
Facilitating Evolutionary Innovation by Developmental
Modularity and Variability

René Doursat
Institut des Systèmes Complexes, CNRS / CREA, Ecole Polytechnique

57-59, rue Lhomond
75005 Paris, France
+33 1 42 17 09 99

rene.doursat@polytechnique.edu

ABSTRACT
Natural complex adaptive systems show many examples of self-
organization and decentralization, such as pattern formation or
swarm intelligence. Yet, only multicellular organisms possess the
genuine architectural capabilities needed in many engineering
application domains, from nanotechnologies to reconfigurable and
swarm robotics. Biological development thus offers an important
paradigm for a new breed of “evo-devo” computational systems.
This work explores the evolutionary potential of an original multi-
agent model of artificial embryogeny through differently
parametrized simulations. It represents a rare attempt to integrate
both self-organization and regulated architectures. Its aim is to
illustrate how a developmental system, based on a truly indirect
mapping from a modular genotype to a modular phenotype, can
facilitate the generation of variations, thus structural innovation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence –
coherence & coordination, intelligent agents, multiagent systems

General Terms
Algorithms, Design, Experimentation, Reliability, Theory.

Keywords
Artificial Embryogeny, Evolutionary Development, Bio-Inspired
Engineering, Spatial Computing, Complex Systems, Systems
Design, Self-Organization, Modularity, Robotics, Architectures.

1. TOWARD EVO-DEVO ENGINEERING
Engineering is torn between two seemingly contradictory
objectives. On the one hand, it strives to deliberately design devices
and systems with full control of their structure, on the other hand, it
wishes them to be functionally and structurally autonomous, self-
repairing and adaptive—or “intelligent”. Today, even our most
sophisticated contraptions (computers, AI, robots) must be literally
“spoon-fed” at every stage of their existence, i.e., entirely designed,

built, and programmed, constantly monitored, repaired, and
upgraded. We are still far from the heralded future of engineering in
which artificial systems would exhibit all the highly desirable “self-
x” properties that are found in many natural systems:
decentralization (emergence, redundancy), autonomy (self-
organization, homeostasis), adaptation (learning, evolution).

1.1.1 Inspiration from Natural Complex Systems
While we are wondering how to emancipate human-made systems,
our natural environment already hosts a profusion of autonomous
systems, whether physical patterns, biological cells, organisms,
animal societies, ecosystems, or—in a broader sense of “natural”—
spontaneously emerging super-structures indirectly caused by
humans (societies, the economy, Internet, etc.). These decentralized,
unplanned systems are probably the most pervasive, efficient, and
robust type of structures. It is centrally planned systems that are
unique, costly to build, and fragile, because they fundamentally
require another “intelligent” (but sometimes incompetent) system to
exist and operate them.

In this context, natural “complex adaptive systems”, in particular
biological (developmental, neural, evolutionary) and emergent-
social (complex networks), have an important role to play in
providing a powerful source of inspiration for emerging
technologies. Understanding these systems could help create a new
generation of artificial systems with the above-mentioned properties
still largely absent from traditional engineering. Now, taking a
closer look at natural complex systems, it is a striking fact that they
are all made of a myriad of elements that interact locally in large
networks and produce an emergent collective behavior at a
macroscopic scale. These elements follow individual rules or laws
of dynamics that can be more or less sophisticated.

Thus decentralization over a myriad of agents seems to be an
essential condition for autonomy in natural systems. To some
extent, this is already mirrored by current trends in information and
communication technologies. Segmentation and distribution of large
computing systems over a multitude of smaller and relatively
simpler components is both a growing need and an inevitable fact in
many domains of computer science & engineering, AI, and robotics.
Faced with an explosion in size and complexity of computing
systems at all levels of organization, including hardware (integrated
parts), software (program modules), and networks (applications and
users), engineers are gradually led, more or less willingly, to rethink
these systems in terms of complex systems [27], [20]. It means that,
instead of rigidly designing things in every detail, engineers would
need to step back and only “meta-design” them, i.e., focus on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07...$5.00.

683

generic conditions allowing endogenous growth, function, and
evolution.

1.1.2 The Need for Precise Morphogenetic Abilities
Yet, as the prolific creativity and spontaneity of natural complex
systems is examined, one realizes that in most cases they do not
exhibit the truly morphogenetic and architectural capabilities that
are needed in machine design. Relatively complex collective
behavior can result from simple agent-based rules, a fact often
touted as the hallmark of complex systems, however, it is
“complex” only to a certain point. In many well-known families of
systems (e.g., pattern formation, swarm intelligence, complex
networks [1]), the emerging patterns are “statistical” in nature, i.e.,
they are either mostly stochastic or mostly shaped by boundary
conditions, or a mix of both (e.g., spots and stripes, ant trails,
meandering bird flocks, hub-forming social encounters).

