account for the fuzzy complexity of perception, memory or learning (Smolensky 1988). 
Conversely, toward the bottom, dynamical models define functionality as a product of neural 
networks and low-level activation equations, but lack the macroscopic level supporting the systematic 
symbol composition abilities of language and planning (Fodor & Pylyshyn 1988). In the middle, 
between symbol-based AI architectures and node-based neural computation, there is a lingering 
theoretical gap. Bridging this gap will require an intermediate, or mesoscopic, scale of description of 
cognitive functions, which must offer finer granularity than symbols but larger structural complexity 
than small artificial neural nets. This effort can be accomplished from two complementary directions: 
 
Top-down approach: The underlying microstructure of symbolic systems When DNA, RNA, 
proteins and cell components were discovered, evolution and genetics became united into biology’s 
Modern Synthesis. In other terms, by elucidating the mesoscopic level of life’s complex self-
organization (molecular and cell biology), macroscopic emergent phenomena (heredity, speciation) 
could be explained on the basis of microscopic elements (atoms and small molecules; Fig. 3.1a). By 
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contrast, the inner structure of the mind’s representational states is not yet known. Psychology, AI or 
symbolic grammars do not yet possess the explanatory foundations that a truly dynamic level of 
cognition could offer. Therefore, a new discipline of “molecular cognition” (Bienenstock 1995, 1996; 
Fig. 3.1b) might be needed to provide the laws of perception and language on the basis of elementary 
neuronal dynamics. What could then be the candidate “molecules” of cognitive science’s new Mind-
Brain Modern Synthesis? In this sense, a discipline like cognitive linguistics (e.g., Talmy 2000, 
Langacker 1987, Lakoff 1987, Jackendoff 1983; see review in Croft & Cruse 2004) constitutes an 
original first top-down attempt at digging under the surface in the search of protosemantic elements. 
For example, a verbal schema like ‘to give’ involves three participants, subject, object, and recipient, 
that have the potential to interact and bind in a topological-temporal space (transfer between domains 
of ownership, etc.). It is therefore much more than a mere symbolic node in a syntactic parsing tree. 

 

 
 

 
Figure 3.1: Metaphorically speaking, cognitive science in the 21st century (bottom) faces the same 
type of challenge as biology did in the 20th century (top). Between the microscopic level (atoms ⇔ 
neurons) and the macroscopic level (genetics ⇔ symbolic abilities), there remains to discover the 
central mechanisms and theory (DNA, RNA, proteins ⇔ ???) at appropriate mesoscopic level(s) of 
description. This new kind of “Mind-Brain” Modern Synthesis needs to establish a proper 
“microstructure” for the symbolic level (top-down in (b)), while at the same time providing a complex 
systems perspective of the elementary components (bottom-up in (b)). It is suggested here that this 
endeavor could hinge on compositional “building blocks” made of spatiotemporal patterns of neural 
activity (red frame in (b); after Bienenstock 1996). 
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Bottom-up approach: Emergent macrostructures in complex dynamical systems At the lower 
end of the spectrum reside neuroscience and neurally inspired dynamical systems. These physicalist 
or “dynamicist” approaches, which bear no resemblance to logical-combinatorial systems (van Gelder 
& Port 1995), start with the neurons and attempt to derive their collective behavior analytically and 
numerically. Despite their relative success, however, they were criticized (Fodor & Pylyshyn 1988) 
for not explaining the higher properties of constituency and compositionality (Bienenstock 1996). For 
classical cognitivism and AI, intelligence relies on symbols (constituents) that can be assembled 
(composed) by syntactic rules in a systematic and generative way. Mainstream connectionism, 
however, has focused on memory, learning and perception, through chiefly associationist models (a 
group of cells activates another group of cells). An alternative and promising school of neural 
modeling has advocated temporal correlations between neural activities as the key to the “binding 
problem” (see review in Roskies 1999) and the basis of the brain’s code, both in theoretical and 
experimental studies. This hypothesis launched a new series of models looking at synchronization 
among coupled excitable units (e.g., oscillatory; König & Schillen 1991, Campbell & D. L. Wang 
1996, Buzsáki & Draguhn 2004, D. L. Wang 2005). Such phenomena on the larger population scale 
hold a great potential for supporting the microstructure of symbolic and combinatorial systems. 

The overall theoretical objective of my research in computational neuroscience is thus to span a 
bridge between these two opposite ramps, prepared by cognitive linguistics on the one side and 
temporally synchronized neural networks on the other side. Today’s machines, which surpass humans 
in computationally intensive tasks, are still surpassed by children in simple scene recognition, story 
understanding or interactive behavioral tasks. The reason for this persistent hiatus is that most 
artificial systems are engineered either directly as symbolic machines (macro levels) or as 
associationist/reactive systems (micro levels) but never rely on the same type of “building blocks” 
that the mind uses at the subsymbolic/supraneuronal meso levels. Yet, these blocks might be the key 
to a true representational invariance, i.e., schemas (cognitive, perceptual or motor), categories and 
constituents, which can only be addressed by complex, biologically inspired engineered systems. 
 
From Rate Coding to Temporal Coding to Spatiotemporal Patterns 
 
As mentioned above, there is yet a finer split within the connectionist/dynamicist framework. 
Traditionally, the great majority of neural models proposed by theoretical and computational 
neuroscience over the last decades have followed an overly litteral “signal processing” paradigm 
originating from engineering thinking. In this (somewhat naive) perspective, pioneered by cybernetics 
and later reestablished by artificial neural networks in the 1980’s, a few coarse-grain units are able to 
perform high-level meaningful functions, such as feature or concept detection. These units are 
organized into hierarchical, multilayered architectures, in which activity is actually “flowing” from 
the input (i.e., the “problem” at sensory level) to the output (i.e., “the solution” at motor level) through 
successive transformations (e.g., in visual perception, Serre et al. 2007). It is also entirely stimulus-
driven, i.e., in these architectures neural layers are initially silent and must wait to be activated. 

Recently, however, entirely new ways of construing complex neural systems have been gaining 
ground, toward a more genuinely complex emergent view of neural activity. In particular, 
documentation of (a) pervasive lateral and feedback connectivity (e.g., Bringuier et al. 1999) and 
(b) persistent (e.g., X.-J. Wang 2001, Y. Wang et al. 2006) or ongoing activity (e.g., Kenet et al. 2003, 
Fox & Raichle 2007) in the absence of explicit input or output both challenge the traditional view that 
“lower” areas are necessary to activate “higher” areas, or that there is a fixed hierarchy of “receptive 
fields”. Instead, the emphasis is now set on myriads of fine-grain neurons interacting through dense 
recurrent connections. In this new schema, external stimuli are no longer an essential driving force 
but only play a secondary role of “perturbation” or “influence” exerting itself on already active 
patterns (Llinas 2001, Harris 2005)—possibly poised at “criticality”, i.e., ready to switch quickly 
between states: evoked, bound/composed, unbound/competing, dismissed, etc. Shifting this paradigm 
even further, it is proposed here that these complex neuronal systems form the substrate of “excitable 
media” capable of producing endogenous activity in the form of dynamic, transient, spatiotemporal 
patterns of activity (Bienenstock 1995). In sum: it is not because the brain is an intricate network of 
microscopic causal signal transmission (a neuron activates/inhibits other neurons) that the appropriate 
functional description at the mesoscopic and macroscopic scales is indeed a flow of signal processing. 
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The importance of temporal coding The structure and properties of representational states has often 
been debated since the beginnings of modern neuroscience but it was generally admitted that the 
average firing rate of neurons constituted an important part of the neural code. In short, the classical 
view holds that mental entities are coded by cell assemblies (Hebb 1949), which are spatial patterns of 
average activity (see also Ermentrout 1998). By contrast, following Christoph von der Malsburg’s 
“Correlation theory of brain function” (1981) and the work of my thesis advisor Elie Bienenstock 
(see, e.g., von der Malsburg and Bienenstock 1986), I have defended another format of representation 
that involves higher-order moments or temporal correlations among neuronal activities. Here, mental 
representations are not exclusively based on individual mean activity rates <xi>, which are events of 
order 1, but more generally on order-N events <xi1 xi2 ... xiN> and, in particular, correlations between 
two neurons, <xi xj>. 

Naturally, the traditional order-1 code stems from classical observations in the primary sensory 
areas (e.g., visual cortex), in which cells seem to possess selective response properties. From these 
experiments, it was inferred that one such neuron, or a small cluster of neurons, could individually 
and independently represent one specific type of stimulus (e.g., the orientation of an edge). Then, to 
obtain the global representation of an object, these local features must be linked and integrated. The 
problem is that this integration is unlikely to be carried out by highly specialized cells at the top of a 
hierarchical processing chain (the conjectural “grand-mother” cells that fire only when you see your 
grand-mother). Equally unlikely would be for the assembly of feature-coding activity rates to be 
maintained in a distributed state because of the impossiblity to overlap two such states without losing 
relational information (the so-called “binding problem”). If two cells coding for “red” and “circle” are 
active and two other cells coding for “green” and “triangle” also become active, then this global state 
of mean activation is unable to distinguish the original stimulus “red circle and green triangle” from 
an alternative stimulus “red triangle and green circle” (von der Malsburg 1987; Fig. 3.2b). 

This is why we advocated the idea that feature integration required higher-order codes to be able 
to represent relationships between elementary components that are initially uncorrelated (in the above 
example the spike trains of “red” and “circle” would be synchronous, but out of phase with “green” 
and “triangle”, also in sync). These correlation events bring to the representation format a structure 
that is fundamentally missing from the mere feature lists of Hebbian cell assemblies. To continue the 
chemical metaphor, we could say that feature lists are to molecular formulas (e.g., C3H8O) what 
correlations are to structural line-bond diagrams (e.g., 1-propanol vs. 2-propanol; Fig. 3.2a). 

 

 
 
Figure 3.2: Solving the binding problem through temporal correlations. (a) An ambiguous molecular 
formula is resolved by revealing its internal bond structure. (b) In the same way, an ambiguous rate-
coding representation (in which four feature detectors coding for “red”, “circle”, “green” and “triangle” 
are simultaneously active) can be resolved by revealing its internal spatiotemporal structure—e.g., in 
the bottom configuration, “red” and “circle” are bound by synchronization between their spike trains. 
 

Complex spatiotemporal patterns Expanding upon these last remarks, it is also hypothesized that 
temporal coding is employed beyond the mere binding of two features to actually provide the generic 
“glue” for the microstructure of large objects. In the molecular metaphor, temporal binding and 
synaptic plasticity together play the role of elementary forces or “bonds”, which can have various 
amplitudes: strong “covalent” bonds maintain the cohesiveness and stability inside STPs, while 
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weaker “ionic” or “hydrogen” coupling quickly assemble and disassemble STPs on a larger scale 
(Bienenstock 1995). Formally: if xi(t) denotes the time-varying potential of neuron i, then the 
“cognitive molecules” postulated above could be implemented by dynamic cell assemblies made of 
large, coherent sets of neuronal activities { x1(t), ..., xn(t) }. In particular, such a set can be described 
as a spatiotemporal pattern (STP), which is a complex series of spike timings { t1

1, t1
2, t1

3, ..., tn
1, tn

2, 
tn

3, ... } containing many high-order statistical moments <xi(t) xj(t - τij) xk(t - τik) ...>. These moments 
are typically combinations of synchronized groups (delays τij = 0) and waves or “rhythms” (delays 
τij > 0). They correspond to reproducible temporal correlations among electric signals, supported by 
underlying regular patterns of connectivity. Hence, similarly to proteins, STPs can interact in several 
ways and assemble at several levels, forming a hierarchy of complex structures from simpler ones in a 
modular fashion. Thus, by relying on temporal coding, STPs might constitute the building blocks of 
intelligent behavior. 
 
Rebuilding Compositionality from the Ground Up 
 
Complex spatiotemporal phenomena in large-scale neural populations have the potential to support 
the sought-after mesostructure of symbolic and combinatorial systems. Thus the theoretical proposal 
is that representations at the mesoscopic scale can be embodied in local but large-scale dynamical 
states or “mesoscopic patterns” of bioelectrical activity forming quasi-discrete entities. These 
mesoscopic patterns are (a) endogenously produced by the neuronal substrate, (b) exogenously 
perturbed under the influence of stimuli and (c) interactively binding to each other. 
 
(a) Mesoscopic patterns are endogenously produced (Fig. 3.3a) Given a certain connectivity 
pattern, cell assemblies exhibit various possible dynamical regimes / modes / patterns of ongoing 
activity. The underlying connectivity is itself the product of epigenetic development and Hebbian 
learning, moulded by feedback from activity. The identity / specificity / stimulus-selectiveness, or in 
short the “shape”, of a mesoscopic entity is largely, but not exclusively, determined by its internal 
pattern of connections. 

   

(a) 

(b) 

 
 
Figure 3.3: Schematic illustration of mesoscopic pattern dynamics. (a) Patterns are endogenously 
produced. Left: raster of spikes; center: evocation of a spatiotemporal pattern of neural activity; right: 
evolution of the underlying synaptic connectivity by learning. (b) Patterns are exogenously influenced. 
Right: stimulus pattern impinging on previous pattern; left: in this case, the effect was to enhance an 
alignment of spikes, revealed by a greater oscillatory amplitude of the mean field potential (bottom). 

 

45 



René Doursat  Habilitation à Diriger des Recherches 

(b) Mesoscopic patterns are exogenously influenced (Fig. 3.3b) External stimuli (via other patterns) 
may evoke and influence the pre-existing dynamical patterns of a mesoscopic assembly. They 
constitute an indirect perturbation mechanism, not a direct activation mechanism (Harris 2005). 
Mesoscopic entities may have stimulus-specific recognition or “representation” abilities, without 
being “templates” or “attractors” (no resemblance to stimulus). 
 
(c) Mesoscopic patterns interact with each other (Fig. 3.4b) Populations of mesoscopic entities can 
compete and differentiate from each other to create specialized recognition units (under an 
evolutionary population paradigm). Alternatively or concurrently, they can also bind to each other to 
create composite objects, via some form of temporal coherency based on synchronization, correlations 
and fast synaptic plasticity (under a molecular compositionality paradigm). 
 
Understanding the laws of self-organization, and induced organization, of the neural signals 
supporting those entities should become the main topic of a new mesoscopic neurodynamics (Freeman 
2000). In recent years, encouraged by multi-electrode recordings, brain imaging and increased 
computing power, this discipline has greatly progressed through the large-scale modeling and 
simulation of biologically realistic spiking neuron networks (see, e.g., review in Brette et al. 2007). 
Taking into account the fine timing of membrane potentials has revealed a great diversity of possible, 
and plausible, spatiotemporal regimes of cortical activity in large cell populations: synchronization 
and phase locking (e.g., Campbell & D. L. Wang 1996), delayed correlations and traveling waves 
(e.g., Diesmann et al. 1999), regular rhythms and chaos (e.g., Brunel 2000), etc. All these regimes are 
candidates for supporting the above-mentioned mesoscopic entities of cognition. 
 
Populating the Mesoscopic Level with Models of Complex Neurodynamics 
 
In summary, while individual firing rates <xi(t)> have traditionally dominated neuroscience, 
alternative theories (von der Malsburg 1981, Abeles 1982) have long proposed temporal code and 
higher-order correlations as the basic code used by the brain to represent mental entities. Since the 
1980’s, the correlation hypothesis launched a series of experiments (e.g., Gray & Singer 1989) and 
models (e.g., König & Schillen 1991, D. L. Wang 2005) investigating synchronization and wave 
patterns among oscillatory or otherwise excitable units. This new field of neural dynamics is known 
today under the broad appellation of spiking neural networks. 

Different spiking neural models have focused on different classes of neuronal dynamics at varying 
levels of biological detail: conductance-based, integrate & fire, pulsed, oscillatory, excitable, rate-
coded, binary, etc. They have also explored different forms of temporal order binding these neurons 
together: synchronization, phase locking, delayed correlations, waves, rhythms, induction, resonance, 
etc. In recent years, several theoretical proposals, some of them to which I contributed, have started 
populating the mesoscopic level with STP-like molecular objects: synfire chains and braids (Abeles 
1982, 1991, Doursat 1991, Bienenstock 1995, Doursat & Bienenstock 2006), polychronous groups 
(Izhikevich 2006), cortical columns (Markram 2006), traveling waves (Doursat et al. 1995, Doursat & 
Petitot 2005), subthreshold harmonics (Doursat & Goodman 2006), etc. 

My own research aims to outline a new theoretical framework for mesoscopic neurodynamics 
with compositional properties. I have conducted different studies (see “Projects” section below) that 
all construe the cortical substrate of neuronal units and synaptic contacts as an excitable medium 
(Winfree 1980) and have potential applications in the design of artificial systems for perceptual, 
linguistic or behavioral tasks. 
 
Future Directions 
 
In summary, my long-term aim is to go beyond classical thinking in neural modeling (Fig. 3.4a) and 
contribute to a new form of neurodynamics (Fig. 3.4b): 
 
From coarse grain to fine grain Instead of a few units already capable of performing complex 
“functions” → myriads of neurons, substrate of “excitable media” that support mesoscopic patterns 

46 



René Doursat  Habilitation à Diriger des Recherches 

 
From hierarchical, multilayered architectures to recurrent architectures Instead of an activity 
flow “moving” from input (problem) to output (solution) → distributed activity dynamically 
forming/erasing transient patterns 
 
From input-driven activity to endogenous activity Instead of initially silent neural layers waiting to 
be “activated” → already active cell assemblies under the influence of external stimuli, and each other 
 
From atomistic hierarchies to compositional hierarchies Instead of “grandmother cells” → 
modular assembly “flocking” 
 
From statistical uniformity to heterogeneity Instead of global synchrony or chaos → heterogeneity 
and complex modes 
 
(a) 

 
(b) 

 
 
Figure 3.4: The paradigm shift from traditional neural networks to complex neurodynamics. (a) The 
(naive) “litteral informational” paradigm follows the engineering metaphor of signal processing. It 
relies on a feed-forward structure of a few “coarse-grain” units individually capable of performing 
high-level functions, in which passive layers are “switched on/off” by potentials transmitted from 
external stimuli and neural activity “flows” from sensory to motor areas. (b) By constrast, the 
“emergent dynamical” paradigm envisions a complex pool made of myriads of “fine-grain” neurons 
(without meaning in themselves) forming quasi-continuous “excitable media”. The network structure is 
fundamentally recurrent, scrambling the notion of activity “flow” but continuously forming multiple 
structured patterns on a fast time scale, which can bind to each other and create composite entities. 
These dynamical assemblies are endogenously active and only “perturbed” by external stimuli. 

