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ABSTRACT 
Natural complex adaptive systems show many examples of self-
organization and decentralization, such as pattern formation or 
swarm intelligence. Yet, only multicellular organisms possess the 
genuine architectural capabilities needed in many engineering 
application domains, from nanotechnologies to reconfigurable and 
swarm robotics. Biological development thus offers an important 
paradigm for a new breed of “evo-devo” computational systems. 
This work explores the evolutionary potential of an original multi-
agent model of artificial embryogeny through differently 
parametrized simulations. It represents a rare attempt to integrate 
both self-organization and regulated architectures. Its aim is to 
illustrate how a developmental system, based on a truly indirect 
mapping from a modular genotype to a modular phenotype, can 
facilitate the generation of variations, thus structural innovation. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence –
coherence & coordination, intelligent agents, multiagent systems 

General Terms 
Algorithms, Design, Experimentation, Reliability, Theory. 

Keywords 
Artificial Embryogeny, Evolutionary Development, Bio-Inspired 
Engineering, Spatial Computing, Complex Systems, Systems 
Design, Self-Organization, Modularity, Robotics, Architectures. 

1. TOWARD EVO-DEVO ENGINEERING 
Engineering is torn between two seemingly contradictory 
objectives. On the one hand, it strives to deliberately design devices 
and systems with full control of their structure, on the other hand, it 
wishes them to be functionally and structurally autonomous, self-
repairing and adaptive—or “intelligent”. Today, even our most 
sophisticated contraptions (computers, AI, robots) must be literally 
“spoon-fed” at every stage of their existence, i.e., entirely designed, 

built, and programmed, constantly monitored, repaired, and 
upgraded. We are still far from the heralded future of engineering in 
which artificial systems would exhibit all the highly desirable “self-
x” properties that are found in many natural systems: 
decentralization (emergence, redundancy), autonomy (self-
organization, homeostasis), adaptation (learning, evolution). 

1.1.1 Inspiration from Natural Complex Systems 
While we are wondering how to emancipate human-made systems, 
our natural environment already hosts a profusion of autonomous 
systems, whether physical patterns, biological cells, organisms, 
animal societies, ecosystems, or—in a broader sense of “natural”—
spontaneously emerging super-structures indirectly caused by 
humans (societies, the economy, Internet, etc.). These decentralized, 
unplanned systems are probably the most pervasive, efficient, and 
robust type of structures. It is centrally planned systems that are 
unique, costly to build, and fragile, because they fundamentally 
require another “intelligent” (but sometimes incompetent) system to 
exist and operate them. 

In this context, natural “complex adaptive systems”, in particular 
biological (developmental, neural, evolutionary) and emergent-
social (complex networks), have an important role to play in 
providing a powerful source of inspiration for emerging 
technologies. Understanding these systems could help create a new 
generation of artificial systems with the above-mentioned properties 
still largely absent from traditional engineering. Now, taking a 
closer look at natural complex systems, it is a striking fact that they 
are all made of a myriad of elements that interact locally in large 
networks and produce an emergent collective behavior at a 
macroscopic scale. These elements follow individual rules or laws 
of dynamics that can be more or less sophisticated. 

Thus decentralization over a myriad of agents seems to be an 
essential condition for autonomy in natural systems. To some 
extent, this is already mirrored by current trends in information and 
communication technologies. Segmentation and distribution of large 
computing systems over a multitude of smaller and relatively 
simpler components is both a growing need and an inevitable fact in 
many domains of computer science & engineering, AI, and robotics. 
Faced with an explosion in size and complexity of computing 
systems at all levels of organization, including hardware (integrated 
parts), software (program modules), and networks (applications and 
users), engineers are gradually led, more or less willingly, to rethink 
these systems in terms of complex systems [27], [20]. It means that, 
instead of rigidly designing things in every detail, engineers would 
need to step back and only “meta-design” them, i.e., focus on 
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generic conditions allowing endogenous growth, function, and 
evolution. 

1.1.2 The Need for Precise Morphogenetic Abilities 
Yet, as the prolific creativity and spontaneity of natural complex 
systems is examined, one realizes that in most cases they do not 
exhibit the truly morphogenetic and architectural capabilities that 
are needed in machine design. Relatively complex collective 
behavior can result from simple agent-based rules, a fact often 
touted as the hallmark of complex systems, however, it is 
“complex” only to a certain point. In many well-known families of 
systems (e.g., pattern formation, swarm intelligence, complex 
networks [1]), the emerging patterns are “statistical” in nature, i.e., 
they are either mostly stochastic or mostly shaped by boundary 
conditions, or a mix of both (e.g., spots and stripes, ant trails, 
meandering bird flocks, hub-forming social encounters). 

Complex systems that are “morphological” in nature, i.e., exhibit an 
intrinsic architecture that is neither repetitive nor imposed by the 
environment, are much less frequent or studied. One monumental 
exception is the development and evolution of biological forms, 
especially multicellular organisms. Embryogeny represents a unique 
case of combined self-organization and elaborate structures. 
Organisms are made of segments and parts arranged in specific 
ways that resemble engineered devices. Yet, they also self-assemble 
in a decentralized fashion, under the precise control of genetic and 
epigenetic information stored in the zygote. This endows cells with 
a repertoire of non-trivial behaviors and allows them to differentiate 
depending on a notion of relative positional information. In other 
words, biological development is a prime example of programmable 
complexity. It demonstrates that complex systems can be much 
more than “homogeneous”, “monolithic” or “random”: they can 
contain a wide diversity of agents creating heterogeneous patterning 
and shaping; they can be modular, hierarchical, and architecturally 
detailed at multiple scales; they can be reproducible because they 
rely on programmable agents. 