Complex systems that are “morphological” in nature, i.e., exhibit an
intrinsic architecture that is neither repetitive nor imposed by the
environment, are much less frequent or studied. One monumental
exception is the development and evolution of biological forms,
especially multicellular organisms. Embryogeny represents a unique
case of combined self-organization and elaborate structures.
Organisms are made of segments and parts arranged in specific
ways that resemble engineered devices. Yet, they also self-assemble
in a decentralized fashion, under the precise control of genetic and
epigenetic information stored in the zygote. This endows cells with
a repertoire of non-trivial behaviors and allows them to differentiate
depending on a notion of relative positional information. In other
words, biological development is a prime example of programmable
complexity. It demonstrates that complex systems can be much
more than “homogeneous”, “monolithic” or “random”: they can
contain a wide diversity of agents creating heterogeneous patterning
and shaping; they can be modular, hierarchical, and architecturally
detailed at multiple scales; they can be reproducible because they
rely on programmable agents.

There is a great demand for such precise self-formation capabilities
in a variety of distributed engineering systems, and morphogenetic
approaches have also been proposed in some applications: arrays of
micro-processors [8], mobile sensors [2] internet security hosts [15]
reconfigurable modules [14], [18], [16], or swarm robots [6]. It is
also an important challenge in complex techno-social networks
made of myriads of mobile devices, software agents and human
users, all relying on local rules and peer-to-peer communication.
How to foster a programmable, yet adaptive design of self-
reconfiguring manufacturing plants, self-regulating energy grids, or
self-deploying emergency taskforces? [12]

1.1.3 Let Grow, then Evolve
Traditional engineering is currently following a “deliberate design”
(DD) paradigm. It is expected to progressively shift toward a
“biological” paradigm, in which systems (organisms) are the pure
products of undesigned evolution (UE). This would proceed via
intermediate stages of “developmental meta-design” (DMD) and
“evolutionary meta-design” (EMD). In DMD, designers focus on
creating generative mechanisms rather than the systems themselves.
In EMD, even more disengaged meta-architects create laws of
variation and selection, prepare primitive ancestor systems and step
back to let evolution invent the rest.

In the variation/selection couple of Darwinian evolution, variation
has become the poor child of biology’s Modern Synthesis, while
most of the attention was focused on selection. It is only in recent
years that the understanding of variation as the generation of
phenotypic innovation became the main concern of evolutionary
development, or “evo-devo”, a rapidly expanding field of biology
comparing the development of different species from the molecular
and genetic level to the anatomy [1], [17]. The link from genotype
to phenotype cannot remain an abstraction if we want to unravel the
generative laws of evolution [17]—and eventually transfer them to
self-organized artificial systems. On the artificial side, there is a
similar paradigm shift, as new trends in evolutionary engineering,
such as artificial embryogeny (AE) [23], [3], [19] also emphasize
developmental variations as a prerequisite for the evolution of
complex structures.

In the framework of genetic algorithms and evolutionary
computation, this means an indirect or implicit mapping (as opposed
to direct or explicit) from genotype to phenotype. The advantages of
a developmental representation that are generally put forward [23],
[3], [13] are compactness and reduction of search space (how to
describe complex structures using the fewest parameters possible),
reusability and modularity (how to describe structures as a hierarchy
of parts and subparts), self-organization and adaptability (how the
phenotype can be influenced by the environment in which it grows).
Most importantly, there is a consensus that developmental systems
are especially well positioned to exhibit a high degree of
evolvability. It is felt and, in some examples demonstrated [16], that
they inherently have greater variational and adaptive power, as they
allow combinatorial tinkering on highly redundant parts. However,
there is no unified or standard evo-devo methodology. Rather, there
exist many different evolutionary computation works of
developmental inspiration, from abstract grammars to biologically
detailed models (see a taxonomy in [23]).

The present work wishes to contribute to the field of artificial
embryogeny by exploring the evolutionary potential of an original
model of architectured morphogenesis. It represents a rare attempt
to integrate both self-organization and sophisticated, regulated
architectures. In particular, its aim is to illustrate how a self-
organized developmental system, based on a modular genotype
giving rise to a modular phenotype, can facilitate the generation
of variations, thus evolutionary structural innovation. Part 2
summarizes and elaborates upon the developmental mechanisms
taken from the “embryomorphic” systems of Doursat [9], [10],
[11], while part 3 showcases an array of evolutionary experiments
based on hand-made mutations of the genotype. Part 4 outlines
the potential of this approach and its future directions.