 
The resulting picture is a dynamic microstructure of compositional, “molecule-like” collective entities 
that can (a) represent “mental objects” (what underlying connectivity is needed? what are their 
dynamic modes of activity? what makes their identity/relative stability?), (b) interact with an external 
input (how are they recalled/evoked/deformed by stimuli?), (c) interact among each other 
(composition, modularity, creating higher structures, or competing), (d) be learned (how did their 
underlying connectivity form?) 
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Projects 
 
My ambition is to continue deploying this paradigm across different mesoscopic-level studies. Each 
of the three projects presented in this section follows one of the mesoscopic paradigms described 
above, addressing different topics and challenges in robotics, machine vision, linguistic and pattern 
recognition: (1) SynBlock, a “self-made tapestry” of neocortex: a model of neural self-structuration 
into synfire motifs; (2) CogniMorph, a “morphodynamic pond” interface between perception and 
language: a model of traveling waves on lattices of quasi-oscillatory units; and (3) NeuroForm, a 
“lock-and-key” mechanism of spatiotemporal pattern recognition: a model of perturbation and 
coherence induction among Recurrent Asynchronous Irregular Networks (RAINs). 
 
3.1. Project SYNBLOCK: Synfire Chains as the Building Blocks of Cognition 
 
Parallel self-organization of connectivity and activity in an initially random spiking neural 
network, with the goal of supporting a hierarchy of structured mental representations in visual, 
auditory or linguistic tasks. 
 
Abstract: Striking regularities in the connectivity structure of the visual system and other cortical 
areas account for their functional specialization. Elie Bienenstock (Department of Applied 
Mathematics and Department of Neuroscience, Brown University) and myself have designed a model 
that reproduces the development of such regularities as a phenomenon of spatiotemporal pattern 
formation. We show the spontaneous and simultaneous emergence of regular “synfire chains” (Abeles 
1982, 1991) of synaptic connectivity together with a wave-like propagation of neural activity. Starting 
from an undifferentiated random state, our neural network transitions into a dual ordered regime, in 
which chains sustain and guide waves, while waves create and reinforce chains. We postulate that 
these patterns might constitute the elementary components or “molecular building blocks” at the 
mesoscopic level of the mind’s symbolic abilities, in particular the faculty of compositionality 
(Bienenstock 1996) at the core of linguistic and perceptual functions. 
 
 
3.2. Project COGNIMORPH: The Morphodynamics of Cognitive Categorization 
 
Bridging the gap between vision and language by importing complex systems into linguistics, in 
particular modeling categorization with traveling waves and dynamic singularities in coupled 
excitable units. 
 
Abstract: I have proposed with Jean Petitot (Ecole Polytechnique, Paris) a novel dynamical system 
approach to cognitive linguistics based on the generation of traveling waves in cellular automata and 
spiking neural networks. Our objective is to categorize the infinite diversity of schematic visual 
scenes into a small set of grammatical elements and elucidate how language deals with space 
(Levinson 2003), or what is the topology of language. How can the same relationship ‘in’ apply to 
containers as different as ‘box’, ‘tree’ or ‘bowl’? We suggest that this invariance can be explained by 
introducing morphodynamical transforms, which erase image details and create virtual structures 
(boundaries, skeleton). This work addresses the crucial cognitive mechanisms of spatial 
schematization and categorization at the interface between vision and language and anchors them into 
expansion processes such as activity diffusion or wave propagation. 
 
 
3.3. Project NEUROFORM: Cell Assembly Locks & Keys 
 
A neural network model of associative learning by “lock and key” coherence induction between 
dynamic cell assemblies, where learning consists in tuning synaptic efficacies to a point of maximal 
response. 
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Abstract: Conducted at Philip H. Goodman’s Brain Computation Laboratory (University of Nevada, 
Reno), as part of a “robotic sentry” project, this study focuses on the stimulus-behavior association 
area (AS), for which it proposes a pattern recognition model based on collective “resonant” dynamics 
between spiking neural assemblies. In this paradigm, a network possesses preferred endogenous 
modes of activity (whether overt patterns of spikes or covert fluctuations of subthreshold potentials) 
that can be perturbed through transient coupling, and learning consists in tuning synaptic efficacies to 
a point of maximal response of this perturbation. Stimulus-behavior association tasks can then be 
reformulated as processes of selection among several transients. 
 
Publications  (other than specific to the three projects; see more in sections below) 
 
Full Papers – Books, Journals, Conferences, Workshops, Reports 
 
Bienenstock, E. & Doursat, R. (1989) Elastic matching and pattern recognition in neural networks. nEuro'88 

Conference, June 6-9, 1988, Ecole Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France. 
In Neural Networks: From Models to Applications, L. Personnaz & G. Dreyfus, eds., pp. 472-482, IDSET, 
Paris. 

Bienenstock, E. & Doursat, R. (1990) Spatio-temporal coding and the compositionality of cognition. Workshop 
on Temporal Correlations and Temporal Coding in the Brain, April 25-27, 1990, Paris, France. 

Bienenstock, E. & Doursat, R. (1991) Issues of representation in neural networks. In Representations of Vision: 
Trends and Tacit Assumptions in Vision Research, A. Gorea, ed., pp. 47-67, Cambridge University Press. 

Bienenstock, E. & Doursat, R. (1994) A shape-recognition model using dynamical links. Network: Computation 
in Neural Systems 5(2): 241-258. 

Doursat, R., Konen, W., Lades, M., von der Malsburg, C., Vorbrüggen, J. C., Wiskott, L. & Würtz, R. P. (1993) 
Neural mechanisms of elastic pattern matching. Internal Report IRINI 93-01, Institut für Neuroinformatik, 
Ruhr-Universität Bochum, Germany. 

Doursat, R., von der Malsburg, C. & Bienenstock, E. (1995) Coding metric with delayed temporal correlations: 
An oscillator model of graph-matching. Technical Report, Institut für Neuroinformatik, Ruhr-Universität 
Bochum, Germany. 

Geman, S., Bienenstock, E. & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural 
Computation 4: 1-58. 

 
Abstracts (for Presentations or Posters) – Conferences, Workshops 
 
Bienenstock, E. & Doursat, R. (1988) Graph-matching and shape recognition in neural networks. 1st Conference 

on Image Recognition and Neural Networks: From Signal Processing to Representation (NEURO-IMAGE 
1988), October 6-7, 1988, Université de Bordeaux II, France. 

Bienenstock, E. & Doursat, R. (1989) Of shapes, graphs and neural codes. NATO Advanced Research Workshop 
on Neuro Computing: Algorithms, Architectures and Applications, February 27-March 3, 1989, Les Arcs, 
France (presenter: E. Bienenstock). 

 
Invited Keynote Presentations & Talks (with Abstracts) – Conferences, Workshops 
 
Doursat, R. (1995) The microdynamics of mental schemas. Workshop on Morphodynamic Models for Language 

and Perception, December 11-13, 1995, International Centre for Semiotic and Cognitive Studies (Umberto 
Eco & Patrizia Violi, dirs.), University of San Marino, Italy. 

Doursat, R. (2007d) Of tapestries, ponds and RAIN: Toward fine-grain mesoscopic neurodynamics in excitable 
media. International Workshop on Nonlinear Brain Dynamics for Computational Intelligence, at 10th Joint 
Conference of Information Systems (JCIS 2007), July 20, 2007, Salt Lake City, UT. 

Doursat, R. (2009i) Causing and influencing patterns by designing the agents: Complex systems made simpler. 
4th Workshop on Causality in Complex Systems, co-organized by DSTO, CSIRO (Australia), and ONR, 
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3.1.  Project SYNBLOCK: Synfire Chains as the Building Blocks of Cognition 
 
Parallel self-organization of connectivity and activity in an initially random spiking neural 
network, with the goal of supporting a hierarchy of structured mental representations in visual, 
auditory or linguistic tasks. 
 
Striking regularities in the connectivity structure of the visual system and other cortical areas account 
for their functional specialization. Elie Bienenstock (Department of Applied Mathematics and 
Department of Neuroscience, Brown University) and myself have designed a model that reproduces 
the development of such regularities as a phenomenon of spatiotemporal pattern formation. We show 
the spontaneous and simultaneous emergence of regular “synfire chains” (Abeles 1982, 1991) of 
synaptic connectivity together with a wave-like propagation of neural activity. Starting from an 
undifferentiated random state, our neural network transitions into a dual ordered regime, in which 
chains sustain and guide waves, while waves create and reinforce chains. We postulate that these 
patterns might constitute the elementary components or “molecular building blocks” at the 
mesoscopic level of the mind’s symbolic abilities, in particular the faculty of compositionality 
(Bienenstock 1996) at the core of linguistic and perceptual functions. 
 
Rationale: The compositionality of Cognition 
 
In this work, we address on a general level the compositionality of cognitive processes, i.e., the 
faculty of assembling elementary constituent features into complex representations. Answering to 
Fodor and Pylyshyn’s (1988) influential criticism about the lack of structured representations in 
neural networks, our goal is to show that compositionality can arise from the simultaneous self-
organization of connectivity and activity in an initially random cortical network. 

Already apparent in invariant perceptual tasks, where objects are categorized according to the 
relationships among their parts, compositionality is particularly striking in language, where it is also 
referred to as constituency. Language can be therefore described as a “building block” system, in 
which the operative objects are symbols endowed with an internal combinatorial structure. This 
structure allows elementary symbols to be assembled in many different ways into complex symbols, 
whose meaning is sensitive to their internal arrangement. Here again, chemistry provides a useful 
metaphor if we compare symbols with molecules and symbolic composition with the various possible 
reactions and products that depend on the geometrical structure of molecules. In this context, the issue 
of an appropriate format of representation of mental entities is of particular importance and our 
proposal is that the nervous system uses a higher-order temporal code to represent linguistic entities.  

The present neural model proposes that compositionality might arise from the gradual ontogenetic 
development of the nervous system during the early stages of synaptogenesis. By this, we adhere to 
Chomsky’s conception that language actually “grows” and matures in children’s brain like a limb or 
an organ (e.g., Chomsky 1986). This claim might sound suprising at first but is in accordance with 
well-known observations and general principles of neural development. Indeed, the visual system and 
many other cortical areas display strong regularities in their connectivity, which self-organize during 
fetal and postnatal development (with or without input from external stimuli) and account for their 
functional specialization. Similarly, it is postulated here that the faculty of language (as opposed to 
any specific language) is supported by specialized neural pathways that develop through a feedback 
interaction between neuronal activities and synaptic efficacies. 
 
Self-Organized Growth of One Synfire Pattern 
 
Starting from an initially disordered network characterized by broad diffuse contacts and low 
stochastic firing, an ordered “synfire-chain” structure of connections and wave-like correlated 
activation can emerge simultaneously. In their simplest implementation, these linear structures consist 
of a sequence of synchronous groups P0→P1→P2→... connected by feed-forward synaptic contacts 
(Fig. 3.1.1a). Experiments in mammalian neocortex have gathered some evidence for these patterns, 
which were hypothetically named “synfire chains” (Abeles 1982, 1991) when based on uniform 
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connection delays, or “synfire braids” if they contained unequal delays (Bienenstock 1995; 
Fig. 3.1.1b). It is postulated here that synfire chains could explain the preservation of accurately 
synchronized action potentials even in the presence of noise (e.g., Diesmann et al. 1999, Ikegaya et al. 
2004). Note that this type of structures at a fine-grain microscopic level should not be confused with 
the macroscopic signal processing paradigm of Fig. 3.4a (Section 3 above). Neurons in a synfire 
chains or braids do not carry out any specific feature detection task, or transform any “input” into an 
“output”. Their main purpose is to collaborate to create emergent patterns of temporal correlations, 
which can then serve as elementary bricks of a higher compositional system (see below). 

During synfire chain growth, certain connections are gradually selected and strengthened to the 
detriment of others. This focusing of the connectivity is also accompanied by a gradual increase and 
durability of correlated firing. Connections and correlations reinforce each other through 
heterosynaptic cooperation, while the global stability of the network is maintained through a 
constraint of competition. 

(a)  (b)   
 
Figure 3.1.1: Schematic illustration of (a) segments of synfire chain (at a microscopic scale; not to be 
confused with the macroscopic signal processing paradigm of Fig. 3.4a) and (b) a synfire braid. In both 
cases, the geometry of the network has been unfolded along a temporal axis to make these linear 
structures appear clearly. A transitive pathway A→(B, D)→C is highlighted in the synfire braid (from 
Doursat 1991, Doursat & Bienenstock 2006). 

 
Summary of the model’s rules We consider a network of N excitatory neurons with binary values xi 
representing spikes on the ms time scale. Synaptic weights wij vary by small increments on the same 
time scale as xi. Time is discrete, in steps of roughly 1 ms, and connections have fixed transmission 
delays τij. At each time t, the state of the network consists of action potentials x(t) = {xi(t)}i=1...N and 
synaptic weights w(t) = {wij(t)}i,j=1...N. This state evolves according to three laws: (a) neuronal 
activation, (b) synaptic plasticity and (c) intersynaptic competition. 

(a) Neurons obey a simple linear-nonlinear Poisson (LNP) dynamics, equivalent to the McCulloch 
& Pitts mean rate model, but transposed here to the 1-ms timescale. The probability of activation of 
neuron j is given by P[xj(t) = 1] = σT(Vj(t) − θj), where Vj(t) = ∑i wij(t) xi(t − τij) is the membrane 
potential of j at time t, θj its firing threshold and σT(v) = 1 / (1 + exp(−v/T)), a sigmoidal step function. 
“Temperature” T controls the slope of the logistic function σT, i.e., the amount of noise in the system. 

(b) The variation of connection weights depends on the fine temporal correlation between pre- 
and postsynaptic neurons. It is given by wij(t) = wij(t − 1) + bij(t), with bij(t) = +α for each j ≠ i such 
that xi(t − τij) = xj(t) = 1, and bij(t) = −β if xi(t − τij) ≠ xj(t), where α and β are small positive numbers, 
typically of the order of .1 and .01, respectively. Thus, the effective rate of synaptic modification is 
much slower than that of the neuronal dynamics. The α term is a schematic model of synaptic 
potentiation whereas the β term represents synaptic depression. Presynaptic neurons must cooperate to 
increase the likelihood of successful transmission and receive synaptic reward. This fast synaptic 
plasticity is a form of Hebbian learning on the 1-ms time scale, and can also be viewed as a 
simplification of STDP, replacing the exponential curves with fixed increments. 

(c) The first two rules create a positive feedback in the network, whereby correlations and 
connections reinforce each other. To counterbalance this effect and prevent epilepsy, we introduce a 
third mechanism in the form of competition among synapses—a schematic formulation of otherwise 
complex synaptic homeostasis mechanisms (Frégnac 1998). We impose that all outgoing (“efferent”) 
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and incoming (“afferent”) weight sums be conserved at all times: ∑j’ wij’(t) = ∑i’ wi’j(t) = s0. Under 
such a constraint, the evolution of synaptic connections is better described as a redistribution rather 
than a creation of new contacts. For ease of calculation, we make this constraint a cost function 
H(w) = γ ∑i[si

out(w(t)) − s0]2 + γ ∑j[sj
in(w(t)) − s0]2, where si

out(w(t)) = ∑j’ wij’(t), sj
in(w(t)) = ∑i’ wi’j(t) 

and γ is of the order of .005. The synaptic rule thus becomes wij(t) = wij(t − 1) + bij(t) + cij(t), with 
cij(t) = −(∂H / ∂wij)(w(t − 1) + b(t)). Finally, weights are clipped to stay inside [0, 1]. 

In summary, the network is driven by two major forces: a positive feedback in the form of 
cooperation between (a) activity and (b) Hebbian connectivity, and a corrective negative feedback in 
the form of (c) competition among connections (Fig. 3.1.2a-b). 
 
Preliminary stability analysis We briefly analyze the behavior of the above model under simplified 
conditions, setting all delays τij to a constant τ0. Our first goal is tuning the network to a random 
activity mode with low average firing rate. Connectivity is broad and diffuse, with wij ≈ w0 = s0 / N 
(for example, N = 100, s0 = 10, w0 = .1). Denoting by n* the average of 〈n(t)〉 over time, our goal is to 
obtain 0 < n* << N to prepare conditions favorable to synfire growth. A mean field approximation 
yields: 〈n(t)〉 ≈ ζ(〈n(t − τ0)〉), where ζ is an offset and rescaled version of σT, based on N, w0 and θ0, 
thus the average firing rate is a fixed point n* = ζ(n*). A graphical analysis (Fig. 3.1.2c) reveals the 
existence of 1, 2 or 3 such points depending on the position of the sigmoidal curve’s center 
Ω = (θ0 / w0, N / 2) and its slope at that point ζ‘Ω = Nw0 / 4T. Placing Ω to the left of the diagonal, it 
means that ζ‘Ω must be steeper than the line from 0 to Ω to create two stable points, n1* near 0 and n3* 
near N. The corresponding conditions translate to θ0 < s0 / 2 and T < θ0 / 2, for example: θ0 = 3 and 
T = .5 yielding n1* ≈ .25 and ensuring a quick convergence to a stable low activity rate 
〈n(t)〉 = n1* from a silent network n(0) = 0. 

Interestingly, the same parameters allowing stable random activity in an unstructured network 
also allow the stable propagation of a wave in a future synfire chain of width nc (average size of the 
pools). Reasoning is the same as above, leading to a sigmoidal fixed-point study this time under a 
rescaling factor nc / N. In this domain of parameters, the critical number of active P0 neurons 
necessary and sufficient to reliably trigger a wave on the rest of the chain is given by n2* ≈ nc (θ0 / s0). 
 

 
(c) 

 
Figure 3.1.2: (a)-(b) Variation of connectivity caused by activity. If pool P’ (three units) was active at 
t−τ0 and P (four units) was active at t, then P’→P weights are reinforced but other P’→out and in→P 
weights are weakened. With N = 100, n’ = 3, n = 4, α = .1, β = 0 and γ = 1/2N = .005, the three weight 
changes are +.093, −.004, −.003. (a) Network view of Δw(t). (b) Matrix view of Δw(t). (c) Graphical 
study of mean activity in a random diffuse network, showing sigmoid curves ζ under different values 
of T (with N = 100, w0 = .1 and θ0 = 3). For T ≤ .8, there are 3 fixed points: n1* (near 0, stable), n2* 
(near θ0 / w0, unstable) and n3* (near N, stable). Our double goal is to maintain background activity at 
n1* while synfire chains sustain n3*(nc / N)[←rescaling factor] (from Doursat & Bienenstock 2006). 