2. A MODEL OF SELF-ORGANIZED
MODULAR MORPHOGENESIS
Embryomorphic systems rely on a computational, multi-agent
model of artificial embryogeny that integrates self-assembly (SA)
and pattern formation (PF)—metaphorically, “sculpting” and
“painting” [7]—in a decentralized swarm of interacting cells. The
embryo’s shape or phenotype of the collective behavior is guided
by a genotype G stored inside each cell. G provides a compact
developmental representation of the system, i.e., a set of genetic
parameters that rely on generative developmental rules for their
interpretation and transformation into an organism (see 2.1 for a
list of these mechanisms). G is composed of pairs of specialized

684

parameter subsets, (GSA, GPF), that respectively direct SA and PF
behavior and also influence each other. On the one hand, the
mechanical properties of a cell (SA: division rate and adhesion
forces) are determined by its local surrounding region of genetic
identity, or “cell type”, within the global pattern of gene
expression. On the other hand, these patterns of identity regions
(PF: gene regulation network) further segment themselves into
subregions, subsubregions, etc., under the expansion and
deformation caused by mechanical constraints. The complete
genotype G of a cell is made of multiple modules {(GSA

(k), GPF
(k))}

that are organized in a tree graph and create complex
morphologies by recursive refinement of details. At any time,
each cell c of the embryo is characterized by a set of state
variables Qc(t), also composed of SA-specific and PF-specific
subsets: Qc(t) = (Qc

SA(t), Qc
PF(t)).

A global view of the embryogeny cycle is given in Figure 1.
Starting from a small clump of cells, three main operations are
applied iteratively and recursively: (a) ”div”, representing the SA
behavior of the swarm: the division, proliferation and spatial
rearrangement of cells; (b) ”grad”, representing the first half of
the PF behavior: the diffusion of morphogen proteins across the
swarm (coded with integer counters; see below); and (c) ”patt”,
representing the second half of the PF behavior: the readout and
transformation of the gradient signals into various regions of gene
expression levels (via the response of a gene regulatory network;
see below). In the numerical simulation, these three operations
run in parallel: cells continuously divide (div) while at the same
time they exchange gradient signals (grad) and immediately
interpret these signals to calculate their new type (patt). A
fundamental aspect of the embryomorphic model is its
hierarchical organization in developmental stages, where each
stage repeats the execution of the (div, grad, patt) trilogy at a
lower spatial scale. The example of Figure 1 shows three such
stages: (div1, grad1, patt1), (div2, grad2, patt2) and (div3, grad3,
patt3). Stage 2 is applied to two of the nine regions that appeared
during stage 1, forming “limbs” that extend up and down. Stage 3
is executed inside two of the eight regions of the lower limb,
creating two “digits”. This recursive process may continue to later
stages, in a multiscale, fractal fashion resembling generative

grammatical systems, such as L-systems [22]—although in a self-
dissimilar way (and with other differences described in part 4).

2.1 Developmental Mechanisms and Genetic
Parameters
2.1.1 Self-Assembly by Division and Adhesion (SA)
An embryomorphic swarm in 2-D is composed of cells with
neighbor interactions calculated from a Delaunay-Voronoi
tessellation. They follow two major laws of cellular biomechanics
in a simplified format: (i) cell division, coded by a uniform
probability p for any cell to split into two, and (ii) cell adhesion,
represented by elastic forces derived from a quadratic potential V
with resting length re, hard-core radius rc, and scope of visibility
r0 [24] (Figure 2a). Under these laws, cells tend to form a quasi-
regular hexagonal mesh. At any time, each cell c is characterized
by its 2-D coordinates (x, y) and its interaction links with
neighboring cells {lcd}, where l = 0 or 1. An extra parameter g
regulates the proliferation time: cells stop dividing when one of
their gradient values reaches g (see next section). In summary, the
SA genetic parameters (common to the whole region) and the SA
state variables (in each particular cell c) are:

• GSA = (p, rc, re, r0, g)
• Qc

SA(t) = (x, y, {lcd})(t)

2.1.2 Positional Information by Gradients (PF-I)
The model distinguishes between two types of PF signals that
cells continuously exchange and process: gradient variables
(PF-I) and pattern variables (PF-II). Gradient values propagate
from neighbor to neighbor and establish positional information
[26] across the swarm (Figure 2b). Each cell receives a counter g
from neighboring cells and increments it by 1, resulting in a wave
pattern of counter values [8], [2], [21]. Two waves W and E
running in opposite directions create a midline WE where cells
have approximately equal gW and gE values. The model uses four
gradients forming a coordinate system based on two midlines WE
and NS (the four sources W, E, N, S are not placed by hand but
self-position by migrating away from each other inside the
swarm). These midlines in turn become sources and generate two
roughly perpendicular planar gradients, alternatively denoted by X
and Y. In summary, there are no PF-I genetic parameters, while
the PF-I state variables in each particular cell c are:

• GPF-I = ∅
• Qc

PF-I(t) = (gW, gE, gWE=X, gN, gS, gNS=Y)(t)

2.1.3 Patterning by Gene Expression Levels (PF-II)
Pattern values correspond to gene expression levels calculated on
top of the X and Y gradient values to create different cell types
(Figure 2c). This calculation relies on a gene regulatory network
(GRN), whose weights constitute the genetic parameters of the PF
process. Patterning represents the emergence of heterogeneity,
i.e., the segmentation of the swarm into “identity regions”
corresponding to high levels of expression of particular genes Ik.
A well-known example is the early striping of Drosophila,
controlled by a five-layer hierarchy of segmentation genes along
the anteroposterior axis (maternal, gap, primary and secondary
pair-rule, segment polarity) [1].

The present model relies on a three-layer caricature of the same
principle in 2-D, along the two intersecting X and Y axis. The

Figure 1: A three-stage embryogeny simulation (see text).

685

bottom layer of the GRN contains the two positional variables gX
and gY. The middle layer contains “boundary” genes Bi that
segment the embryo into horizontal and vertical half-planes of
strong and weak expression levels via 2-D step functions: Bi =
σ(wix gX + wiy gY − θi), where {wix, wiy}i=1...n are the regulatory
weights from gX and gY to Bi, parameter θi is Bi’s threshold and σ
is a sigmoid function σ(u) = 1/(1 + e−λu). The top layer contains
the identity nodes Ik derived from positive and negative products
of Bi’s, i.e., various intersections of the Bi half-planes:
Ik = ∏i, w’ki≠0 (w'kiBi + (1−w'ki)/2), where w'ki ∈ {−1, 0, +1} are
ternary weights from Bi to Ik, meaning that Bi’s factor inside Ik can
be either (1 − Bi) or Bi. Two of these regions, I4 and I6, are the
location of further growth and patterning in stage 2 in most of the
examples presented here. In summary, the PF-II genetic
parameters (common to the whole region) and the PF-II state
variables (in each particular cell c) are:

• GPF-II = ({wix, wiy, w'ki, θi})
• Qc

PF-II(t) = ({Bi, Ik})(t), where k’ = argmax { Ik } is the
cell’s type (and codes for its color in the figures)

2.1.4 Simultaneous Growth & Patterning (SA & PF)
SA and PF behaviors are combined to create growing patterns at
every stage. Cells continually adjust their positions according to
the elastic SA constraints, while continually exchanging gradient
values and PF signals over the same dynamic links. This dual
dynamics is guided by the combined genotype G = (GSA, GPF),
where GPF = (GPF-I, GPF-II). Daughter cells inherit all the attributes
of mother cells, including G and the internal Qc

PF variables
(current gradient counters and gene levels). The Qc

SA variables
(coordinates and edges) are recalculated from a position close to
the original cell. Both sets of variables are immediately updated,
as the newly born cell starts contributing to SA forces and the
traffic of PF gradients that maintain the pattern’s consistency at
all times in the swarm.

2.1.5 Modular, Recursive Development (SA & PF)-k
Embryological patterns do not develop in one shot but in
numerous incremental stages. An adult organism is produced by
modular, recursive growth and patterning [7], [1]. In Drosophila,
regions of the embryo that acquire leg, wing or antenna identity
(“imaginal disc”) develop local coordinate systems of morphogen
gradients to support the prepatterning and construction of the
planned organ. The present model includes a pyramidal hierarchy
of network modules able to generate patterns in a recursive
fashion (Figure 2d). First, the base network GPF

(0) establishes
main identity regions, then subnetworks GPF

(k) triggered by the
identity nodes Ik further partition these regions into smaller,
specialized compartments at a finer scale. Other shapes than blobs
can also be created by inhomogeneous and anisotropic SA
dynamics, i.e., by varying and diversifying the cells’ GSA
parameters (cell division p and elastic adhesion V) as a function of
their PF type and spatial position. For example, limb-like
structures can grow by imitation of meristematic plant offshoots.
In this process, only the tip or “apical meristem” of the organ is
actively dividing at any time. (Cells forming the tip can self-
identify as the local maxima of a gradient generated by the base
of the limb.)