 
Creation of the first synchronous pool After preparing the appropriate parametric conditions, we 
now examine the growth of a synfire chain. To this aim, we introduce a new singularity into the 
network—a special “seed” group of n0 neurons, noted Q. These seed neurons tend to fire 
synchronously at a low average frequency, typically once every 10 or 20 τ0, although not necessarily 
regularly. Through its repeated activation, Q will become the root of a new synfire chain that develops 
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by aggregating new pools of synchronous neurons recursively. 
During the first steps of a chain’s growth, Q’s pulses create gradual differentiation in the 

landscape of activation probabilities. At first, potentials are near 0 in all neurons and activation 
probabilities are uniformly low at n1*/ N = .25% (with the above-mentionned numerical values). 
When Q fires for the first time at t0, it injects a potential n0 w0 in the network and raises firing 
probabilities to σT(w0n0 − θ0) = 1.8%. Consequently, an average of 2 neurons (denoted P1) fire at 
t0 + τ0, provoking a Q→P1 weight increase to w0 + α = .2, hence a future P1’s activation probability of 
σT((w0 + α)n0 − θ0) = 12%. For the next few Q pulses, P1 will continue collecting neurons 
characterized by an increased post-Q firing probability of 12%. Then, inevitably one or more neurons 
from P1 will fire a second time after Q. This differentiates them further from the other neurons by 
bumping up their next activation probability to σT((w0 + 2α)n0 − θ0) = 50%. The probability landscape 
is now partitioned into three groups: P1 neurons that fired after Q twice, once, or never, and 
respectively have 50%, 12% or 1.8% chance of firing again after Q. 

Neurons therefore differentiate on the basis of how many times they fired after Q. The fate of 
each neuron depends on its current degree of correlation with the seed group, i.e., the number of past 
1→1 events. This is the core of the positive feedback loop: correlations increase connections, which 
encourage correlations. Once neuron j reaches probability 50%, it is very likely to be activated a 4th 
time by Q and move up to σT((w0 + 3α)n0 − θ0) = 88% soon. From this point on, j becomes a 
permanent member of P1: Q→j connections reach the maximum w+ = s0 / n0 and j is systematically 
triggered by Q, which maintains these connections. The Q→j connection pattern is extremely robust. 

Negligible in the beginning, competition then becomes predominant in the later phase of P1’s 
formation. In the first phase, undifferentiated neurons become candidates to P1’s membership by 
firing once after Q. Then, in a second phase, these candidates compete to be recruited. Due to the sum 
rule, Q’s efferent connections cannot afford to sustain all candidates, so neurons that fire again earlier 
“drag” synaptic contacts towards them, to the detriment of undecided neurons. In sum, the 
aggregation of pool P1 is evolutionary: it first expands by diversification (driven by T) then shrinks 
and rounds up a final set of n1 winners through selection (driven by s0). 
 

    

(a) (c) 

 

(b) (d) 

 
Figure 3.1.3: A growing synfire chain (N = 100, n0 = 10, w0 = .1, θ0 = 3, T = .5, α = .1, s0 = 10). The 
firing period of the seed group is about 20 time steps. (a) Four snapshots of the network’s total activity 
following seed activations sampled at different times. (b) Five other snapshots, superimposed in this 
view, revealing the growing profile of the chain (respectively at seed activations 10, 30, 50, 100, 200). 
(c)-(d) Evolution of seed group Q’s outgoing connections during the recruitment process of the first 
pool P1. (c) Snapshot (slice in space) of the landscape of weight values going from Q to the network, at 
the 15th seed activation (horizontal axis: receiving neurons from #1 to #100). (d) Fate (slice in time) of 
two sets of connections, Q→#55 and Q→#79 (horizontal axis: temporal sequence of seed activations). 
The discrete jumps of α = .1 caused by the neuron’s activation are separated by periods of silence 
where weights slowly decrease again because of competition (from Doursat & Bienenstock 2006). 
 

Recursive aggregation of a synfire chain Clearly, the same process from Q to P1 then repeats itself 
with P1 now playing the role of the seed and recruiting a new group P2. The growth of synfire chain 
Q→P1→P2→ ... is recursive and akin to the growth by accretion of a crystal—which also requires the 
presence of a singularity, acting as a seed. This accretion process is also not strictly iterative. The full 
period of P1’s development covers several of Q’s firing events t0, t1,..., tq (typically about 100), as 
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neurons are recruited at different times and connections grow unequally on a first-come-first-served 
basis. Thus, P1 does not wait for completion to start recruiting P2: as soon as P1 reaches a critical mass 
θ0, it is able to activate in turn new neurons downstream. The recruitment period of Q→P1 therefore 
greatly overlaps that of P1→P2, and so on. A growing chain typically lengthens before it widens, 
which gives it the aspect of a beveled head at the end of a mature trunk (if neurons’ positions are 
rearranged in 2-D to make the chain appear visually; Fig. 3.1.4a). Several generations of immature 
groups along the growing tip of the chain compete to recruit neurons from the rest of the network. By 
recursive reasoning, Pk-1 is always created before Pk, hence is larger and will be completed first. In the 
recruitment competition, older groups upstream maintain their advantage over younger groups 
downstream by instilling larger potentials into candidate neurons. 
 

(a)  
 

Figure 3.1.4: (a) Typical beveled profile of a growing synfire chain. The elongated ovals schematize 
synchronous pools in formation (height proportional to number of neurons) and the edges, Pk-1→Pk 
connections. A wave is currently propagating from P3 to P4. A mature “trunk” of constant width (here 
including P2) ends in a “searching head” of decreasing width, due to largely overlapping periods of 
pool development. Immature efferent links (dashed lines) from unfinished pools compete to recruit 
new neurons from the network. (b)-(c) Idealized sketch of a “self-made tapestry” of synfire chains. 
(b) Multiple chains simultaneously develop from independent seed groups, then (c) they synchronize 
and bind. The wavy pointed rectangles represent growing synfire chains or braids in a rearranged view 
(not showing the fact that chains may also overlap and share neurons). The black stripes illustrate the 
current position of the waves of activation and the curvy arrows in (c) symbolize weak coupling 
connections between chains (from Doursat & Bienenstock 2006). 

 
A Self-Made Tapestry of Multiple Interacting Synfire Patterns 
 
Finally, we suggest that synfire growth could be the first step in an infinitely productive “network of 
networks” hierarchy. The concurrent growth of multiple chains can define a mesoscopic scale of 
neural organization, in which synfire patterns have the required combinatorial structure to assemble in 
various ways through wave synchronization and fast synaptic binding (Fig. 3.1.4b-c). Synfire-chain 
binding is comparable to oscillator phase locking: the closer the frequencies, the weaker the coupling 
required to maintain a stable phase relationship between them. We posit that weak excitatory synaptic 
interactions induce coupling between chains, in the sense that it stabilizes the timing relationships 
across the chains. Such connections do not actually activate silent chains, but only ensure 
synchronization between already active chains. Under the influence of external stimuli, chain motifs 
dynamically bind into higher structural compositions characterized by complex modes of activity. 
This model suggests that the ontogenetic development of the nervous system could be another 
instance of a “self-made tapestry” (Ball 1999) that exhibit pattern formation, as do many natural 
complex systems.  
 
Future Directions 
 
Robustness and biological realism Although we chose a simplified set of equations and parameters, 
it is readily seen that the basic principles—the interplay of coincidence detection and synaptic 
reinforcement—are quite general, and neocortical structuration is a robust self-organization process. 
Following the initial presentation of this work in my PhD thesis (1991), a few other proposals based 
on more biologically detailed models of the cortex, using integrate-and-fire dynamics (e.g., Hertz & 
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Prügel-Bennett 1996), spike-timing dependent plasticity (STDP) and complex “small-world” 
networks (Izhikevich et al. 2004), have also demonstrated the spontaneous formation of time-locked 
neuronal groups, with the difference that the produced patterns are locally bounded and more unstable 
or rapidly transient compared to the iteratively long and persistent synfire structures that we obtained. 
We will use more realistic spiking and synaptic dynamics, too, in the next versions of this study. 
 
Inhibition as a stabilizing and coupling mechanism Recurrent connectivity and Hebbian plasticity 
create a mutual reinforcement of excitatory activity and connectivity that could lead to a trivial and 
unrealistic run-away situation. In addition to (or replacement of) competition, we will also investigate 
inhibition as another negative feedback mechanism to keep this situation under control. Inhibition 
directly controls the global activity level in the network in a rather accurate way and on a faster time 
scale than synaptic competition. Much interest has been devoted in recent years to the study of 
“balanced networks”, where the mean inhibitory input to a neuron cancels the mean excitatory input. 
In particular, it was suggested (Aviel et al. 2004) that the propagation of a synchronous wave on the 
background of asynchronous activity can be achieved in a synfire chain containing inhibitory 
“shadow” pools to the excitatory ones. Moreover, global inhibition can also play an important role in 
controlling the dynamic coupling and uncoupling of grown chains (Abeles et al. 2004). 
 
Multiple synfire-chain composition At the core of perception and language is the capacity for 
handling (producing or interpreting) composite entities never seen or heard before. Although new, 
each such entity bears many different relationships (traditionally termed “syntactic”, “semantic”, 
“pragmatic”) to previously experienced material. The proposal that synfire chains can be used as a 
substrate for compositional cognitive functions is based on their ability to bind with each other 
whenever induced by synaptic interactions. Our ultimate goal is to simulate the binding, unbinding 
and rebinding of multiple chains to each other in non-random ways, and into various composite 
structures, and relate these complex spatiotemporal objects to perceptual and linguistic tasks. 
 
Spinoff Projects 
 
Project SYNBLOCK-DEVO 
 
Characterizing the “shape of mental states”: morphogenesis and structure of complex, 
heterogeneous neural activity. 
 
Possible collaborators: Yves Frégnac, Unité de Neurosciences Intégratives et Computationnelles 
(UNIC), CNRS Gif-sur-Yvette, France – Elie Bienenstock, Department of Applied Mathematics and 
Department of Neuroscience, Brown University 
 
Abstract: Generalizing synfire growth and composition, it would be of great importance to be able to 
characterize and simulate intrinsically heterogeneous, i.e., structurally and spatially complex, spiking 
dynamics. On the one hand, models of recurrent spiking networks in statistical physics exhibit 
homogeneous “flat” dynamical regimes (whether ir/regular, a/synchronous, etc.; e.g., Brunel 2000, 
Vogels & Abbott 2005). On the other hand, content-addressable memory models involve 
heterogeneous attractors, but these are based on mean-rate coding (e.g., Amit & Brunel 1997). Rarely 
are heterogeneity and complex spatiotemporal dynamics combined. This project will draw its 
inspiration from collective phenomena of complex systems, such as pattern formation, swarm motion 
and structured morphogenesis (see Part 2) and transfer them to computational neuroscience with the 
goal of producing non-trivial, endogenous states of neural activity. But instead of grains of sand, birds 
of a flock, or cells of an embryo, its elementary components will be the membrane and action 
potentials of large neural assemblies. I want to show how all these electrical contributions can self-
assemble in a non-random, reproducible fashion. My goal is to “grow specific shapes” in a recurrent 
network or, switching from a geometric to an auditory metaphor, “learn specific tunes”, which the 
network can play back later without explicit stimulus. It is conjectured that these heterogeneous, 
spatially extended dynamic assemblies could be the fundamental substrate of mental representations. 
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Project SYNBLOCK-WAVEMATCHING 
 
Coding visual metric with spatiotemporal patterns of activity: An oscillator-network model of graph 
matching. 
 
Possible collaborators: Elie Bienenstock, Department of Applied Mathematics and Department of 
Neuroscience, Brown University – Christoph von der Malsburg, Frankfurt Institute for Advanced 
Studies (FIAS),  Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany 
 
Abstract: Visual perception simultaneously involves low-
level processing, in which elementary features group 
together spontaneously according to purely local 
information (Gestalt), and high-level processing, in which 
global patterns stored in memory intervene to guide overall 
segmentation and shape recognition. I proposed a model of 
template-matching based on an analogy between waves 
and elastic deformations (Bienenstock & Doursat 1994, 
Doursat et al. 1995). The key idea is that spatial distances 
are coded by temporal delays. In wave-like spiking 
activity, if phases are interpreted as coordinates then two 
such waves can code for a 2-D visual pattern. 
Consequently, the interaction between input pattern and 
schema pattern, formally interpreted as a graph-matching 
process, corresponds to the growth of dynamical links 
from one pair of waves to another pair of waves 
(Fig. 3.1.5). For example, this concept can be implemented 
in networks of coupled oscillators or excitable units. 

Figure 3.1.5: Schematic view of a wave-
matching process, where spike timings 
(detailed left) code for coordinates and 
connection weights increase between syn-
chronous units (from Doursat et al. 1995). 
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3.2. Project COGNIMORPH: The Morphodynamics of Cognitive Categorization 
 
Bridging the gap between vision and language by importing complex systems into linguistics, in 
particular modeling categorization with traveling waves and dynamic singularities in coupled 
excitable units. 
 
I have proposed with Jean Petitot (Ecole Polytechnique, Paris) a novel dynamical system approach to 
cognitive linguistics based on the generation of traveling waves in cellular automata and spiking 
neural networks. Our objective is to categorize the infinite diversity of schematic visual scenes into a 
small set of grammatical elements and elucidate how language deals with space (Levinson 2003), or 
what is the topology of language. How can the same relationship ‘in’ apply to containers as different 
as ‘box’, ‘tree’ or ‘bowl’? We suggest that this invariance can be explained by introducing 
morphodynamical transforms, which erase image details and create virtual structures (boundaries, 
skeleton). This work addresses the crucial cognitive mechanisms of spatial schematization and 
categorization at the interface between vision and language and anchors them into expansion 
processes such as activity diffusion or wave propagation. 
 
The Invariants of Spatial Linguistics 
 
How can the same English relationship ‘in’ apply to scenes as different as “the shoe in the box” 
(small, hollow, closed volume), “the bird in the tree” (large, dense, open volume) or “the fruit in the 
bowl” (curved surface)? What is the common ‘across’ invariant behind “he swam across the lake” 
(smooth trajectory, irregular shape) and “the fly zigzagged across the hall” (jagged trajectory, regular 
volume)? How can language, especially its spatial elements, be so insensitive to wide topological and 
morphological differences among visual percepts? In short, how does language drastically simplify 
information and categorize? This core invariance of spatial semantics, referred to as the “linguistic 
form of topology” (Talmy 2000) or “cognitive topology” (Lakoff 1988), is at the same time more 
flexible (e.g., allowing holes) and more metrically constrained (e.g., limiting distortions) than 
mathematical topology. 

Contemporary theories of semantics, such as cognitive linguistics (e.g., Talmy 2000, Langacker 
1987, Lakoff 1987, Jackendoff 1983; see review in Croft & Cruse 2004), have shown that terms with 
spatiotemporal content are highly polysemous. For example, different uses of ‘in’ relate to 
qualitatively different spatial situations (Herskovits 1986): “the cat in1 the house”, “the bird in2 the 
tree”, “the flower in3 the vase”, “the crack in4 the vase”, etc. This study examines the link between the 
spatial structure of visual scenes and their linguistic descriptions. Its goal is to understand and 
reproduce how our cognitive system creates schemas and categories at the interface between vision 
and language, in particular its ability to effortlessly map an infinite diversity of visual scenes onto a 
small set of grammatical elements (Fig. 3.2.1a). Our suggestion is that spatial and grammatical 
structures are related to each other through image transformations that may rely on diffusion 
processes and wavelike neural activity. 

Numerous examples collected by Talmy (2000) show that grammatical elements are largely 
indifferent to the morphological details of objects or trajectories. Typical cases are scale invariance 
(“this speck/planet is smaller than that speck/planet”), bulk invariance (“the caterpillar crawled up 
along the filament/flagpole/redwood tree”), continuity invariance, translation invariance (see 
examples below), shape invariance (“I zigzagged/circled/dashed through the woods”), and so on. 
 
Uncovering Basic Morphodynamical Routines 
 
All these invariants of meaning point to underlying visual-semantic routines that perform a drastic but 
targeted simplification of the geometrical data. They correspond to various types of data-reduction 
transforms essential to scene categorization. We describe two of them in greater detail here. 
 
Continuity invariance Sentences such as “the ball/fruit/bird is in the box/bowl/cage” are good 
examples of the neutrality of the preposition ‘in’ with respect to the morphological details of the 
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container. To explain this effect, we propose that the active semantic effect of ‘in’ is to trigger 
routines that transform a scene by making its participants expand simultaneously (through some 
contour diffusion process) until they reach each other’s boundaries. Denoting the figure and ground of 
the semantic relationship by, respectively, trajector (TR) and landmark (LM) (Langacker 1987), an 
active-semantic definition of the prototypical ‘containment’ schema can exploit the fact that no TR-
induced activity is detected on the borders of the visual field because it is blocked by LM. This can be 
easily implemented in a 2-D square lattice, three-state CA (empty cell, TR cell, LM cell; Fig. 3.2.1b). 
Note that the final boundary line between the domains is approximately equal to the skeleton of the 
complementary space between the objects, also called skeleton by influence zones or SKIZ. In the case 
of the containment schema, the SKIZ surrounds TR and no cell on the borders is in TR’s state. It is a 
robust feature that contributes to categorize the scene as ‘in’. 
 

 
 

Figure 3.2.1: (a) Our cognitive abilities can effortlessly categorize an infinite diversity of visual scenes 
into a small set of spatial grammatical elements. (b) Expansion-based detection of an ‘in’ schema. We 
use a 100x100, 3-state, 2-D CA: 1 for TR (black), 2 for LM (gray) and 0 for the ambient space (white). 
A simple diffusion rule requires that a 0 cell adopt the state of any non-0 nearest neighbor, if it exists. 
Starting with any two initial TR and LM domains and stopping when the total TR activity is constant, 
the lattice quickly converges to an attractor characterized by two contiguous domains of 1’s and 2’s. 
TR’s expansion is blocked by LM’s expansion from reaching the borders despite discontinuities in LM. 
Top: “The ball in the box” converges in 21 steps. Bottom: “The bird in the cage,” in 27 steps. 

 
Translation invariance Another example, “the 
lamp is above the table”, can be processed in the 
same way: the simultaneous expansion of TR and 
LM creates a roughly horizontal SKIZ line in the 
center of the image (Fig. 3.2.2). This time, the key 
classification feature is the absence of TR activity 
on the bottom border of the field. This property is 
conserved by translation of TR in a broad region of 
space. This prototypical case of ‘above’ is one 
example of the generic ‘partition’ schema that 
includes elements such as ‘below’, ‘beside’, 
‘behind’ and ‘in front of’ (viewed in 3-D). 

Figure 3.2.2: Detection of an ‘above’ schema in a 
2-D cellular automata. We use the same 100x100 
lattice as Fig. 3.2.1b. (a) LM’s expansion prevents 
TR’s expansion from reaching the bottom border. 
(b) Same effect when LM and TR are not 
vertically aligned, so that part of TR is directly 
facing the bottom border. 

 
Therefore, the double expansion process that we propose for the ‘containment’ and ‘partition’ 
schemas (and other) leads us to introduce the following general principles of active semantic 
morphodynamics: (i) objects have a tendency to occupy the whole space; (ii) objects are obstacles to 
each other’s expansion. Through the action of structuring routines the common space shared by the 
objects is divided into influence zones. These routines are similar to the basic operators of dilation 
and erosion defined in “mathematical morphology” (Serra, 1982). Image elements cooperate to 
propagate activity across the field and inhibit activity from other sources. A key idea is that 
singularities encode a lot of the image’s geometrical information in an extremely compact and 
localized manner and constitute a characteristic “signature” of the spatial relationship (Petitot 1995, 
2003). After the morphodynamical routines have transformed the scene according to the expansion 
principles (i) and (ii), several types of characteristic features can be detected to contribute to the final 

58 



René Doursat  Habilitation à Diriger des Recherches 

categorization: (iii) presence or absence of activity on the borders; (iv) intersection of skeletons; and 
(v) singularities in the SKIZ boundary line. 

Like multiscale analysis, skeleton transforms are widely used in machine vision and implemented 
using various algorithms. Studied by Blum (1973) under the name “medial axis transform” and by 
others as “cut locus”, “stick figures”, “shock graphs” or “Voronoi diagrams” (Marr 1982, Siddiqi et 
al. 1999, Zhu & Yuille 1996), morphological symmetry plays a crucial role in theories of perception 
and is even considered a fundamental structuring principle of cognition (Leyton 1992). Skeletons 
indeed conveniently simplify and schematize shapes by getting rid of unnecessary details, while at the 
same time conserving their most important structural features. There is also experimental evidence 
that the visual system effectively constructs the symmetry axis of shapes (Kimia 2003, Lee 2003). 
 
Morphodynamical Waves in Spiking Neural Networks 
 
Elaborating upon this first abstract morphodynamical model, we now establish a parallel with neural 
modeling. Our main hypothesis is that the transition from analog to symbolic representations of space 
could be neurally implemented by traveling waves in a large-scale network of coupled spiking units, 
via the expansion processes discussed above. There is a vast cross-disciplinary literature, revived by 
Winfree (1980, 2001), on the emergence of ordered patterns in excitable media and coupled 
oscillators. Traveling or kinematic waves are a frequent phenomenon in nonlinear chemical reactions 
or multicellular structures (e.g., Swinney & Krinsky 1991, Cladis & Palffy-Muhoray 1995), such as 
slime mold aggregation, heart tissue activity, or embryonic pattern formation. Across various 
dynamics and architectures, these systems have in common the ability to be pushed (or to self-
organize) into a state of criticality, from which they can rapidly bifurcate between randomness or 
chaos and ordered activity (Kauffman 1993). To this extent, they can be compared to “sensitive 
plates”, as certain external patterns of initial conditions (whether chemical concentrations, food, or 
electrical stimuli) can quickly trigger internal patterns of collective response from the units. 
 
Excitable media made of coupled units We explore the same idea in the case of an input image 
impinging on a layer of neurons and draw a link between the produced response and categorical 
invariance. In the framework proposed here, a visual input is classified by the qualitative behavior of 
the system, i.e., the presence or absence of certain singularities in the response patterns. A possible 
neural implementation of the morphodynamical engine at the core of our model relies on a network of 
individual spiking neurons, or local groups of spiking neurons (e.g., columns), arranged in a 2-D 
lattice similar to topographic cortical areas, with nearest-neighbor coupling. Each unit obeys a system 
of differential equations that exhibit regular oscillatory behavior in a certain region of parameter 
space. Various combinations of oscillatory dynamics (relaxation, stochastic, reaction-diffusion, pulse-
coupled, etc.) and parameters (frequency distribution, coupling strength, etc.) are able to produce 
waveform activity, however we want here to point out the generality of the wave propagation 
phenomenon, rather than its dependence on a 
specific model. ( ) ( )
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For practical purposes, we use here the 
Bonhoeffer-van der Pol (BvP) relaxation 
oscillator (FitzHugh 1961; Fig. 3.2.3). Each 
unit i is located on a lattice point xi and 
described by a pair of variables (ui, vi). Unit i 
is locally coupled to neighbor units j within a 
small radius r with Gaussian noise η and can 
also receive an input Ii = 0 or constant I. 
Parameters are tuned so that individual units 
are close to a bifurcation in phase space 
between a fixed point and a limit cycle, i.e., 
one spike emission. They are excitable in the 
sense that a small stimulus causes them to 
jump out of the fixed point and orbit the limit 
cycle, during which they cannot be disturbed. 

Figure 3.2.3: Firing modes u(t) of a stochastic BvP 
relaxation oscillator (a = .7, b = .8, c = 3, η > 0, k = 0, 
I = 0). (a) Sparse random firing at z = −.2 (spikes are 
upside-down). (b) Quasi-periodic firing at z = −.4. At 
critical value zc = −.3465 and zero noise, there is a 
bifurcation from a fixed point u ≈ 1 to a limit cycle. 
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Wave categorization models Based on such lattices of weakly coupled excitable units, we propose a 
family of models that exploit wave dynamics to support the categorization of spatial schemas. Waves 
implement the expansion-based transformations stated in principles (i)-(ii), then the detection of 
global activity or singularities created by wave collisions follows principles (iii)-(v). Simpler models 
implement the border detection principle (iii) used in the ‘containment’ (Fig. 3.2.1b) and ‘partition’ 
(Fig. 3.2.2) schemas, while more elaborate models focus on the SKIZ singularities and “signature” 
detection principle (v), which can be used as a complement or alternative to border detection. 

Figure 3.2.4 shows the typical waves of excitation created in a network of coupled BvP units at 
the basis of all these models—here in a schematic spatial scene representing “a small blob above a 
large blob”. Block impulses of spikes trigger wave fronts of activity that propagate away from the 
object contours and collide at the SKIZ boundary between the objects. These fronts are “grass-fire” 
traveling waves, i.e., single-spike bands followed by refraction and reproducing only as long as the 
input is applied. Under the nonlinear dynamics, waves annihilate when they meet, instead of adding 
up. Again, there is convincing perceptual and neural evidence for the significant role played by this 
virtual SKIZ structure and propagation in vision (Kimia 2003). 

 

      
 

Figure 3.2.4: Running morphodynamical routines with spiking units. LEFT: (a) SKIZ obtained by 
simple diffusion in a 64x64 3-state CA, as in Error! Reference source not found.. (b) Same SKIZ 
obtained by traveling waves on a 64x64 lattice of coupled BvP oscillators in the regime of Fig. 3.2.3a. 
Activity u is shown in gray levels, brighter for lower values, i.e., spikes u < 0. Starting with weak 
stochastic firing (η > 0), an input image is continuously applied with amplitude I = −.44 in both TR and 
LM domains. This amounts to shifting z to a subcritical value z < zc, thus throwing the BvP oscillators 
into periodic firing mode (Fig. 3.2.3b). This in turn creates traveling waves in the rest of the network. 
RIGHT: Detection of the ‘above’ schema by mutually inhibiting waves: an alternative setup where two 
separate lattices of BvP units, LTR and LLM, are cross-coupled. (a) Single wave fronts obtained by 
injecting a pulse input I = −.44 in TR and LM for 0 ≤ t < 2 (10 time steps dt = .2). (b) Multiple wave 
fronts obtained by applying the same input amplitude indefinitely. In both cases, no spike reaches the 
bottom of LTR. 

 
Original Points of this Proposal 
 
Bringing large-scale dynamical systems to cognitive linguistics Despite their deep insights into the 
conceptual and spatial organization of language, cognitive grammars still lack mathematical and 
computational foundations. Our project is among few attempts to import spatiotemporal connectionist 
models into linguistics and spatial cognition. Other authors (e.g. Regier 1996, Shastri & Ajjanagadde 
1993) have pursued the same objectives, but using small “hybrid” artificial neural networks, where 
nodes already carry geometrical or symbolic features. We work at the fine-grained level of numerous 
spatially arranged units. 
 
Addressing semantics in CA and neural networks Conversely, our work is also an original 
proposal to apply large-scale lattices of cellular automata or neurons to high-level semantic feature 
extraction. These bottom-up systems are usually exploited for low-level image processing 
applications (e.g., D. L. Wang 2005) or visual cortical modeling (e.g., König & Schillen 1991), or 
both—see, e.g., Pulse-Coupled Neural Networks (Johnson 1994) or Cellular Neural Networks (Chua 
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& Roska 1998). Shock graphs and medial axes are also used in computer vision models of object 
recognition (Siddiqi et al. 1999, Zhu & Yuille 1996), but with the concern to preserve and match 
object shapes, not erase them. Adamatzky (2002) also envisions collision-based wave dynamics in 
excitable media, but as a mechanism of universal computing based on logic gates. 
 
Advocating pattern formation in neural modeling Self-organized, emergent processes of pattern 
formation or morphogenesis are ubiquitous in nature (stripes, spots, branches, etc.; see Ball 1999, 
Bourgine & Lesne 2006). As a complex system, the brain produces “cognitive forms”, too, but instead 
of spatial arrangements of molecules or cells, these forms are made of spatiotemporal patterns of 
neural activities (synchronization, correlations, waves, etc.). In contrast to other biological domains, 
however, pattern formation in large-scale neural networks has attracted only few authors (e.g., Milton 
et al. 1993, Ermentrout 1998). This is probably because precise rhythms involving a large number of 
neurons are still experimentally difficult to detect, hence not yet proven to play a central role. 
 
Future Directions: Toward a Perceptual-Semantic Machine 
 
The overall theoretical objective of this project is to show how semantic categorization can be 
supported by a dynamical network system performing morphological image processing. Figure 3.2.5 
gives an overview of our system’s architecture.  
 

 
 

Figure 3.2.5: The perceptual-semantic system comprises: (center) a core “morphogenetic transform” 
engine, the bridge between vision and language and the main focus of our research: its function is 
motivated by cognitive linguistic observations and its mechanisms by complex neurodynamics; 
(left) in input, a database of prelabeled schematic scenes or, equivalently, segmented real images; 
(right) in output, a linguistic classification module relying on the features produced by the transforms. 

 
By developing this mathematical and computational model of cognitive linguistics, our goal is to 
(i) demonstrate fundamental principles of neural dynamics underlying semantic categorization and 
(ii) create a software system leading to software and robotics applications. The basic methodology 
consists in presenting image/response pairs to the system and adjusting the model to fit known 
experimental psychological data on semantic classification. Starting with preliminary experiments, the 
project can progress on five major fronts: 
 
Wave dynamics and scene database We want to conduct a more systematic investigation of the 
morphodynamical routines and their link with protosemantic classes. Similarly to Regier (1996), a 
database of schematic image/label pairs representing a broad cross-linguistic variety of spatial 
elements could be used to assess the level of invariance of the singularities and their robustness to 
noise. 
 
Real images and low-level vision Currently, our primary material consists of presegmented 
schematic images. It could be extended to real-world examples by using low-level image processing 
techniques based on edge contiguity and texture. Segmentation models such as nonlinear diffusion 
(Whitaker 1993), variational boundary/domain optimization (Mumford & Shah 1989) or temporal 
phase tagging (D. L. Wang 2005) have proven that shapes can be separated from the background in a 
bottom-up way without prior knowledge, if the scene is not too cluttered. 
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Learning semantics from protosemantics Semantic classes are intrinsically fuzzy: as TR moves 
around LM and their SKIZ rotates, when is TR no longer ‘above’ but ‘beside’ or ‘below’ LM? 
Different languages also divide space differently: for example, ‘on’ translates in German either as 
‘auf’ (top contact) or as ‘an’ (side contact). Intra- and cross-linguistic boundaries could be learned 
using known image/response pairs. Our morphodynamical routines already considerably reduce the 
dimensionality of the input space by mapping images to a few singularities. In a final step, the same 
universal pool of protosemantic features could be combined in various ways to form full-fledged 
semantic classes using statistical estimation methods. 
 
Verb processes and bifurcation events Another important challenge is the temporal processes and 
events of verbal scenarios. The singularities created by fast wave activity can themselves evolve on a 
slower timescale. Landmark psychophysical experiments on the perception of causality and animacy 
(see review in Scholl & Tremoulet 2000) have shown that movies involving simple geometrical 
figures were spontaneously interpreted by human subjects as intentional actions. For example, a few 
triangles and circles moving around a square strongly tend to elicit verbal statements such as ‘chase’, 
‘hide’, ‘attack’, ‘protect’, etc. In our system, too, short animated clips of moving TR’s and LM’s could 
be categorized into archetypal verbs, e.g., ‘give’ or ‘push’. 
 
Complex scenes After treating single schemas separately, we also want to show how multiple 
schemas can be evoked simultaneously and assembled to form complex scenarios. This addresses the 
compositionality of semantic concepts (Bienenstock 1996), or “binding problem” (von der Malsburg 
1999, Roskies 1999). Our ultimate goal is to explain mental imagery (Kosslyn 1994) in terms of 
structured compositions of morphodynamical routines. 
 
Relevant Publications 
 
Full Papers – Books, Journals, Conferences, Workshops, Reports 
 
Doursat, R. & Petitot, J. (1997) Modèles dynamiques et linguistique cognitive: vers une sémantique 

morphologique active. 6ème École d’été de l’Association pour la Recherche Cognitive (ARCo), July 5-13, 
1997, Formation du CNRS, Bonas (Toulouse), France. 

Doursat, R. & Petitot, J. (2005a) Bridging the gap between vision and language: A morphodynamical model of 
spatial categories. International Joint Conference on Neural Networks (IJCNN 2005), July 31-August 4, 
2005, Montréal, QC, Canada. 

Doursat, R. & Petitot, J. (2005b) Dynamical systems and cognitive linguistics: Toward an active 
morphodynamical semantics. Neural Networks 18: 628-638. Selected for this special issue among less 
than 10% of the papers accepted at the IJCNN 2005 conference. 

Petitot, J. & Doursat, R. (1998) Modèles dynamiques et linguistique cognitive: vers une sémantique 
morphologique active. Technical Report 9809, in Rapports et documents du CREA, Ecole Polytechnique, 
Paris. 

Petitot, J. & Doursat, R. (2010) Cognitive Morphodynamics: Dynamical Morphological Models for 
Constituency in Perception and Syntax, Peter Lang. To appear. 
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Doursat, R. & Petitot, J. (2005c) Notes on the possibility of embodied computation based on the emergence of 

singularities in a large-scale complex dynamical system. Workshop on Neurodynamics and Intentional 
Dynamic Systems, at International Joint Conference on Neural Networks (IJCNN 2005), August 5, 2005, 
Montréal, QC, Canada. 

Doursat, R. & Petitot, J. (2010a) [TBA]. 2nd Symposium on Language and Robots (LangRo 2010), June 2010 
[TBA], Intelligent Systems and Robotics Institute (ISIR), Université Pierre et Marie Curie (Paris 6), France. 

Doursat, R. & Petitot, J. (2010b) [TBA]. Symposium on Structured Flows on Manifolds: A General Dynamical 
Framework to Cognition, at the "Cognition, Emotions and Society" Conference of the French Psychology 
Society (SFP), September 7-9, 2010, Université Charles-de-Gaulle Lille 3, France. 
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3.3. Project NEUROFORM: Cell Assembly Locks & Keys 
 
A neural network model of associative learning by “lock and key” coherence induction between 
dynamic cell assemblies, where learning consists in tuning synaptic efficacies to a point of maximal 
response. 
 
Conducted at Philip H. Goodman’s Brain Computation Laboratory (University of Nevada, Reno), as 
part of a “robotic sentry” project, this study focuses on the stimulus-behavior association area (AS), 
for which it proposes a pattern recognition model based on collective “resonant” dynamics between 
spiking neural assemblies. In this paradigm, a network possesses preferred endogenous modes of 
activity (whether overt patterns of spikes or covert fluctuations of subthreshold potentials) that can be 
perturbed through transient coupling, and learning consists in tuning synaptic efficacies to a point of 
maximal response of this perturbation. Stimulus-behavior association tasks can then be reformulated 
as processes of selection among several transients. 
 
Spatiotemporal Pattern Resonance 
 
Modern physiological recordings have revealed precise and reproducible complex temporal order in 
neural signals related to behavior (e.g., Abeles 1982, O’Keefe & Recce 1993, Bialek et al. 1991). 
Temporal coding (von der Malsburg 1981) is now recognized as a major mode of neural activity. In 
particular, quick onsets of transitory correlations among firing patterns have been shown to play an 
important role in the communication between neurons engaged collectively in a perceptual or 
associative task (e.g., Gray et al. 1989). Moreover, neocortical regions are also characterized by a 
considerable amount of lateral and feedback connectivity (e.g., Bringuier et al. 1999). Consequently, 
instead of the traditional feed-forward view, where a “lower” area literally activates a “higher” area 
(otherwise silent), new experiments and models of mesoscopic neural dynamics involve “persistent” 
(e.g., X.-J. Wang 2001, Brunel 2000, Y. Wang et al. 2006) or “ongoing” activity (e.g., Kenet et al. 
2003, Fox & Raichle 2007). 

All these observations have set the stage for an important paradigm shift in cortical dynamics 
focused on synchronization and temporal correlations. In particular, the present study investigates 
coherence induction or resonance among pre-active subnetworks—starting from premises similar to 
Liquid State Machines (Maass et al. 2002), but without the goal of computing mathematical functions. 
The main idea is that, in the absence of stimulus, local groups of neurons already possess spontaneous 
modes of activity that interact and influence each other in various ways. These preferred modes can be 
construed as instances of spatiotemporal patterns (STPs; also musically termed “rhythms” or “cortical 
songs”; Ikegaya et al. 2004) taking the form of constellations of action potentials or, more generally, 
covert subthreshold potentials that can be revealed by interference with matching input. In this 
context, it becomes especially interesting to reformulate tasks such as the recognition of a stimulus or 
the association between a stimulus and a behavior as a process of selection among several alternative 
STPs. If a neural group K (as in “key”) stimulates another group L (as in “lock”), one of the modes 
intrinsically generated by L might resonate more strongly with K than other L modes. Thus, the idea is 
that STPK would elicit—but not create—one of several possible STPL response states. 
 
A Simple Sine Wave Model 
 
We propose a first model of “STP resonance” along these lines. It contains a network of N neurons 
whose membrane potentials {Vi(t)}i=1...N are typically fluctuating in quasi-periodic patterns, consistent 
with subthreshold patterns recorded in vivo (Fig. 3.3.1a) At any given moment, we assume that the 
potentials of highly recurrently connected neurons can be pulled into relative coherence at a 
characteristic frequency f, so that each neuron is characterized by a phase ϕi ∈ [0, 2π). As a simplified 
example, potentials can be single sine waves Vi(t) = V0 + Vmsin(2πft + ϕi). The set of phases {ϕi}i=1...N, 
or rather phase shifts {ϕi − ϕ1}i=2...N, describes an attractor mode of activity STPL reproducibly 
generated by the network. When an external stimulus is applied then removed, the network 
consistently relaxes back to STPL. Several factors could support this slow dynamic “memory”: for 
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example, remote sources of periodic background activity (Destexhe & Paré 2000) from thousands of 
apical synapses contributing to the potentials Vi through combinations of weights determining the 
phase shifts; or, alternatively, recurrent network connections with transmission delays and inhibitory 
pathways, similar to synfire chains. 