3. THE GENERATION OF VARIATION BY
MODULES
The embryomorphic model presented in Part 2 demonstrates that
entire complex, programmable and reproducible morphologies
can develop and self-organize from a handful of cells following
local rules of reproduction and differentiation. These
morphologies are architecturally complex because they can be
made of any variety of modules and parts that are not necessarily
repeated in any periodic or self-similar way. They represent
programmable phenotypes because they emerge from the same
given genotype carried by every cell of the swarm. They are
reproducible, as their structure and shape are not left to chance
but tightly controlled by the genotype. Naturally, the exact
positions of cells at the microscopic level are still random, but not
the mesoscopic and macroscopic regions that they form.

Moreover, the modularity of the phenotype is a direct reflection
of the modularity of the genotype. The hierarchical SA and PF
dynamics recursively unfolds inside the different regions and
subregions that it creates. Each module G(k) = (GSA

(k), GPF
(k)) can

have different internal genetic SA and PF parameters, potentially
giving each region a different morphodynamic behavior and

Figure 2: Overview of the developmental mechanisms of
the multiagent model (see text, part 2). (a) Self-assembly
by division and elastic interactions (top: mesh of edges).
(b) Gradient diffusion. (c) Patterning by gene regulation.
(d) A 3-stage genotype gives rise to a 3-stage phenotype.

686

different gene activity landscape. The integration between SA and
PF is controlled by the identity nodes Ik: these nodes switch on the
execution of subordinate modules G(k), i.e., their gene expression
activity (parametrized by GPF

(k)) to create new local segmentation
patterns, and their mechanical behavior (parametrized by GSA

(k))
to create new morphodynamical behaviors.

This part presents a few experiments involving hand-made
mutations of the genotypes of embryomorphic systems and their
corresponding phenotypes. For now, these systems are purely
developmental and do not serve a specific function. No organism
“fitness” is defined (neither structural, nor functional) and no
selection is performed during a systematic search. The goal here
is rather to illustrate the link between genotype modularity and
phenotype modularity, and the programmable and predictable
effect that mutating the former can have on evolving the latter.

Figures 3-6 show several examples of modular embryogeny and
how certain mutations in the genotype correlate with quantitative
or qualitative changes in the phenotype. The organism of
Figure 3a is taken as the reference or “wild type”. Its genotype is
composed of two different modules: a base module establishing
the body plan (lower module) and a specialized module in charge
of growing a limb-like appendage (upper module). As described
previously, each module consists of two types of “genes” or
genetic parameters: self-assembly genes GSA, coding how cells
divide and spread spatially, and pattern formation genes GPF,
coding how cells acquire their types. In the simplified
representation of Figures 3-6, the gene regulatory network of GPF
is not shown. Instead, only the type of checkered pattern it
produces (explained below) and the switch identity genes are
displayed.

In the example of Figure 3a, the GSA part of the body plan
imposes a uniform division rate p = 0.05 and a stop signal at
gradient value g = 15. This means that each cell divides on
average every twentieth time step, and stops dividing when one of
their gradient counters gW, gE, gN or gS reaches 15 (via a stop

signal that the border cells propagate across the swarm). This
results in a regular disc-shaped swarm about 15 cells wide.
Meanwhile, the GPF part of the same body-plan module produces
a 3×3 checkered pattern, i.e., nine different types of cells I1 ... I9.
(Incidentally, this relies on two horizontal and two vertical
boundary genes, B1, B2 and B3, B4, not shown here; see Figure 2c).
Then, during stage 2, the execution of the limb module is
triggered twice, in two different regions of the body plan pattern,
by identity genes I4 and I6 (resp. the middle left and middle right
regions). In the limb module, the GSA part also imposes a 0.05 Hz
frequency of division, however it is restricted to the tip of the
growing region, i.e., cells of maximal gW or gE values (see 2.1.5).
All other cells in the stem of the limb have a zero rate. As for the
GPF part of the limb, it does not involve any further internal
patterning, thus is equivalent to a 1×1 checkered pattern with a
unique identity gene.

3.1 Quantitative Variations
3.1.1 Varying Limb Thickness by GRN Weights (PF)
In Figure 3b, the same organism has been affected by a “thin-
limb” mutation of the base body plan. Although not shown, the
weights of the base module’s gene regulatory network GPF have
been modified in such a way that they now create a checkered
pattern with a narrower central row allowing less space for the
limbs to grow, hence making them actually thinner. This is
accomplished by modifying the thresholds of the B3 and B4 genes
(see Figure 2c) so that they are respectively less and more
sensitive, i.e., shrink and increase their regions of expression,
causing both boundary lines to shift closer to the center. The 0.5
coefficient encodes this drift (compared to 1 for the wild type).
The reverse, “thick-limb” mutation is shown in Figure 3c, with
coefficient 2 (B3 and B4 boundaries shifted away from the center).
This is a good example of the compactness of the genotype and its
large-scale effect on the phenotype: just varying the sensitivity of
a couple of genes can result in dramatic morphogenetic changes.