We define the order parameter of the network as the mean field potential or “interference sum” 
VL(t) = ∑i Vi(t) and look at its patterning and peak magnitudes when perturbing the neurons with 
specific patterns of external spiking signal. We propose that this parameter may represent the real 
propensity of a subnetwork to respond instantaneously as a population code to external perturbation. 
In the simple sine wave version, VL(t) is itself a sine wave and the effect of the perturbation can be 
measured by amplitude |VL|. In the relaxed state, VL(t) is stationary near the resting level V0 (i.e., 
|VL| ≈ 0), as scattered phases mutually cancel. In a perturbed state, phases are pulled toward each other 
and form transient, history-dependent coherent clusters, increasing |VL| in an irregular pattern. The 
essential point is that the degree of network response |VL| depends on the precise temporal structure of 
the input stimulus and the spectral composition and instantaneous phase distribution among the Vi of 
the neurons in the subnetwork. 

 
Figure 3.3.1: Simplified model & simulation of coherence induction between assemblies with ongoing 
activity. (a) L’s autonomous modes are characterized by sinusoidal subthreshold membrane potentials 
at specific phases (circle view in (c)). (b) L is stimulated by spike trains coming from another assembly 
K of synchronous units. The effect of K is to pull L’s phases together, thus increase L’s mean field 
potential VL (bottom curve). (c)-(d) Locksmith metaphor of the same phenomenon: Tumbler Lock is a 
set of discs at varying heights (= phases), Key is a series of notches (= spikes). Key’s notches raise 
Lock’s discs (= align phases) enough to release them and open Lock (from Doursat & Goodman 2006). 
 

Let this input be another pattern STPK made of a spike train with a variable firing rate: 
VK(t) = δ[sin(2πfK(t).t)], where δ is a spike shape centered in 0 (Fig. 3.3.1b). This signal can be 
equivalently formulated as the sum of multiple contributions from fixed-rate spiking units with 
variable phases: VK(t) = ∑j δ[sin(2πft + ψj(t))]. The core influence of STPK on STPL is then the 
following: when spike j from STPK arrives shortly after neuron i in STPL has reached its peak 
potential, then i will peak slightly longer, i.e., ϕi will decrease. Conversely, if a spike arrives shortly 
before a wave’s peak, then this peak is reached earlier and ϕi increases. In all cases, spike j attracts 
phases ϕi towards its own phase ψj. We model the amount of this phase displacement Δϕi as a 
decreasing function of phase difference applied at each cycle (e.g., a cosine function). This mirrors 
the physiological nonlinearity that a cell is less likely to be brought to fire by incoming post-synaptic 
potentials the further it lies below firing threshold. 

Viewed on the phase circle, STPL is originally a scattered pattern of dots {ϕi}i=1...N (Fig. 3.3.1c). 
The net effect of the arrival of one spike j on this circle is a sudden jerk of all the dots, to varying 
degrees, towards the spike’s phase ψj. If the spike is repeatedly applied at each period 1 / f, the dots 
coalesce into clumps and eventually fuse together in the limit of a long stimulus period (Fig. 3.3.1d). 
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Two spikes with opposite phases interfere to form two opposite clumps of dots and perpetuate the 
cancellation. More spikes elicit more complex responses. When the stimulus is removed, the dots 
relax back to their original STPL phase distribution constrained by the ongoing activity (with a 
possible global shift). The bottom row of Fig. 3.3.2 presents snapshots of L’s phases: before 
stimulation, at different spike times (stars), and after stimulation. 

Preliminary numerical results under simplified assumptions show (a) the remarkable uniqueness 
of the transient response of a specific phase distribution STPK to a specific incoming spike pattern 
STPL, despite identical mean rates, (b) the reproducibility of this unique response and (c) its 
sensitivity to variations in either pattern, K or L. Thus there is evidence for unique and distinct “key 
and lock” relationships, provided sufficient variability in the lock combinations (analogous to to the 
complexity of the tumbler of a safe). These first observations based on a phase-space dynamics offer a 
promising approach to models of pattern recognition and stimulus-response association based on a 
spiking neuron dynamics. 
 

 
 

Figure 3.3.2: Specificity of key-lock interactions. The amplitude of L’s response depends on the match 
between the spectral composition ϕi  of the potentials Vi(t) in L and the fine temporal structure of K’s 
spike trains. We observe a uniqueness of the transient response of a specific phase distribution L to 
specific incoming patterns K1, K2, K3, despite identical mean rates (here max. for K2). This response is 
both reproducible and sensitive to variations in K or L. Thus there is evidence for distinct key-lock 
engagement, provided sufficient diversity of lock combinations. This constitutes a promising approach 
for real-time pattern recognition and stimulus-response learning (from Doursat & Goodman 2006). 

 
Future Directions 
 
In the preliminary model above, the dynamics of a simplified network of quasi-periodic units was 
described on a phase circle by the collective coalesce-and-scatter motion of dots. In a second model, 
we have also started investigating the regimes and phase transitions of Recurrent Asynchronous 
Irregular Networks (RAINs), named after one of the possible combinations of (A)Synchronous and/or 
(Ir)Regular dynamical regimes of a dual excitatory-inhibitory system—a recurrent excitatory spiking 
network E connected to a recurrrent inhibitory spiking network I, parametrized by four types of 
connections: E→E, E→I, I→E, and I→I (Fig. 3.3.3; see, e.g., Brunel 2000, Vogels & Abbott 2005, 
Brette et al. 2007). We have examined the performance and sensitivity of dynamically igniting-and-
quenching RAINs and explored their regimes and phase transitions under conditions of calibrated 
voltage-sensitive ionic membrane channels, synaptic facilitation and depression, and Hebbian spike-
timing dependent plasticity (STDP). We have also shown the possibility of recognition and 
discrimination among RAIN activity patterns in a learning task based on Hebbian/STDP synaptic 
dynamics (Fig. 3.3.4). 
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Figure 3.3.3: Firing phase diagram of the ongoing activity of a dual excitatory/inhibitory system 
(Fig. 3.3.4 below, inset). Based on a combination of firing statistics, four consistent domains 
combining two types of spatial order (A/Synchronous) and two types of temporal order (Ir/Regular) are 
discovered as excitatory and inhibitory conductances Gexc and Ginh are covaried in separate experiments 
(Brunel 2000). The A-I combination is termed RAIN and contain unique patterns of spikes that can be 
used in lock-key coherence induction experiments, such as Fig. 3.3.4 (from Goodman et al. 2007). 
 

 

 

 
 

Figure 3.3.4: Multi-RAIN discriminate Hebbian/STDP learning. Top: Experimental setup involving 2 
RAINs A and B stimulated by 2 patterns α and β (RAIN extracts, as in inset of Fig. 3.3.3), 1 control 
RAIN C (not stimulated), 1 control pattern γ (not learned), and 1 inhibitory pool common to A and B. 
Hebbian learning affects α→A and β→B connections. Middle: Training phase alternating α-learning 
on A and β-learning on B (showing the 3 RAINs’ global potentials). Bottom: Test phase: A’s response 
(red) is higher for a stimulation by α (left) than β (center); and conversely for B. Untrained assembly C 
does not distinguish α from β (from Goodman et al. 2007). 
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In both cases, whether simplified oscillatory units or complex RAIN activity, our goal is to explore 
“lock and key” principles, proposing that pattern recognition and nondiscrete memory storage are 
based on a dynamics of coherence induction triggered by input stimuli (the “keys”). Here, learning a 
pattern (a “lock”) means tuning synaptic efficacies of the receiving lock patterns are tuned to a point 
of maximal postsynaptic response. They represent another form of neocortical pattern formation, i.e., 
the emergence of structurally complex, spiking neurodynamic “shapes”. 
 
Spinoff Projects 
 
Project NEUROFORM-AIBO 
 
An integrated, modular brain architecture of spiking neural networks that emulate learning in a 
hybrid neuromorphic/AI socially interactive robot 
 
Collaborator: Philip H. Goodman, Brain Computation Laboratory, University of Nevada, Reno 

Abstract: This project is an original attempt to implement a complete information processing loop 
between a neural network simulator running on a computer cluster (Fig. 3.3.5a) and a real-time 
embedded robot (Fig. 3.3.5c) learning to interact socially with humans (e.g., robotic sentry, industrial 
assistant). The system must (i) collect disparate signal patterns from multiple sensory modalities 
coming from the robot, (ii) process these signals by interaction with perceptual, associative, memory 
and motor systems and (iii) send actuator commands back to the robot. To this aim, we plan to 
complete the design of an anatomically realistic, albeit simplified, 
brain architecture inspired comprising interconnected 
auditory/visual (AV), associative (AS) and motor (MC) cortical 
areas, modulated by prefrontal cortex (PFC) and subcortical 
structures (SC) (Fig. 3.3.5a). These areas are modeled with spiking 
neural networks in various dynamical regimes, under Hebbian 
synaptic redistribution. The functional systems we plan to 
implement are multimodal processing, working memory, and 
executive behavior, with the inclusion of attentional and reward 
signals from subcortical networks. At the core of the architecture 
lies the stimulus-behavior association area (AS), which is based on 
“coherence induction” between spiking and subthreshold STPs. Our 
approach is to develop the different areas as independent modules, 
then combine them to obtain a global stimulus-response learning. 
We hope to demonstrate the ability of a remote-brained robot to 
navigate in a realistic terrain, through real-time recognition and 
strategic planning, while learning to respond appropriately to 
surrounding humans via reward and punishment. 

(d)

 

 
 
Figure 3.3.5:  A complete sensorimotor loop between cluster and robot. (c) Robot (e.g., Sony Aibo) 
interacts with environment and humans via sensors & actuators. (a) Neural network simulator software 
(e.g., NCS developed at U. of Nevada) runs on computer cluster: it contains the brain architecture for 
decision-making and learning. (c) “Brainstem” laptop brokers WiFi connection: it transmits 
multimodal sensory signals to simulator and sends actuator commands to robot. (d) Multiscale schema 
showing link from RAINs to robot (from Doursat & Goodman 2006, Goodman et al. 2007). 
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Relevant Publications 
 
Full Papers – Books, Journals, Conferences, Workshops, Reports 
 
Zou, Q., Doursat, R. & Goodman, P. H. (2010) The role of spatiotemporal correlations in the encoding and 

retrieval of synaptic patterns by STDP in recurrent spiking neural networks. In Preparation. 
 
Abstracts (for Presentations or Posters) – Conferences, Workshops 
 
Doursat, R. & Goodman, P. H. (2006) Neocortical keys and locks: A neural model of associative learning by 

coherence induction between spike patterns and ongoing membrane potentials. 10th International 
Conference on Cognitive and Neural Systems (ICCNS 2006), May 17-20, 2006, Boston University, MA. 

Doursat, R., Goodman, P. H. & Zou, Q. (2007) Neocortical locks and keys: Coherence induction among 
complex, heterogeneous neuronal patterns. Ladislav Tauc Conference in Neurobiology 2007: Complexity in 
Neural Network Dynamics (Tauc 2007), December 13-14, 2007, Institut de Neurobiologie Alfred Fessard 
(INAF), CNRS, Gif-sur-Yvette, France. 

Goodman, P. H., Doursat, R., Zou, Q., Zirpe, M. & Sessions, O. (2007) RAIN brains: Mammalian neocortex as 
a hybrid analog-digital computer. Unconventional Computation Conference (UC 2007), March 21-23, 
2007, Los Alamos National Laboratory (LANL) and Santa Fe Institute (SFI), Santa Fe, NM. 

 
Invited Keynote Presentations & Talks (with Abstracts) – Conferences, Workshops 
 
Goodman, P. H. & Doursat, R. (2007) Large-scale biologically realistic models of cortical mesocircuit 

dynamics. Computational Neuroscience, Sensory Augmentation, and Brain-Machine Interface, April 25-26, 
2007, Office of Naval Research (ONR), Arlington, VA. 
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SUMMARY 

 
Institut des Systèmes Complexes, CNRS, Paris Ile-de-France 

− Director, 1/2009−Present 
− Guest Researcher, 9/2007−Present 
− Research Engineer, 11/2006−8/2007 

University of Nevada, Reno, USA 
− Visiting Assistant Professor, Department of Computer Science, 7/2005−6/2006 
− Research Assistant Professor, Brain Computation Laboratory, 8/2004−6/2005 

Akheron Technologies, Palo Alto, California 
− Chief Engineer, 3/2002−8/2004 

BIOwulf Genomics, Berkeley, California 
− Senior Software Architect, 11/2000−2/2002 

RedCart.com, San Francisco, California 
− Senior Software Engineer & Architect, 7/1999−11/2000 

Neuron Data, Mountain View, California, and Paris, France 
− Senior Software Engineer, 8/1998−7/1999 
− Software Engineer, Research & Development, 4/1995−7/1998 

CREA, Ecole Polytechnique & CNRS, Paris, France 
− Research Associate, 10/1996−9/1997 
− Associate Member, then Foreign Correspondent, then Full Member, 10/1995–Present 

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany 
− Postdoctoral Assistant, 10/1991−12/1994 

Université Pierre et Marie Curie (Paris 6), France 
− Ph.D. in applied mathematics / computational physics, 5/1991 

Laboratoire d’Electronique, ESPCI, Paris, France 
− Doctoral Fellow, 10/1987−9/1991 (aged 25) 

Ecole Normale Supérieure (ENS), Paris, France 
− M.S. in theoretical physics, 9/1987 

 
EDUCATION 

 
Ph.D., applied maths / computational physics, Université Pierre et Marie Curie (Paris 6), France, 5/1991 

• Fields: computational neuroscience, neural networks, machine learning, computer vision, biological 
modeling, complex systems, cognitive science 

• Title: A Contribution to the Study of Representations in the Nervous System and in Artificial Neural 
Networks (dissertation in French) 

• Advisor: Elie Bienenstock, CNRS (currently Associate Professor, Department of Neuroscience and 
Division of Applied Mathematics, Brown University, Providence, Rhode Island) 

 
M.S., theoretical physics, Ecole Normale Supérieure (ENS), Paris, France, 9/1987 
ENS and Ecole Polytechnique are the two most selective and prestigious graduate schools in France. 
 
Lead graduate candidate, “Grandes Ecoles”, Paris, France, 7/1985 (aged 19) 
Single-digit ranks at several competitive entrance exams to the best science & engineering graduate schools: 

• Ranked 1st of 2,818 candidates at the Ecole Centrale league examination (group of four schools) 
• Ranked 5th of 2,239 candidates at the Ecole des Mines league examination (group of eight schools) 
• Ranked 9th of 222 candidates (physics section) at the Ecole Normale Supérieure (ENS), Paris 
• Ranked 7th at the written examination (physics section) of the Ecole Normale Supérieure de St-Cloud 

 
High-school & undergrad student, Lycée Louis-le-Grand, Paris, 1979–1985 
Lycée Louis-le-Grand is ranked Nr. 1 high school/college in France. Born in 1966. 
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ACADEMIC POSITIONS 
 
Director, Institut des Systèmes Complexes, CNRS, Paris Ile-de-France, 1/2009−Present 
 

The Complex Systems Institute, Paris Ile-de-France (ISC-PIF; founded by Paul Bourgine) is a 
multidisciplinary research center and network (GIS = Groupement d’Intérêt Scientifique) sponsored by the 
Paris Region (Ile-de-France; DIM = Domaine d’Intérêt Majeur) and 15 French academic partners—
graduate schools, universities, and national institutions (Ecole Polytechnique, Ecole Normale Supérieure, 
Université Pierre et Marie Curie, CNRS, INRIA, CEA, INSERM, et al.). Its mission is to create a community 
of research in “complex systems”—viewed as large sets of elements interacting locally and producing 
collective behavior—that studies common questions (self-organization, emergence, autonomy, adaptation, 
etc.) across many domains (molecular, cellular, cognitive, social, economic, technological, environmental). 

 
Beside my research activities (see below), I am in charge of managing the institute, together with a 
monthly Steering Committee (12 external advisors), in particular leading the renewal of ISC’s mandate and 
funding for the next four-year period 2010-2013. I report twice a year to an Executive Board (composed of 
our supporting partners) about the institute’s program, activities and budget use (capital and operating 
budget totaling about €1M/year). Scientific orientations are overseen by a Scientific Council of foreign 
scholars. Capital budget is used to create ISC “branches” hosted by its different academic partners, i.e., 
build/renovate and equip office space to become complex systems research labs. Another part is invested 
in a large computing grid (already 1600 cores, soon 2400) dedicated to complex systems modeling and 
numerical simulations. Operating budget supports ISC’s activities, including scientific events (conferences, 
workshops, seminars) and educational programs (summer school, thematic institutes, Master’s 
curriculum), and the resident staff of 8 researchers, 3 engineers, 3 admins, who coordinate them. 

 
Researcher, Institut des Systèmes Complexes, CNRS, Paris Ile-de-France, 9/2007−Present 
Research Engineer, Institut des Systèmes Complexes, CNRS, Paris Ile-de-France, 11/2006−8/2007 
 

Active in several collaborations with colleagues in Europe, United States and Canada on the modeling and 
simulation of complex multi-agent systems, in particular biological and techno-social, which can also 
inspire novel principles in intelligent systems design. My research topics belong to Artificial Life 
(biologically inspired engineering) and Computational Neuroscience (dynamics of large-scale spiking 
neural networks). Especially interested in the self-organization of complex, articulated morphologies from a 
swarm of heterogeneous agents, through dynamical, developmental, and evolutionary processes (see 
Research Activities below). Also worked on and co-managed with Paul Bourgine (founder and former head 
of ISC and the Complex Systems Society) on the Embryomics and Bioemergences projects toward the 
spatiotemporal reconstruction of the cell lineage tree underlying animal embryogenesis. 

 
Visiting Assistant Professor, Dept. of Computer Science, University of Nevada, Reno, 7/2005–6/2006 
Research Assistant Professor, Brain Computation Lab., University of Nevada, Reno, 8/2004–6/2005 
 

The UNR Brain Computation Laboratory (“Brain Lab”) is an interdisciplinary research group studying large-
scale spiking neuronal models of the cortex. Its core technology is the NeoCortical Simulator (NCS), a 
biologically detailed software model running on a massively parallel 220-CPU Beowulf computer cluster. 

 
Co-PI in the “Neuromorphic Mesocircuits” project led by Philip H. Goodman (Professor & Lab Director, 
School of Medicine). It constitutes an original attempt to design a modular brain architecture of spiking 
neural networks that emulate robotic behavior learning. We model pattern recognition and association by 
“lock-and-key” coherence induction between dynamic cell assemblies. Also further developed the research 
on spatial categorization started at CREA, Paris (emergence of symbolic language from visual scenes; see 
below) and became actively involved in several other complex systems projects (see above). Additionally, 
as a visiting faculty in the Department of Computer Science and Engineering, taught two to three classes 
per semester, organized & co-managed student projects, and assisted supervising M.S. and Ph.D. works. 

 
Research Associate, CREA, Ecole Polytechnique & CNRS, Paris, France, 10/1996–9/1997 
Associate Member, then Foreign Correspondent, then Full Member, 10/1995–Present 
 

The Centre de Recherche en Epistémologie Appliquée (CREA) is an interdisciplinary theoretical research 
center in cognitive and social sciences. Its activities range from neuroscience to linguistics and economics, 
focusing on the mathematical and computational modeling of complex, self-organizing systems. 
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Worked with Jean Petitot (Professor & Chair; also at EHESS—School for Advanced Studies in Social 
Sciences, Paris) on dynamic models of semantics based on cognitive linguistics (in contrast to logical 
models of syntax based on generative grammar). Specifically examined spatial categorization, i.e., how 
the mind is able to map an infinite variety of visual scenes to only a few prepositions (‘in’, ‘over’, ‘across’, 
etc.). This study addressed central theoretical questions such as the interface between physicalist and 
symbolic representations and the existence of a “cognitive topology” in perception (less metric than vector 
spaces, yet more metric than topological spaces). Created an image-processing application to illustrate 
the schematization pathways underlying spatial categorization. 

 
Postdoctoral Assistant, Inst. für Neuroinformatik, Ruhr-Universität Bochum, Germany, 10/1991–12/1994 
 

The Institut für Neuroinformatik (INI) is a research institute in neural networks, computer vision, 
neurobiological models and robotics. 

 
Worked under the supervision of Christoph von der Malsburg (Professor & Chair; also at the University of 
Southern California) on theoretical aspects of pattern recognition, specifically the ability of the visual 
system to segment and regroup image domains under the influence of previously learned shapes. 
Focused on the study of networks of coupled oscillating units and their properties of emergent collective 
behavior, such as phase-locking synchronization or traveling waves of activity. Designed models showing 
that shape extraction can arise from such networks and created network simulator applications with high-
end graphical user interfaces to support these models. Also taught two original seminars in cognitive 
science for graduate students. 

 
Doctoral Fellow, Laboratoire d’Electronique, ESPCI, Paris, France, 10/1987–9/1991 
 

The Laboratoire d’Electronique at the Ecole Supérieure de Physique et Chimie Industrielles (ESPCI) is an 
engineering research lab in machine learning, neural networks and biological system modeling, led by 
Gérard Dreyfus, Professor & Chair. 

 
Under the direction of Elie Bienenstock, CNRS (currently Associate Professor at Brown University, 
Providence), elaborated a criticism of the traditional activity-rate code in neural models and advocated 
temporal correlations as the basis of brain function (after von der Malsburg, 1981). Illustrated this question 
by three mathematical and numerical studies: 

1. a critical review of “learning” in neural networks as a nonparametric statistical estimation method 
2. an algorithm of handwritten character recognition using 2-D “elastic” lattices (instead of pixel lists) 
3. a model of synaptic self-organization in the cortex based on an activity/connectivity feedback loop 

Designed the models, created visualization tools and carried out numerical simulations for all three parts. 
 
 

RESEARCH ACTIVITIES & INTERESTS 
 

The main theme of my research is the computational modeling and simulation of complex multi-agent systems, 
in particular biological and techno-social, which can also inspire novel principles in intelligent systems design. I 
am especially interested in “self-made puzzles”, i.e., the self-organization of complex, articulated morphologies 
from a swarm of heterogeneous agents, through dynamical, developmental, and evolutionary processes. For 
example, these emergent patterns can be innovative structures in multicellular organisms, autonomic networks 
of computing devices, or “mental representations” and imagery made of correlated spiking neurons. 
 
Artificial Life – Biologically Inspired Engineering “Meta-designing” the development, function and evolution 
of self-organized complex systems that do not use a symbolic level. Keywords: artificial development, self-
assembly, pattern formation, spatial computing, evolutionary computation 

• multi-agent and cellular automata models of morphogenesis, based on gene regulation networks 
• decentralized but programmable pattern formation, network self-assembly and shape development 
• spatially extended cellular automata models of population genetics, evolution and ecology 

 
Neural Dynamics –Large-Scale Spiking Neural Networks Understanding and reconstructing the emergence 
of a symbolic level from a complex dynamical system. Keywords: mesoscopic level, segmentation, 
schematization, categorization, perception, language, ontology 

• mesoscopic emergence and interaction of spatiotemporal patterns of activity and connectivity 
• based on: stochastic-firing, excitable, oscillatory and subthreshold neuron models 
• creating: synchronization, traveling waves, coherence induction, synfire chains, compositionality 
• for: segmentation, schematization, pattern recognition & categorization in perception and language 
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TEACHING EXPERIENCE 
 
Lecturer of graduate seminars in Cognitive Science, Ecole Polytechnique, Paris, France, Fall 2009 
 

• “Brain and Cognition”: Co-organized, with Prof. Yves Frégnac, a series of 12 seminars by prominent 
invited speakers (e.g., Jean-Pierre Changeux), including paper review presentations by students, on 
the multiscale neural basis of cognition: From the microscopic level (molecular, genetic and cellular 
foundations, individual neuron physiology) and mesoscopic level (computational neuroscience, 
electrophysiology, complex neural dynamics, network modeling) to the macroscopic level (cognitive 
neuroscience, functional imaging, phenomenology, epistemology) and social cognition. 

 
Annual French Complex Systems Summer School, Institut des Systèmes Complexes, Paris & Lyon 
Principal Organizer, 2009 – Principal Organizer & Instructor, 2008 – Coordinator & Instructor, 2007 
 

• “Complex Systems Made Simple: A Hands-On Exploration of Agent-Based Modeling” (2007, 2008): 
Modeling and simulation of canonical exs. of complex systems (cellular automata, pattern formation, 
swarm intelligence, complex networks, spatial communities) using the NetLogo programming platform. 

 

• “Toward a Fine-Grain Mesoscopic Neurodynamics” (2007): An overview of spiking neural network 
models, introducing temporal coding and the “binding problem”, and describing various studies of 
emergent spatiotemporal order of neural activity/connectivity at the mesoscopic level of cognition. 

 

• “From Embryogenesis to Embryomorphic Architectures” (2007): Example of a computational model of 
biological organism development based on intercellular coupling among gene regulatory networks. 

 
Adjunct & Visiting Assistant Professor of Computer Science, University of Nevada, Reno, 2004–2006 
 

• Created over 1,000 original PowerPoint slides, many of which are now used by other instructors. 
• CS 790R: “Computational Models of Complex Systems”:  Designed from scratch, fully developed and 

taught this original, cross-disciplinary 3-credit seminar for graduate students, including lectures, paper 
reviews, programming assignments and term projects. We examined self-organized systems and 
emergence based on myriads of simple agents, across a variety of topics: cellular automata, pattern 
formation, insect colonies, spatial ecology, neural networks, complex networks, etc. (2 semesters). 

 

• CS 446/646: “Principles of Operating Systems”:  The principles, components, and design of modern 
operating systems, focusing on the UNIX platform. Topics include: concurrent processes, inter-
process communication, processor management, virtual and real memory management, deadlock, file 
systems, disk management, performance issues, case studies, etc. (2 semesters). 

 

• CS 135: “Computer Science I”:  An introduction to modern problem solving and programming methods 
in C++, with emphasis on algorithm development. Also, an introduction to procedural and data 
abstraction, design, testing, and documentation (2 semesters). 

 
Co-supervision of Postdocs, Ph.D and M.S. students, 1993, 2004–Present 
 

Adv = main advisor: I proposed the research topic and supervised the work 
Co-Adv = co-advisor: I contributed to an existing topic and co-supervised the work 

 

• Postdocs 
− Quan Zou, University of Nevada, Reno: Adv, 2006–2007 (Co-Adv: Philip H. Goodman) 

 

• Ph.D. students  
− Julien Delile, Université Paris 5: Adv, 2008–Present (Co-Adv: Nadine Peyriéras) 
− Emmanuel Faure, Ecole Polytechnique: Co-Adv, 2006–07, Jury Exam, 2009 (Adv: Paul Bourgine) 
− Rich Drewes, University of Nevada, Reno: Co-Adv, 2004–2005 (Adv: Philip H. Goodman) 
− Christine Wilson, University of Nevada, Reno: Co-Adv, 2004–2005 (Adv: Philip H. Goodman) 
Juries & committees only: 
− Sylvain Cussat-Blanc, Univ. de Toulouse 1: Jury Examiner and Chair, 2009 (Adv: Yves Duthen) 
− Heike Sichtig, Binghamton Univ. SUNY: Committee & Jury Examiner, 2009 (Adv: Craig Laramee) 

 

• M.S. students  
− Adam MacDonald, Univ. of New Brunswick, Fredericton: Adv, 2008–09 (Co-Adv: Mihaela Ulieru) 
− Oscar Sessions, University of Nevada, Reno: Adv, 2006–2007 (Co-Adv: Philip H. Goodman) 
− Milind Zirpe, University of Nevada, Reno: Co-Adv, 2006–2007 (Adv: Philip H. Goodman) 
− James King, University of Nevada, Reno: Co-Adv, 2004–2005 (Adv: Philip H. Goodman) 
− Andreas Schwarz, Ruhr-Universität Bochum: Adv, 1993–94 (Co-Adv: Christoph von der Malsburg) 
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Winner candidate of a Math Instructor position, Truckee Meadows Community College, Reno, 5/2005 
 

The thorough interview process for this position was conducted by a committee of 6 faculty members and 
consisted of one hour of questions and 30 minutes of a teaching demonstration on a topic given two days 
ahead. I was selected first among 6 interviewees. (I later declined the position in favor of UNR.) 

 
Guest Instructor of M.S. in Software Engineering, Golden Gate University, San Francisco, 3/2003 
 

CIS 386: Advanced Enterprise Java Programming: Invited by the instructor to teach a few classes about 
Enterprise JavaBeans. 

 
Lecturer of graduate seminars in Cognitive Science, Ruhr-Universität Bochum, Germany, 1992, 1993 
 

Organized and conducted credit seminar courses for graduate students (in German), including lectures 
and student presentations. Developed courses, selected literature, facilitated discussions: 

 
• Language and connectionism (Spring 1993): Analysis of the formal vs. dynamical systems debate in 

cognitive science (rule-based AI vs. example-based neural networks) from a linguistic perspective. 
 

• Learning in artificial and natural systems (Spring 1992; co-organizer): Overview of learning processes, 
theories and methods in psychology, animal behavior, neurophysiology and neural networks. 

 
Instructor of training seminars in Neural Networks for engineers & researchers, ESPCI, Paris,1989,1990 

 
 

TEACHING COMPETENCIES & INTERESTS 
 
Computer science (open-ended list of domains I have taught or can teach) 

• Core topics: theory and practice of programming languages (object-oriented, procedural, declarative; 
Java, C/C++, etc.), data structures, algorithms, automata, compilers, operating systems, GUIs, etc. 

• Distributed systems: object distribution and component/middleware frameworks (J2EE, CORBA, 
Messaging, etc.), Web technologies, application servers, TCP/IP networking, database systems 

• Software engineering: object-oriented methodology, design patterns, software architecture 

Research & seminar topics (see also Research Activities & Interests above) 

• Complex systems, biological modeling & bio-inspired engineering: multi-agent modeling, cellular 
automata, artificial life, pattern formation, morphogenesis, swarm intelligence, genetic algorithms, 
complex networks 

• Cognitive science: computational neuroscience, artificial & spiking neural networks, neurobiological 
modeling, cognitive linguistics, pattern recognition, machine learning, computer vision 

Undergraduate mathematics & physics 

• Mathematics: logic, sets, groups, algebra, linear algebra, geometry, trigonometry, topology, calculus, 
integrals, differential equations, functional analysis, probability, statistics, etc. 

 
 

INDUSTRIAL RESEARCH & DEVELOPMENT 
 
Chief Engineer, Akheron Technologies, Palo Alto, California, 3/2002–8/2004 
 

Akheron (early-stage start-up) built innovative network security technology extending traditional firewall 
protection (traffic analysis & filtering) to the application layer, e.g. instant messaging (IM) and peer-to-peer. 
 
Designed and developed a suite of Java applications to monitor, archive and display IM traffic, based on a 
complex thread-pooled, multi-client architecture using the Jabber protocol (40,000 lines of code). Also 
contributed to Akheron’s proprietary High-Bandwidth Transparent Vectoring (HBTV) technology. Co-
authored or assisted writing four provisional patents. 
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Senior Software Architect, BIOwulf Genomics, Berkeley, California, 11/2000–2/2002 
 

BIOwulf (early-stage start-up, ended 2/2002) focused on machine learning methods, especially support 
vector machines (SVMs), for genomic, proteomic and medical data analysis. 

 
At the company’s start, was hired to integrate math and engineering by designing a system to deliver 
productized SVM algorithmic methods. Created an online application service provider (ASP), the 
“Discovery Platform”, to centralize and streamline multiple data processing chains: (a) users upload raw 
input data; (b) math analysts custom-tailor optimal classification methods and deploy them as “numerical 
engines” (componentware of the system); (c) users download output results. Single-handedly designed 
and built the entire J2EE-based system, including a back-end numerical computation server (JNI over 
Matlab). Collaborated with SVM co-inventor Isabelle Guyon. Co-authored one patent. 

 
Senior Software Engineer & Architect, RedCart.com, San Francisco, California, 7/1999–11/2000 
 

RedCart (early/mid-stage start-up, ended in 12/2000) provided e-commerce technology as an application 
service provider (ASP) to consumer web portal sites. Its “Universal Shopping” technology enabled 
transactions across multiple online merchants through a single virtual shopping cart account. 

 
Joined at an early stage and played a major role in the design and development of the system. Single-
handedly created and implemented the automatic checkout functionality across two coupled servers: 
• A J2EE front-end:  Wrote a multi-tier, multi-threaded checkout engine in Java (EJB, Servlets, JSP). 
• An Apache-based proxy:  Wrote an HTTP “bot” (agent) module in C automating the navigation of 

merchant sites through pluggable “wrappers” (merchant-specialized software components analogous 
to drivers). To streamline the massive development of wrapper code, created an original macro script 
in C containing 120 bot navigation commands and trained groups of programmers in its use. 

Helped supervise and provide technical leadership to the engineering team, in collaboration with the CTO 
and VP of Engineering. Led or contributed to code reviews for most of the system.  

 
Senior Software Engineer, Neuron Data, Mountain View, California, 8/1998–7/1999 
Software Engineer, Research & Development, Neuron Data France, Paris, France, 4/1995–7/1998 
 

Neuron Data (founded in 1985, IPO in 2000 as Blaze Software, followed by several buyouts and mergers) 
built market-leading high-end application development tools for Fortune 500 customers. 

 
Hired to work directly with the Chief Software Architect on new projects. Created major new features, core 
modules and prototypes of products from scratch. For the “Advisor” product, a suite of tools for business 
rules management (business rules are componentware expert systems based on English-like scripts): 
• Developed the first prototype of Advisor's rules engine, based on the RETE search algorithm. 
• Coded various lexical and syntactical parsers for an English-like 4GL script compiler. 
• Created the complete initial GUI which was further developed by the whole engineering team. 
• Wrote multiple client/server demos using CORBA, RMI, HTTP, and MQSeries. 
For “Open Interface”, a cross-platform GUI builder (precursor of IDE tools like Visual Basic or Delphi): 
• Created a C/C++ code generation engine, automatically resynchronizing GUI and text modifications. 

Invented a set of “annotations” (special comments) inserted in the code. Wrote the user manual. 
 

COMMITTEES & REVIEWS 
 
Organizing committees (preparation of events & books) 

Book editing 
• Chief Editor, Morphogenetic Engineering: Toward Programmable Complex Systems, R. Doursat, H. Sayama, & 

O. Michel, eds., in NECSI "Studies on Complexity" Series, Springer-Verlag. In Preparation. 
• Co-Editor, IT Revolutions: 1st International ICST Conference, Venice, Italy, December 17-19, 2008, Revised 

Selected Papers, M. Ulieru, P. Palensky, R. Doursat, eds., LNICST 11, Springer-Verlag.  
Conferences & workshops 

• Co-Chair, 11th European Conference on Artificial Life (ECAL), August 8-12, 2011, Cité Universitaire, Paris, 
France. Upcoming. 

• Chair, Special Session on Morphogenetic Engineering, at the 7th International Conference on Swarm Intelligence 
(ANTS), September 8-10, 2010, IRIDIA, Université Libre de Bruxelles, Belgium. Upcoming. 

• Principal Organizer, 1st International Workshop on the Shapes of Brain Dynamics (SBD 2010), June 18, 2010, 
Institut des Systèmes Complexes, Paris Ile-de-France (ISC-PIF). [Keynote: Walter Freeman, UC Berkeley.] 
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• Panel Discussion Chair, Ladislav Tauc Conference in Neurobiology 2010: Multiscale Analysis of Neural Systems, 
Feburary 15-16, 2010, Institut de Neurobiologie Alfred Fessard (INAF), CNRS, Gif-sur-Yvette, France. 

• General Chair, 3rd French Conference on Complex Systems Science & Engineering, organized by the National 
Network of Complex Systems (RNSC), November 25-27, 2009, CNRS, Paris, France. 

• Co-Chair, International Symposium on Complex Systems, organized by the National Network of Complex 
Systems (RNSC), September 17-18, 2009, Institut Henri Poincaré (IHP), Paris, France. 

• Principal Organizer, 1st International Workshop on Morphogenetic Engineering (MEW 2009), June 19, 2009, 
Institut des Systèmes Complexes, Paris Ile-de-France (ISC-PIF). [Keynote: Marco Dorigo, ULB, Bruxelles.] 

• Technical Program Chair, IT Revolutions 2008 Conference (co-sponsored by ICST, IEEE, Create-Net), and Co-
Chair, "Approaching Complexity" Theme, December 17-19, 2008, Venice, Italy. 

• Co-Organizer, Workshop on Spatial Evolutionary Dynamics (SED 2008), October 17, 2008, Institut des Systèmes 
Complexes, Paris Ile-de-France (ISC-PIF). [Keynote: Paulien Hogeweg, Utrecht University.] 

Summer schools 

• Principal Organizer, 3rd Annual French Complex Systems Summer School, July 20-August 14, 2009. 
• Principal Organizer & Instructor, 2nd Annual French Complex Systems Summer School, July 15-August 9, 2008. 
• Coordinator & Instructor, 1st Annual French Complex Systems Summer School, July 30-August 26, 2007. 

Program committees & reviews (review of submissions) 
Journals 
• Associate Editor, IEEE Transactions on Neural Networks (TNN), 2009 
• Advisory Board Member, Embedded Self-organising Systems, 2009 
 

• Reviewer, ACM Transactions on Autonomous Adaptive Systems (TAAS), 2007 
• Reviewer, Advances in Complex Systems, 2008 
• Reviewer, IEEE Transactions on Neural Networks (TNN), 1994, 2008 
• Reviewer, Neural Computation, 1993, 1994 
• Reviewer, Neural Networks, 1992 
• Reviewer, Technique et Science Informatiques (TSI), 2010 
Conferences & workshops 
• Reviewer, Program Committee, 3rd IEEE Symposium on Artificial Life (IEEE ALIFE 2011), at IEEE Symposium 

Series on Computational Intelligence (SSCI 2011), April 11-15, 2011, Paris, France. 
• Reviewer, Program Committee, Special Track on State-Topology Coevolution in Adaptive Networks (STCAN 

2010), at 5th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems 
(BIONETICS 2010), December 1-3, 2010, Boston, MA. 