Figure 3: Simulations from the multiagent model showing quantitative variations. (a)-(c) Varying limb thickness by
modifying GRN weights (see text, 3.1.1). (d)-(f) Varying length and size by stopping division earlier/later (see text, 3.1.2).

687

3.1.2 Varying Limb Length by Division Signals (SA)
By modifying the division rate and/or the stop conditions of
proliferation, the size of various parts of the embryo can also be
varied. For example, in Figure 3f, both body plan and limbs stop
growing beyond gradient values g’= 8, producing a phenotypic
shape that is proportionally smaller to the wild type. In Figures 3d
and 3e, cell proliferation is regulated only in the limbs,
respectively by stopping it sooner (g’= 10) and later (g’= 40).
Note that similar effects can also be achieved by decreasing or
increasing the probability of division p, while keeping the
maximum gradient values constant (see Figure 4c).

3.2 Structural Variations
3.2.1 Changing Limb Position by Module Switching
In Figure 4, the modularity of the limb component is demonstrated
through various mutations reminiscent of experiments on biological
organisms such as Drosophila. The identity genes marking the
regions (“imaginal discs”) responsible for the growth of a specific
appendage can be literally turned on or off in new regions with
respect to the wild type of Figure 3a. For example, in Figure 4a, a
virtual case of “antennapedia” (the growth of a leg where there
should be an antenna) is obtained by connecting a new identity
region to the limb module, here region I2 instead of region I6. This
means rewiring the gene regulatory network GPF to reflect the fact
that the limb genes’ regulatory sites in the DNA have mutated and
now accept gene I2’s proteins as a promoters instead of gene I6’s
proteins. In the three-limb mutation of Figure 4b, these regulatory
sites have duplicated themselves before mutating, accepting gene I2
in addition to gene I6 (not just in replacement), so that the limb
module is now executed three times instead of twice.

3.2.2 Serial Homology by Duplication & Divergence
Later in the course of evolution, similar copies of the same organ
can diverge and acquire specialized characteristics, as Figure 4c
illustrates. In this scenario, three copies of the entire limb module
were produced by duplication. In the DNA, this corresponds to
actually copying the section of genome that contains all of the
limb’s genes and their regulatory sites. Then, these copies can
mutate independently from each other. In this artificial example, the
upper module of the genotype appears now three times with three

different growth rates p’= 0.05, 0.03, and 0.1, respectively equal,
lower and greater than the wild type’s rate, therefore creating a
shorter and a longer limb. Serial homology is a major evolutionary
process, resulting from duplication followed by divergence.
Biological organisms often contain numerous repeated parts in their
body plan. This is most striking in the segments of arthropods
(several hundreds in millipedes) or the vertebrae, teeth and digits of
vertebrates. After duplication, these parts tend to diversify and
evolve more specialized structures (lumbar vs. cervical vertebrae,
canines vs. molars, etc.). Homology exists not only within
individuals but also between different species, as classically shown
by comparing the forelimbs of tetrapods from the bat to the whale.
Homology could also be explored as an important routine of
artificial self-developing systems.

3.2.3 Adding Limbs by Body Plan Expansion
In the scenario of Figures 4d-e, new limbs are generated not by
reusing the same body plan differently (Figure 4a-b) or by
duplicating the limb module (Figure 4c), but rather by expanding
the gene regulatory network GPF of the body plan in order to create
new regions of gene identity that can host limb growth. Practically,
this means expanding the Bi and Ik layers of the GRN (see
Figure 2c) by periodically copying and appending some of their
nodes. This increases the embryo’s geography from a 3×3 = 9-type
checkered pattern to a 5×3 = 15-type (Figure 4d) or 9×3 = 27-type
pattern (Figure 4e). In addition to identity regions I4 and I6, the limb
module is now executed in regions I10 and I12 in the first case, and
I16, I18, I22 and I24 in the second case. The SA part of the body plan is
also slightly modified to accommodate these new regions. It
assumes an oval shape resulting from a nonuniform distribution of
the division rate p that follows the NS midline gradient (see
Figure 2b), i.e., greater toward the north and south poles (p = 0.1)
and lower in the center (p = 0.05).

3.2.4 Adding Digits by Modular Hierarchy
Finally, along the same principles, Figure 5 shows a few cases of
simulations of three-tier organisms. Figure 5a is taken as the new
wild type. After the usual development of two limbs from the 3×3
body plan, extra “digits” grow from these limbs, guided by the top
module of the hierarchical genotype. In these examples, the digits’
shape is similar to the limbs at a smaller scale (same SA behavior,

Figure 4: Simulations showing structural variations. (a)-(c) Changing limb configuration by switching the limb-triggering
genes and/or duplicating the limb module (see text, 3.2.1, 3.2.2). (d)-(e) Adding limbs by body plan expansion (see text, 3.2.3).

688

concentrating the actively dividing cells at the tip), although this is
not a requirement. To make room and support the gorwth of these
new digits, limbs have expanded their internal pattern from 1×1 to
2×4 (see previous section). Figure 5a presents a double bilateral
symmetry, with respect to both horizontal and vertical axes. The
duplication and divergence of the middle-tier limb module in
Figure 5b prevents region I4’s limb (left) from triggering the digit
module and deprives it from its digits, compared to region I6’s limb
(right). This reduces the bilateral symmetry to the horizontal axis
only. Figure 5c is a further mutation of Figure 5b, in which region
I6’s limb has accelerated its growth (p’= 0.15) and expanded into a
2×6 checkered pattern able to support the development of two new
digits, whereas, on the contrary, region I4’s limb has continued to
regress back to an undifferentiated stump (division slowing down to
p’= 0.03).

4. DISCUSSION
Figure 6 gives an overview of a possible phylogenetic tree based on
the different forms detailed in part 3. Dashed branches suggest
“convergent” speciation pathways. Embryomorphic systems of the
kind presented here fall into the “implicit embryogeny” category of
[3], and are hybrid between “cell chemistry” and “grammatical”
models according to [23], by their use of gradients and relative
closeness to biology, but also by their rewriting scheme based on
cellular division. However, the main differences with L-systems are
the inherent self-dissimilarity (later stages are not necessarily copies
of earlier stages), the fine-grain resolution of development,
incorporating microscopic randomness (cells proliferate and spread
irregularly inside regions) and, above all, the fact that development
is perpetually regulated by context-dependent adjustment and spatial
differentiation of the genetic parameters G. Thus, unlike context-
free and open-ended generative systems, embryomorphic systems
actually constitute a programmable and regulated (self-limiting)
type of development.

Another crucial aspect of embryomorphic systems is modularity.
Building a complicated image I(gX, gY) directly on top of the initial
global X and Y gradients would require maintaining a large number

of pattern variables in each agent to implement every detail, and
thus would be difficult to evolve. Modularity, by contrast, is an
essential condition of evolvability [25]. Most previous examples
show that the body plan can be modified independently from the
organs by mutating the appropriate module inside the genotype.
Thus different genes can have very different qualitative effects on
the phenotype at different architectural scales. Moreover, without
modules it would not be possible to have differential SA behavior,
necessary for the growth of new structures and shapes (limbs, digits)
other than blobs. Finally, modules can be reused, as different
identity genes Ik can trigger the same (GSA, GPF) block. In summary,
modularity is a desirable feature in natural genotypes and
phenotypes just as in any artificial architecture or system. It seems
that biological evolution “discovered” this principle naturally [4].
An important future challenge of the present work will be to show
how the modularity of the genotype, hence the phenotype, can in
fact spontaneously evolve by duplication rules on GRN parts.

This study is inherently interdisciplinary, as it closely follows
biological principles at an abstract level, yet does not attempt to
model detailed data from real genomes or organisms. Thus it lies at
crossroads between different families of works, from developmental
and systems biology to artificial life, spatial computing, and
evolutionary computation. It is an original attempt to integrate self-
assembly and pattern formation under genetic control. Naturally,
beyond the proof-of-concept simulations presented here, a more
systematic evolutionary exploration by automated mass-production
and analysis of virtual organisms is needed. It should involve the
meta-design of a functional “fitness”, i.e., define what cell-agents
and organ-regions represent in a practical applications, and to what
degree their spontaneous collective arrangement is beneficial:
processor-carrying micro-units, sensors and actuators, software
agents, robot parts, mini-robots, and so on. Different selection
strategies would be possible, either focusing on pre-specified forms
(optimizing shape), pre-specified functions (optimizing
performance), or allowing unspecified outcomes (open-ended
evolution).

Figure 5: Adding digits via a third tier in the modular hierarchy of the developmental genotype (see text, section 3.2.4).

689

5. REFERENCES
[1] Ball, P. The Self-Made Tapestry. Oxford Univ. Press, 1999.
[2] Beal, J. and Bachrach, J. Infrastructure for engineered

emergence on sensor/actuator networks. IEEE Intell. Sys., 21,
2, 10-19, 2006.