• Reviewer, Program Committee, Spatial Computing Workshop (SCW 2010), at 4th IEEE International Conference 
on Self-Adaptive and Self-Organizing Systems (SASO 2010), Sept. 27-Oct. 1, 2010, Budapest, Hungary. 

• Reviewer, Program Committee, Swarm, Amorphous, Spatial, and Complex Systems Track, at 12th Int’l 
Symposium on Stabilization, Safety, & Security of Distributed Systems (SSS 2010), Sept. 20-22, 2010, New York. 

• Reviewer, Program Committee, 12th International Conference on the Simulation and Synthesis of Living Systems 
(ALIFE 12), August 19-23, 2010, University of Southern Denmark, Odense, Denmark. 

• Reviewer, Program Committee, Special Session on Organic Computing (OC 2010), at IEEE World Congress on 
Computational Intelligence (WCCI 2010), July 18-23, 2010, Barcelona, Spain. 

• Reviewer, Program Committee, Spatial Computing Workshop (SCW 2009), at 3rd IEEE International Conference 
on Self-Adaptive and Self-Organizing Systems (SASO 2009), September 14-18, 2009, San Francisco, CA. 

• Reviewer, Program Committee, Generative and Developmental Systems Track (GDS 2009), at Genetic and 
Evolutionary Computation Conference (GECCO 2009), July 8-12, 2009, Montréal, QC, Canada. 

• Reviewer, Program Committee, Spatial Computing Workshop (SCW 2008), at 2nd IEEE International Conference 
on Self-Adaptive and Self-Organizing Systems (SASO 2008), October 20-24, 2008, Venice, Italy. 

• Session Chair, "Neural and Physiological Dynamics", 7th International Conference on Complex Systems (ICCS 
2007), October 28-November 2, 2007, New England Complex Systems Institute (NECSI), Boston, MA.  

Grant agencies 
• Grant Reviewer, Agence Nationale de la Recherche (ANR), France, 2008 
• Grant Reviewer, Natural Sciences and Engineering Research Council of Canada (NSERC), 2007 

Advisory committees (recommendations on research & education) 
• Expert Panel Member (of 8) for the FP7-ICT Support Action ComplexEnergy: Complex Systems for an ICT-

enabled Energy System, identifying new research topics and assessing emerging global science & technology 
trends in ICT for future FET Proactive initiatives, 2010. 

• Council Member (of 50) of the Complex Systems Society (CSS), 2009. 
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• Curriculum Committee Member (of 6) for the creation of the first Erasmus Mundus Master's and Doctoral 
Programs in Complex Systems (collaboration between Ecole Polytechnique, Paris; University of Warwick, UK; 
and Chalmers University of Technology, Sweden), 2009. See Awarded Grants below. 

• Curriculum Committee Member (of 4) for the creation of the first French Master program in Complex Systems, 
based at the Ecole Polytechnique in Paris, 2008. 

• Scientific Committee Member (of 40), Réseau National des Systèmes Complexes (RNSC), the French Complex 
Systems Network, writing recommendations about the main objectives of French research in complex systems, 
2006, 2010.  

Search committees & juries (selection of candidates) 
• Search Committee Chair, Institut des Systèmes Complexes, Paris Ile-de-France (ISC-PIF), for 1 Software 

Engineer/Scientific Programmer position & 1 Webmaster/Communication position, 2009. 
• Search Committee Member (2008) and Chair (2009, 2010), Institut des Systèmes Complexes, Paris Ile-de-

France (ISC-PIF), for Postdoc Fellowships, 2008 (19 applicants, 9 interviewees, 4 ranked, 3 positions), 2009 (43 
applicants, 8 interviewees, 5 ranked, 3 positions), 2010 (34 applicants, 9 interviewees, 6 ranked, 2 positions). 

• Jury (of 5), French-Canadian Association for the Advancement of Science (ACFAS), Marcel Vincent Award, given 
yearly to an outstanding Canadian researcher in social sciences, 2006, 2007. 

Memberships 
• Member, Association for Computing Machinery (ACM) 
• Member, Complex Systems Society (ECSS) 
• Member, Institute of Electrical and Electronics Engineers (IEEE) 
• Member, International Neural Network Society (INNS) 
• Member, International Society of Artificial Life (ISAL) 
• Member, New England Complex Systems Institute (NECSI) 
• Member, Réseau National des Systèmes Complexes (RNSC) 

 
GRANTS & SCHOLARSHIPS 

Awarded project grants & personal scholarships 
• EMMC (Erasmus Mundus Masters Course), Masters in Complex Systems Science, European Union Lifelong 

Learning Programme, 4 European partners (University of Warwick, Ecole Polytechnique Paris, Chalmers 
University of Technology, University of Gothenburg), 5-year funding for student scholarships and administrative 
costs, 2010-2015. 

• ASSYST (Action for the Science of complex SYstems and Socially Intelligent icT), European Coordination Action: 
FP7-ICT/FET-Proactive, 15 European partners, €900K (ISC-PIF: €175K), 36 months, 1/2009–12/2011. 

• Goodman, P. H. (PI), Harris, F. C., Doursat, R., Nicolescu, M. N. & Markram, H. J. Continuation of Large-Scale 
Biologically Realistic Models of Cortical & Subcortical Dynamics with Social Robotic Applications, ONR Project 
Grant #N000149910880, $801K (my share: $66K), 7/2006–6/2009. 

• Doursat, R. (PI) & Petitot, J. Bridging the gap between visual perception and language: an exploration into the 
neural morphodynamics of cognitive schemas, categories and compositionality, Personal Research Grant, Marie 
Curie International Reintegration Grant, European Union, €80K, 10/2004–9/2006. 

• Doursat, R. (PI) & Petitot, J. Dynamical connectionism and cognitive linguistics: Toward a new microstructure of 
semantics, Personal Research Fellowship, Ecole Polytechnique, Paris, €12K, 10/1996–9/1997. 

• Doursat, R. (PI) & Bienenstock, E. A study of the possible neurobiological mechanisms underlying the 
compositionality of cognitive functions, Personal Research Grant, Fyssen Foundation, Paris, €20K, 10/95–9/96. 

• Doctoral scholarship, Ministry of Research and Technology, France, €33K, 10/1989–9/1991. 
• Graduate stipend, Ecole Normale Supérieure (ENS), Paris (France's most selective school), €56K, 10/1985–9/89. 

Employment from other project grants 
• Peyriéras, N. (PI), Bourgine, P., Hirsinger, E., Mikula, K. & Sarti, A. Embryomics: Reconstructing in space and 

time the cell lineage tree, NEST Grant, European Union, €1.45M, 11/2005–10/2008. 
• Goodman, P. H. (PI), Harris, F. C. & Markram, H. J. Large-Scale, Synaptically Realistic Models of Cortical 

Microcircuit Dynamics, ONR Grant #N000140010420, $660K, 7/2003–6/2006. 

Co-author of submitted project grant proposals 
• EMJD (Erasmus Mundus Joint Doctorate), Complex Systems Science, 4 EU partners, 5-year requested, 4/2010. 
• E2CP (social Web), Europe: FP7-ICT, 3 European partners, 17 individual supporters, €100K req, 12 mon, 3/2009 
• BIO-NEXT (cloud computing), Europe: COST-ICT, 20 individual participants, pre-proposal, 3/2009. 
• ComplexiT (immune system modeling), France: CNRS-PICS, 4 European partners, pre-proposal, 3/2009. 
• SynBioTIC (synthetic biology), France: ANR-DEFIS, 4 French partners, €900K requested, 36 months, 2/2009. 
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• MEC@GEN (biological development), France: ANR-SYSCOMM, 3 French partners, €500K req, 36 mon, 2/2009. 
• Non-Classical Computing (bio-inspired engineering), US: NSF-PIRE, 17 individual sponsors, preproposal, 2/2009 
• EvoSpace (spatial evolutionary dynamics), US: NSF-Ecology, 3 individual participants, 48 months, 1/2009. 
• AniMorph (biological development), France: ANR-Open, 3 French partners, €800K req, 36 months, 11/2008. 
• EnergyWeb (energy grid), Europe: FP7-COSI-ICT, 8 European partners, €4.13M requested, 36 months, 4/2008. 

 
 

PUBLICATIONS  (66) 
 

In Preparation & Submitted  (not included in total count) 

4.  Doursat, R., Sayama, H. & Michel, O., eds. (2010) Morphogenetic Engineering: Toward Programmable Complex 
Systems, in NECSI "Studies on Complexity" Series, Springer-Verlag. In Preparation. 

3.  Zou, Q., Doursat, R. & Goodman, P. H. (2010) The role of spatiotemporal correlations in the encoding and 
retrieval of synaptic patterns by STDP in recurrent spiking neural networks. In Preparation. 

2.  Doursat, R. & Ulieru, M. (2010) TBA. In Preparation. 

1. Bourgine, P., Campana, M., Cunderlik, R., Drblikova, O., Faure, E., Lombardot, B., Luengo-Oroz, M.A., Melani, 
C., Remesikova, M., Rizzi, B., Savy, T., Zanella, C., Kollar, J., Colin, I., Desnoulez, S., Funabashi, M., Duloquin, 
L., Randoux, S., Courtade, E., Hirsinger, E., Santos, A., Beaurepaire, E., Herbomel, P., Suret, P., Lutfalla, G., 
Nicolas, J.-F., Doursat, R., Sarti, A., Mikula, K. & Peyriéras, N. (2010) Embryomics: Reconstructing the cell 
lineage tree as the core of the embryome. In Preparation. 

 
Full Papers — Books, Journals, Conferences, Workshops, Reports  (27) 

Books & book chapters (4) 

4. Petitot, J. & Doursat, R. (2010) Cognitive Morphodynamics: Dynamical Morphological Models for Constituency in 
Perception and Syntax, Peter Lang. To appear. 

3. Ulieru, M., Palensky, P. & Doursat, R., eds. (2009) IT Revolutions: 1st International ICST Conference, Venice, 
Italy, December 17-19, 2008, Revised Selected Papers, LNICST 11, Springer-Verlag. 

2. Doursat, R. (2008b) Organically grown architectures: Creating decentralized, autonomous systems by 
embryomorphic engineering. In Organic Computing, R. P. Würtz, ed., pp. 167-200, Springer-Verlag. 

1. Bienenstock, E. & Doursat, R. (1991) Issues of representation in neural networks. In Representations of Vision: 
Trends and Tacit Assumptions in Vision Research, A. Gorea, ed., pp. 47-67, Cambridge University Press. 

Peer-reviewed journals (8) 

8. Ulieru, M. & Doursat, R. (2010) Emergent engineering: A radical paradigm shift. ACM Transactions on 
Autonomous and Adaptive Systems (TAAS). To appear. 

7.  Hoelzer, G., Drewes, R., Meier, J. & Doursat, R. (2008) Isolation-by-distance and outbreeding depression are 
sufficient to drive parapatric speciation in the absence of environmental influences. PLoS Computational Biology 
4(7): e1000126 [doi:10.1371/journal.pcbi.1000126]. 

6. Doursat, R. (2008a) The self-made puzzle: Integrating self-assembly and pattern formation under non-random 
genetic regulation. InterJournal: Complex Systems 2292. 

5. Doursat, R. (2006b) The growing canvas of biological development: Multiscale pattern generation on an 
expanding lattice of gene regulatory networks. InterJournal: Complex Systems 1809. 

4. Vert, G. & Doursat, R. (2006) An architectural approach utilizing fuzzy taxonomies and complex adaptive systems 
for identifying computer system attacks and developing responses. WSEAS Trans. on Systems 5(2): 409-414. 

3. Doursat, R. & Petitot, J. (2005b) Dynamical systems and cognitive linguistics: Toward an active morphodynamical 
semantics. Neural Networks 18: 628-638. Selected for this special issue among less than 10% of the papers 
accepted at the IJCNN 2005 conference. 

2. Bienenstock, E. & Doursat, R. (1994) A shape-recognition model using dynamical links. Network: Computation in 
Neural Systems 5(2): 241-258. 

1. Geman, S., Bienenstock, E. & Doursat, R. (1992) Neural networks and the bias/variance dilemma. Neural 
Computation 4: 1-58. Cited over 1500 times (Google Scholar). 

Peer-reviewed conference & workshop proceedings (12) 

12.  Doursat, R. (2009g) Facilitating evolutionary innovation by developmental modularity and variability. Generative & 
Developmental Systems Workshop (GDS 2009), at 18th Genetic and Evolutionary Computation Conference 
(GECCO 2009), July 8-12, 2009, Montreal, Canada. 
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11. Doursat, R. (2008g) Spatial self-organization of heterogeneous, modular architectures. Spatial Computing 
Workshop (SCW 2008), at 2nd IEEE International Conference on Self-Adaptive and Self-Organizing Systems 
(SASO 2008), October 20-24, 2008, Venice, Italy. 

10. Doursat, R. & Ulieru, M. (2008b) Emergent engineering for the management of complex situations. 2nd 
International Conference on Autonomic Computing and Communication Systems (Autonomics 2008), September 
23-25, 2008, Telecom Italia Labs, Turin, Italy. 

9. Doursat, R. (2008f) The growing canvas of biological development: Multiscale pattern generation on an 
expanding lattice of gene regulatory networks. In Unifying Themes in Complex Systems Vol VI, A. A. Minai, D. 
Braha & Y. Bar-Yam, eds., Springer-Verlag. This volume selected 77 papers from over 300 presented at the 
ICCS 2006 conference. 

8. Doursat, R. (2008d) Programmable architectures that are complex and self-organized: From morphogenesis to 
engineering. 11th International Conference on the Simulation and Synthesis of Living Systems (ALIFE XI), 
August 5-8, 2008, University of Southampton, Winchester, UK. In Artificial Life XI, S. Bullock, J. Noble, R. Watson 
& M. A. Bedau, eds., pp. 181-188, MIT Press. 

7. Vert, G., Doursat, R. & Nasser, S. (2006) Towards utilizing fuzzy self-organizing taxonomies to identify attacks on 
computer systems and adaptively respond. 2006 IEEE World Congress on Computational Intelligence 
(WCCI/FUZZ-IEEE 2006), July 16-21, 2006, Vancouver, BC, Canada. 

6. Doursat, R. & Bienenstock, E. (2006b) Neocortical self-structuration as a basis for learning. 5th International 
Conference on Development and Learning (ICDL 2006), May 31-June 3, 2006, Indiana University, Bloomington. 

5. Vert, G. & Doursat, R. (2005) A fuzzy taxonomic approach for classifying and identifying system attacks and 
automating attack response. 4th WSEAS International Conference on Computational Intelligence, Man-Machine 
Systems and Cybernetics (CIMMACS 2005), November 17-19, 2005, Miami, FL. 

4. Doursat, R. & Petitot, J. (2005a) Bridging the gap between vision and language: A morphodynamical model of 
spatial categories. International Joint Conference on Neural Networks (IJCNN 2005), July 31-August 4, 2005, 
Montréal, QC, Canada. 

3. Doursat, R. & Petitot, J. (1997) Modèles dynamiques et linguistique cognitive: vers une sémantique 
morphologique active. 6ème École d'été de l'Association pour la Recherche Cognitive (ARCo), July 5-13, 1997, 
Formation du CNRS, Bonas, France. 

2. Bienenstock, E. & Doursat, R. (1990) Spatio-temporal coding and the compositionality of cognition. Workshop on 
Temporal Correlations and Temporal Coding in the Brain, April 25-27, 1990, Paris, France. 

1. Bienenstock, E. & Doursat, R. (1989) Elastic matching and pattern recognition in neural networks. nEuro'88 
Conference, June 6-9, 1988, Ecole Supérieure de Physique et Chimie Industrielles (ESPCI), Paris, France. In 
Neural Networks: From Models to Applications, L. Personnaz & G. Dreyfus, eds., pp. 472-482, IDSET, Paris. 

Technical reports (3) 

3. Petitot, J. & Doursat, R. (1998) Modèles dynamiques et linguistique cognitive: vers une sémantique 
morphologique active. Technical Report 9809, in Rapports et documents du CREA, Ecole Polytechnique, Paris. 

2. Doursat, R., von der Malsburg, C. & Bienenstock, E. (1995) Coding metric with delayed temporal correlations: An 
oscillator model of graph-matching. Tech. Report, Inst. für Neuroinformatik, Ruhr-Universität Bochum, Germany.  

1. Doursat, R., Konen, W., Lades, M., von der Malsburg, C., Vorbrüggen, J. C., Wiskott, L. & Würtz, R. P. (1993) 
Neural mechanisms of elastic pattern matching. Internal Report IRINI 93-01, Institut für Neuroinformatik, Ruhr-
Universität Bochum, Germany. 

 
Abstracts — Conferences, Workshops  (17) 

Peer-reviewed conference & workshop abstracts accepted as presentations (8) 

8. Doursat, R. (2008e) A morphogenetic model of controlled self-organization. 5th European Conference on 
Complex Systems (ECCS 2008), September 14-19, 2008, Hebrew University, Jerusalem, Israel. 

7. Doursat, R. (2008c) From morphogenesis to embryomorphic engineering. “From Amorphous to Spatial 
Computing” Workshop, July 7-8, 2008, Paris, France. 

6. Hoelzer, G., Drewes, R. & Doursat, R. (2008) Speciation through spatial self-organization of the gene pool. 12th 
Evolutionary Biology Meeting (EBM 2008), September 24-26, 2008, Université de Provence, Marseille, France 
(presenter: G. Hoelzer). 

5. Doursat, R. (2007e) The self-made puzzle: Integrating self-assembly and pattern formation under non-random 
genetic regulation. 7th International Conference on Complex Systems (ICCS 2007), October 28-November 2, 
2007, New England Complex Systems Institute (NECSI), Boston, MA. 
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4. Doursat, R. (2006a) The growing canvas of biological development: Multiscale pattern generation on an 
expanding lattice of gene regulatory networks. 6th International Conference on Complex Systems (ICCS 2006), 
June 25-30, 2006, New England Complex Systems Institute (NECSI), Boston, MA. 

3. Hoelzer, G., Drewes, R. & Doursat, R. (2006) Temporal waves of genetic diversity in a spatially explicit model of 
evolution: Heaving toward speciation. 6th International Conference on Complex Systems (ICCS 2006), June 25-
30, 2006, New England Complex Systems Institute (NECSI), Boston, MA (presenter: G. Hoelzer). 

2. Bienenstock, E. & Doursat, R. (1989) Of shapes, graphs and neural codes. NATO Advanced Research Workshop 
on Neuro Computing: Algorithms, Architectures and Applications, February 27-March 3, 1989, Les Arcs, France 
(presenter: E. Bienenstock). 