[3] Bentley, P. and Kumar, S. Three ways to grow designs: A
comparison of embryogenies for an evolutionary design
problem. In Proceedings of the Genetic and Evolutionary
Computation Conference (Orlando, Florida), W. Banzhaf et al.,
Eds. Morgan Kaufmann, vol. 1, 35-43, 1999.

[4] Callebaut, W. and Rasskin-Gutman, D., Eds. Modularity. MIT
Press, Cambridge, MA, 2005.

[5] Carroll, S. B., Grenier, J. K. and Weatherbee, S. D. From DNA
to Diversity. Blackwell Scientific, Malden, MA, 2001.

[6] Christensen, A., O’Grady, R. and Dorigo, M. Morphology
control in a self-assembling multi-robot system. IEEE Robotics
& Automation Magazine, 14, 4, 18-25, 2007.

[7] Coen, E. The Art of Genes. Oxford University Press, 2000.
[8] Coore, D. Botanical Computing: A Developmental Ap-proach

to Generating Interconnect Topologies on an Amorphous
Computer, Ph.D. thesis, Dept. of Elec. Eng. & Computer
Science, MIT, 1999.

[9] Doursat, R. The growing canvas of biological development:
Multiscale pattern generation on an expanding lattice of gene
regulatory networks. InterJournal: Complex Syst 1809, 2006.

[10] Doursat, R. Organically grown architectures: Creating
decentralized, autonomous systems by embryomorphic
engineering. In Organic Computing, R. P. Würtz, Ed.
Springer-Verlag, Berlin, 2008, 167-200 (ch. 8), 2008a.

[11] Doursat, R. Programmable architectures that are complex and
self-organized: From morphogenesis to engineering. 11th Int’l
Conference on the Simulation and Synthesis of Living Systems,
Winchester, UK, August 5-8, 2008b.

[12] Doursat, R. and Ulieru, M. Emergent engineering for the
management of complex situations. 2nd International
Conference on Autonomic Computing and Communication
Systems, Turin, Italy, September 23-25, 2008.

[13] Floreano, D. and Mattiussi, C. Bio-Inspired A.I.: Theories,
Methods, and Technologies. The MIT Press, 2008.

[14] Goldstein, S. C., Campbell, J. D. and Mowry, T. C. Pro-
grammable matter. IEEE Computer, 38, 6, 99-101, 2005.

[15] Hofmeyr, S. A. and Forrest, S. Architecture for an artificial
immune system. Evolutionary Comput, 8, 4, 443-473, 2000.

[16] Hornby, G. S. and Pollack, J. B. Creating high-level
components with a generative representation for body-brain
evolution. Artificial Life, 8, 3, 223-246, 2002.

[17] Kirschner, M. W. and Gerhart, J. C. The Plausibility of Life:
Resolving Darwin’s Dilemma. Yale University Press, 2005.

[18] Lipson, H. and Pollack, J. B. Automatic design and manu-
facture of robotic lifeforms. Nature 406, 974-978, 2000.

[19] Miller, J. F. and Banzhaf, W. Evolving the Program for a Cell:
From French Flags to Boolean Circuits. In On Growth, Form
and Computers, S. Kumar and P. Bentley, Eds., Elsevier
Academic Press, 2003.

[20] Minai, A. A., Braha, D. and Bar-Yam, Y. Complex engineered
systems. In D. Braha, Y. Bar-Yam and A. A. Minai, eds.,
Complex Engineered Systems: Science Meets Technology.
Springer Verlag, 2006.

[21] Nagpal, R. Programmable self-assembly using biologically-
inspired multi-agent control. 1st International Conference on
Autonomous Agents, Bologna, Italy, July 15-19, 2002.

[22] Siero, P., Rozenberg, G. and Lindenmayer, A. Cell division
patterns: syntactical description and implementation. Comput
Graphics and Image Processing 18, 329-346, 1982.

[23] Stanley, K. O. and Miikkulainen, R. A Taxonomy for artificial
embryogeny, Artificial Life, 9, 2, 93-130, 2003.

[24] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet,
O. Novel type of phase transition in a system of self-driven
particles. Physical Review Letters, 75, 1226-1229, 1995.

[25] Watson, R. A. and Pollack, J. B. Modular interdependency in
complex dynamical systems. Artif Life, 11, 4, 445-458, 2005.

[26] Wolpert, L. (1969). Positional information and the spatial
pattern of cellular differentiation development. J. Theoret.
Biology 25, 1-47, 1969.

[27] Würtz, R. P., Ed., Organic Computing. Springer, 2008

Figure 6: A possible phylogenetic tree (see text, part 4).

690

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