1. Bienenstock, E. & Doursat, R. (1988) Graph-matching and shape recognition in neural networks. 1st Conference 
on Image Recognition and Neural Networks: From Signal Processing to Representation (NEURO-IMAGE 1988), 
October 6-7, 1988, Université de Bordeaux II, France. 

Peer-reviewed conference & workshop abstracts accepted as posters (9) 

9. Doursat, R. (2009c) Heterogeneous collective motion or moving pattern formation? The "self-made puzzle" of 
embryogenesis under the light of multi-agent modeling. “Morphogenesis in Living Systems” Conference, May 14-
16, 2009, Université Paris Descartes, France. 

8. Doursat, R. & Bienenstock, E. (2007) How activity regulates connectivity: A self-organizing complex neural 
network. Ladislav Tauc Conference in Neurobiology 2007: Complexity in Neural Network Dynamics (Tauc 2007), 
December 13-14, 2007, Institut de Neurobiologie Alfred Fessard (INAF), CNRS, Gif-sur-Yvette, France. 

7. Doursat, R., Goodman, P. H. & Zou, Q. (2007) Neocortical locks and keys: Coherence induction among complex, 
heterogeneous neuronal patterns. Ladislav Tauc Conference in Neurobiology 2007: Complexity in Neural 
Network Dynamics (Tauc 2007), December 13-14, 2007, Institut de Neurobiologie Alfred Fessard (INAF), CNRS, 
Gif-sur-Yvette, France. 

6. Faure, E., Lombardot, B., Luengo-Oroz, M., Campana M., Peyriéras, N., Doursat, R. & Bourgine, P. (2007) Active 
machine learning for embryogenesis. 4th European Conference on Complex Systems (ECCS 2007), October 1-5, 
2007, Technische Universität Dresden, Germany. 

5. Doursat, R. (2007a) Embryomorphic engineering: How to design hyper-distributed architectures capable of 
autonomous segmentation, rescaling and shaping. Unconventional Computation Conference (UC 2007), March 
21-23, 2007, Los Alamos National Laboratory (LANL) and Santa Fe Institute (SFI), Santa Fe, NM. OCP Science 
Best Poster Award in Unconventional Computing (2008) International J. of Unconventional Computing 4(2): i-ii. 

4. Goodman, P. H., Doursat, R., Zou, Q., Zirpe, M. & Sessions, O. (2007) RAIN brains: Mammalian neocortex as a 
hybrid analog-digital computer. Unconventional Computation Conference (UC 2007), March 21-23, 2007, Los 
Alamos National Laboratory (LANL) and Santa Fe Institute (SFI), Santa Fe, NM. 

3. Doursat, R. & Bienenstock, E. (2006c) How activity regulates connectivity: A self-organizing complex neural 
network. 6th International Conference on Complex Systems (ICCS 2006), June 25-30, 2006, New England 
Complex Systems Institute (NECSI), Boston, MA. 

2. Doursat, R. & Bienenstock, E. (2006a) The self-organized growth of synfire patterns. 10th International 
Conference on Cognitive and Neural Systems (ICCNS 2006), May 17-20, 2006, Boston University, MA. 

1. Doursat, R. & Goodman, P. H. (2006) Neocortical keys and locks: A neural model of associative learning by 
coherence induction between spike patterns and ongoing membrane potentials. 10th International Conference on 
Cognitive and Neural Systems (ICCNS 2006), May 17-20, 2006, Boston University, MA. 

 
Invited Talks (with Abstracts) — Conferences, Workshops  (22) 

Invited conference & workshop keynote presentations (3) 

3. Doursat, R. (2010b) Architecture and self-organisation: Heading for the best of both worlds. Gartner Enterprise 
Architecture Summit, May 17-18, 2010, London, UK. Keynote address. 

2. Doursat, R. (2010a) Embryomorphic engineering: From biological development to self-organized computational 
architectures. 4th EmergeNET Meeting: Engineering Emergence (EmergeNET4), April 19-20, 2010, St William's 
College, York, UK. Keynote address. 

1. Doursat, R. (2007f) How to plan self-organization, control decentralization, and design evolution: Addressing the 
paradoxes of complex systems engineering with metaphors from biological development. 2nd International 
Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), 
December 10-13, 2007, Budapest, Hungary. Keynote address. 
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Invited conference & workshop talks (19) 

19. Doursat, R. & Petitot, J. (2010b) [TBA]. Symposium on Structured Flows on Manifolds: A General Dynamical 
Framework to Cognition, at the "Cognition, Emotions and Society" Conference of the French Psychology Society 
(SFP), September 7-9, 2010, Université Charles-de-Gaulle Lille 3, France. 

18. Doursat, R. (2010d) [TBA]. 2nd Summer Solstice International Conference on Discrete Models of Complex 
Systems (SOLSTICE 2010), June 16-18, 2010, LORIA, CNRS, Nancy, France. 

17.  Doursat, R. & Petitot, J. (2010a) [TBA]. 2nd Symposium on Language and Robots (LangRo 2010), June 2010 
[TBA], Intelligent Systems and Robotics Institute (ISIR), Université Pierre et Marie Curie (Paris 6), France. 

16. Doursat, R. (2010c) [TBA]. 2nd International Conference on Morphogenesis in Living Systems (MLS 2010), May 
27-29, 2010, Université Paris Descartes, France. 

15.  Doursat, R. (2009i) Causing and influencing patterns by designing the agents: Complex systems made simpler. 
4th Workshop on Causality in Complex Systems, co-organized by DSTO, CSIRO (Australia), and ONR, AFRL 
(US), in association with the Conference on Spatial Simulation for the Social Sciences (S4), November 25-27, 
2009, Institut des Systèmes Complexes, Paris Ile-de-France. 

14.  Doursat, R. (2009h) Heterogeneous collective motion or moving pattern formation? The two sides of 
embryogenesis combined by multi-agent modeling into a "self-made puzzle". Workshop on Quantitative Tissue 
Biology and Virtual Tissues (Biocomplexity X), October 28-November 1, 2009, The Biocomplexity Institute, 
Indiana University, Bloomington, IN. 

13.  Doursat, R. (2009f) Evolutionary developmental systems as “self-made puzzles” that can be programmed: 
Lessons from biological morphogenesis. Invited panelist (of 6), Generative & Developmental Systems Workshop 
(GDS 2009), at 18th Genetic and Evolutionary Computation Conference (GECCO 2009), July 8-12, 2009, 
Montreal, Canada. 

12.  Doursat, R. (2009e) Heterogeneous collective motion or moving pattern formation? The self-made puzzle of 
embryogenesis under the light of multi-agent modeling. 2nd Paris Workshop on Multi-Agent Systems in Biology at 
Meso or Macroscopic scales (MASBio 2009), June 23, 2009, Université Pierre et Marie Curie, Paris, France. 

11.  Doursat, R. (2009d) Embryomorphic engineering: How elaborate, modular architectures can be self-organized, 
too. 1st International Morphogenetic Engineering Workshop (MEW 2009), June 19, 2009, Complex Systems 
Institute, Paris, France. 

10.  Doursat, R. (2009b) The self-made puzzle: Complex systems science as a design activity. Workshop on 
“Aesthetic at the Heart of Science”, in The European Future and Emerging Technologies Conference (FET 2009): 
“Science Beyond Fiction”, April 21-23, 2009, Prague, Czech Republic. 

9.  Doursat, R. (2009a) Mouvement collectif hétérogène ou formation de motifs en mouvement? Le puzzle auto-
façonné de l'embryogenèse à la lumière des modèles multi-agents. 5ème École interdisciplinaire d’échanges et 
de formation en biologie (Berder 2009): “Spatialisation et localisation”, March 29-April 4, 2009, Formation du 
CNRS, Berder (Brittany), France. 

8. Doursat, R. (2008h) Paradox in approaching complexity: From natural to engineered complex systems. IT 
Revolutions 2008, December 17-19, 2008, Telecom Italia Future Centre, Venice, Italy. 

7. Doursat, R. & Ulieru, M. (2008a) Guiding the emergence of structured network topologies: A programmed 
attachment approach. “Dynamics On and Of Complex Networks II” Workshop (DOON II), at 5th European 
Conference on Complex Systems (ECCS 2008), September 14-19, 2008, Hebrew University, Jerusalem, Israel. 

6. Doursat, R. (2007d) Of tapestries, ponds and RAIN: Toward fine-grain mesoscopic neurodynamics in excitable 
media. International Workshop on Nonlinear Brain Dynamics for Computational Intelligence, at 10th Joint 
Conference of Information Systems (JCIS 2007), July 20, 2007, Salt Lake City, UT. 

5. Doursat, R. (2007c) Multiscale Embryomorphic Architectures. Workshop on Scaling in Biological and Social 
Networks, July 9-13, 2007, Santa Fe Institute (SFI), Santa Fe, NM. 

4. Doursat, R. (2007b) Embryomorphic systems meta-design: Preparing for self-assembly, self-regulation and 
evolution. 7th Understanding Complex Systems Symposium (UCS 2007), May 14-17, 2007, Department of 
Physics, University of Illinois at Urbana-Champaign, IL. 

3. Goodman, P. H. & Doursat, R. (2007) Large-scale biologically realistic models of cortical mesocircuit dynamics. 
Computational Neuroscience, Sensory Augmentation, and Brain-Machine Interface, April 25-26, 2007, Office of 
Naval Research (ONR), Arlington, VA. 

2. Doursat, R. & Petitot, J. (2005c) Notes on the possibility of embodied computation based on the emergence of 
singularities in a large-scale complex dynamical system. Workshop on Neurodynamics and Intentional Dynamic 
Systems, at International Joint Conference on Neural Networks (IJCNN 2005), August 5, 2005, Montréal, QC. 
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1. Doursat, R. (1995) The microdynamics of mental schemas. Workshop on Morphodynamic Models for Language 
and Perception, December 11-13, 1995, International Centre for Semiotic and Cognitive Studies (Umberto Eco & 
Patrizia Violi, dirs.), University of San Marino, Italy. 

 
Individual invited seminars & talks  (not included in total count) 

Academic Institutions 

36.  Université Libre de Bruxelles, Belgium (hosts: Marco Dorigo, Hugues Bersini), Institute of Interdisciplinary 
Research & Development in Artificial Intelligence (IRIDIA), March 19, 2010 — Embryomorphic engineering: From 
biological development to artificial multi-agent organisms. 

35.  Université de Nantes, France (hosts: Julien Cohen, Alexandre Dikovsky), Laboratoire d'Informatique de 
Nantes Atlantique (LINA), February 11, 2010 — Ingénierie morphogénétique : du développement biologique aux 
systèmes auto-organisés programmables. 

34.  Université Pierre et Marie Curie (Paris 6), France (host: Michel Gho), Developmental Biology Laboratory, 
October 23, 2009 — Heterogeneous collective motion or moving pattern formation? The self-made puzzle of 
embryogenesis under the light of multi-agent modeling. 

33.  University of West England, Bristol, UK (host: Alan F. T. Winfield), Intelligent Autonomous Systems 
Laboratory, Bristol Robotics Laboratory, October 19, 2009 — Embryomorphic engineering: From biological 
development to artificial multi-agent organisms. 

32.  London School of Economics, UK (host: Eve Mitleton-Kelly), Complexity Research Program, June 26, 2009 
— Complex systems as “self-made puzzles” that can be programmed: Lessons from biological morphogenesis. 

31.  Genopole, Evry, France (hosts: Marie Beurton-Aimar, François Képès), Epigenomics Program, June 25, 2009 
— Complex systems and agent-based modeling in biology. 

30.  The Open University, Milton Keynes, UK (host: Jeff Johnson), Department of Design and Innovation, April 1, 
2009 — The self-made puzzle: Complex systems and design. 

29. Université de Cergy-Pontoise, France (host: Laura Hernandez), Laboratory for Theoretical Physics and 
Modelling, February 5, 2009 — A multi-agent computational model of biological morphogenesis based on non-
random, programmable pattern formation and self-assembly. 

28.  New England Complex Systems Institute (NECSI), Cambridge, MA (host: Yaneer Bar-Yam), NECSI Winter 
School 2009, January 8, 2009 — Self-organization and variability of complex modular architectures as a 
prerequisite to evolutionary innovation. 

27.  Université Pierre et Marie Curie (Paris 6), France (host: Michelle Thieullen), Probabilities and Random 
Models Laboratory, December 12, 2008 — A multi-agent computational model of biological morphogenesis 
based on non-random, programmable pattern formation and self-assembly. 

26.  Universitat Pompeu Fabra, Barcelona, Spain (host: Ricard Solé), Complex Systems Lab, December 5, 2008 
— Self-organization and variability of complex modular architectures as a prerequisite to evolutionary innovation. 

25.  Université Paris-Sud 11 & INRIA, Orsay, France (hosts: Nicolas Bredeche, Marc Schoenauer), Laboratoire 
de Recherche en Informatique, TAO Research Laboratory, November 10, 2008 — Spatial self-organization of 
heterogeneous, modular architectures. 

24. Ecole Polytechnique & CNRS, Paris, France (host: Paul Bourgine), Centre de Recherche en Epistémologie 
Appliquée (CREA), March 25, 2008 — Architectures that are self-organized and complex: From morphogenesis 
to engineering. 

23. University of Otago, Dunedin, New Zealand (host: Martin Purvis), Department of Information Science, 
Feburary 12, 2008 — Architectures that are self-organized and complex: From morphogenesis to engineering. 

22. Victoria University of Wellington, New Zealand (host: Marcus Frean), Artificial Intelligence Group, School of 
Mathematics, Statistics & Computer Science, February 5, 2008 — Architectures that are self-organized and 
complex: From morphogenesis to engineering. 

21. Institut des Systèmes Complexes, Paris Ile-de-France (within the Morning Seminar Series), January 18, 2008 
— The self-made puzzle: Integrating self-assembly and pattern formation under non-random genetic regulation. 

20. Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland (host: Dario Floreano), Laboratory of 
Intelligent Systems, Institut d'Ingénierie des Systèmes, January 16, 2008 — The self-made puzzle: Integrating 
self-assembly and pattern formation under non-random genetic regulation. 

19. Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland (hosts: Felix Schürmann, Sean Hill, Henry 
Markram), Blue Brain Project, Brain Mind Institute, January 16, 2008 — Toward a spiking mesoscopic 
neurodynamics. 
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18. Utrecht University, The Netherlands (host: Paulien Hogeweg), Theoretical Biology & Bioinformatics Group, 
Department of Biology, December 17, 2007 — The self-made puzzle: Integrating self-assembly and pattern 
formation under non-random genetic regulation. 

17. Indiana University, Bloomington, IN (host: James Glazier), The Biocomplexity Institute, May 31, 2007 — 
Embryomorphic architectures. 

16. INRIA Futurs, Orsay, France (host: Hugues Berry), ALCHEMY Research Lab, January 23, 2007 — Organically 
grown architectures: Embryogenesis and neurogenesis as new paradigms for decentralized systems design. 

15. Ecole Polytechnique & CNRS, Paris, France (host: Paul Bourgine), Centre de Recherche en Epistémologie 
Appliquée (CREA), December 5, 2006 — Building the mesoscopic foundations of cognition: emergence and 
interaction of spatiotemporal patterns in complex dynamical neural systems. 

14. Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (host: Christoph von der Malsburg), 
Frankfurt Institute for Advanced Studies (FIAS), November 3, 2006 — Genetics and epigenetics: Two models of 
self-organization in biological development. 

13. Ruhr-Universität Bochum, Germany (host: Rolf Würtz), Institut für Neuroinformatik (INI), October 31, 2006 — 
Locks and keys in complex neural networks: The “mesocircuits” of cognition. 

12. Binghamton University SUNY, Binghamton, NY (host: Hiroki Sayama), Department of Bioengineering, July 
25, 2006 — Locks and keys in complex biosystems: From coherence induction to regulation. 

11. University of Massachusetts, Amherst, MA (host: Hava Siegelmann), Biologically Inspired Neural & 
Dynamical Systems (BINDS) Laboratory, Department of Computer Science, July 24, 2006 — Locks and keys in 
complex biosystems: From coherence induction to regulation. 

10. Université de Sherbrooke, QC, Canada (host: Jean Rouat), Department of Electrical & Computer Engineering, 
July 18, 2006 — Toward a rich neurodynamics at a mesoscopic level: Two models of resonance among networks 
of oscillatory and excitable units. 

9. McGill University, Montréal, QC, Canada (host: Andrew Hendry), Evolution & Ecology Groups, Department of 
Biology, July 13, 2006 — Temporal waves of genetic diversity in a spatially explicit model of evolution: Heaving 
toward speciation. 

8. Université Laval, Québec, QC, Canada (host: Guy Mineau), Department of Computer Science & Software 
Engineering, July 6, 2006 — Spatial language and linguistic space: Two models of conceptual categorization 
based on visual icons and semantic networks. 

7. Université de Montréal, QC, Canada (host: Lael Parrott), Complex Systems Laboratory, Department of 
Geography, July 4, 2006 — From evo to devo: Two spatially extended models showing speciation and pattern 
formation. 

6. The MITRE Corporation, Washington, DC (host: Brandon S. Minnery), Emerging Technology Office, May 2, 
2006 — Neuromorphic mesocircuits: From neural computation to cognitive architectures via analog VLSI. 

5. University of Nevada, Reno, NV (host: George Bebis), Computer Vision Laboratory, Department of Computer 
Science & Engineering, June 24, 2004 — Structural graph matching and morphological image transforms: Two 
paths toward the categorization of geometrical patterns. 

4. University of Nevada, Reno, NV (host: Philip H. Goodman), Brain Computation Laboratory, Department of 
Computer Science & Engineering / School of Medicine, May 25, 2004 — An epigenetic development model of the 
nervous system. 

3. Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands (host: Willem Levelt), Language 
Production Group, November 1992 — Compositionality in neural networks. 

2. Ruhr-Universität Bochum, Germany (host: Christoph von der Malsburg), Institut für Neuroinformatik (INI), 
April 1991 — Representations in the nervous system and in artificial neural networks. 

1. Université de Montréal, QC, Canada (host: Jan Gecsei), Département d'Informatique et de Recherche 
Opérationnelle, April 1988 — Graph matching and shape recognition. 

General Public & Media Appearances 
 

3.  French National Public Radio (France-Culture), Paris (host: Xavier de la Porte), Show: "Place de la Toile" 
("Web Square"), January 15, 2010 — What are complex systems? (30-mn interview). 

2.  “La Cantine”, Paris, France (host: Christel Sorin), Coworking Space for High-Tech Entrepreneurs, May 27, 
2009 — The Web as a complex system: a self-organization that can be controlled? 

1.  Conseil Régional d'Ile-de-France (Regional Government of the Paris Metropolitan Area) (host: Marc 
Lipinski, Vice President for Research & Innovation), Public Forum on Research in Ile-de-France, March 3, 2009 
— Best practices for the coordination of research (panel discussion). 
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