There is a great demand for such precise self-formation capabilities 
in a variety of distributed engineering systems, and morphogenetic 
approaches have also been proposed in some applications: arrays of 
micro-processors [8], mobile sensors [2] internet security hosts [15] 
reconfigurable modules [14], [18], [16], or swarm robots [6]. It is 
also an important challenge in complex techno-social networks 
made of myriads of mobile devices, software agents and human 
users, all relying on local rules and peer-to-peer communication. 
How to foster a programmable, yet adaptive design of self-
reconfiguring manufacturing plants, self-regulating energy grids, or 
self-deploying emergency taskforces? [12]  

1.1.3 Let Grow, then Evolve 
Traditional engineering is currently following a “deliberate design” 
(DD) paradigm. It is expected to progressively shift toward a 
“biological” paradigm, in which systems (organisms) are the pure 
products of undesigned evolution (UE). This would proceed via 
intermediate stages of “developmental meta-design” (DMD) and 
“evolutionary meta-design” (EMD). In DMD, designers focus on 
creating generative mechanisms rather than the systems themselves. 
In EMD, even more disengaged meta-architects create laws of 
variation and selection, prepare primitive ancestor systems and step 
back to let evolution invent the rest. 

In the variation/selection couple of Darwinian evolution, variation 
has become the poor child of biology’s Modern Synthesis, while 
most of the attention was focused on selection. It is only in recent 
years that the understanding of variation as the generation of 
phenotypic innovation became the main concern of evolutionary 
development, or “evo-devo”, a rapidly expanding field of biology 
comparing the development of different species from the molecular 
and genetic level to the anatomy [1], [17]. The link from genotype 
to phenotype cannot remain an abstraction if we want to unravel the 
generative laws of evolution [17]—and eventually transfer them to 
self-organized artificial systems. On the artificial side, there is a 
similar paradigm shift, as new trends in evolutionary engineering, 
such as artificial embryogeny (AE) [23], [3], [19] also emphasize 
developmental variations as a prerequisite for the evolution of 
complex structures. 

In the framework of genetic algorithms and evolutionary 
computation, this means an indirect or implicit mapping (as opposed 
to direct or explicit) from genotype to phenotype. The advantages of 
a developmental representation that are generally put forward [23], 
[3], [13] are compactness and reduction of search space (how to 
describe complex structures using the fewest parameters possible), 
reusability and modularity (how to describe structures as a hierarchy 
of parts and subparts), self-organization and adaptability (how the 
phenotype can be influenced by the environment in which it grows). 
Most importantly, there is a consensus that developmental systems 
are especially well positioned to exhibit a high degree of 
evolvability. It is felt and, in some examples demonstrated [16], that 
they inherently have greater variational and adaptive power, as they 
allow combinatorial tinkering on highly redundant parts. However, 
there is no unified or standard evo-devo methodology. Rather, there 
exist many different evolutionary computation works of 
developmental inspiration, from abstract grammars to biologically 
detailed models (see a taxonomy in [23]). 

The present work wishes to contribute to the field of artificial 
embryogeny by exploring the evolutionary potential of an original 
model of architectured morphogenesis. It represents a rare attempt 
to integrate both self-organization and sophisticated, regulated 
architectures. In particular, its aim is to illustrate how a self-
organized developmental system, based on a modular genotype 
giving rise to a modular phenotype, can facilitate the generation 
of variations, thus evolutionary structural innovation. Part 2 
summarizes and elaborates upon the developmental mechanisms 
taken from the “embryomorphic” systems of Doursat [9], [10], 
[11], while part 3 showcases an array of evolutionary experiments 
based on hand-made mutations of the genotype. Part 4 outlines 
the potential of this approach and its future directions. 

2. A MODEL OF SELF-ORGANIZED 
MODULAR MORPHOGENESIS 
Embryomorphic systems rely on a computational, multi-agent 
model of artificial embryogeny that integrates self-assembly (SA) 
and pattern formation (PF)—metaphorically, “sculpting” and 
“painting” [7]—in a decentralized swarm of interacting cells. The 
embryo’s shape or phenotype of the collective behavior is guided 
by a genotype G stored inside each cell. G provides a compact 
developmental representation of the system, i.e., a set of genetic 
parameters that rely on generative developmental rules for their 
interpretation and transformation into an organism (see 2.1 for a 
list of these mechanisms). G is composed of pairs of specialized 
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parameter subsets, (GSA, GPF), that respectively direct SA and PF 
behavior and also influence each other. On the one hand, the 
mechanical properties of a cell (SA: division rate and adhesion 
forces) are determined by its local surrounding region of genetic 
identity, or “cell type”, within the global pattern of gene 
expression. On the other hand, these patterns of identity regions 
(PF: gene regulation network) further segment themselves into 
subregions, subsubregions, etc., under the expansion and 
deformation caused by mechanical constraints. The complete 
genotype G of a cell is made of multiple modules {(GSA

(k), GPF
(k))} 

that are organized in a tree graph and create complex 
morphologies by recursive refinement of details. At any time, 
each cell c of the embryo is characterized by a set of state 
variables Qc(t), also composed of SA-specific and PF-specific 
subsets: Qc(t) = (Qc

SA(t), Qc
PF(t)). 

A global view of the embryogeny cycle is given in Figure 1. 
Starting from a small clump of cells, three main operations are 
applied iteratively and recursively: (a) ”div”, representing the SA 
behavior of the swarm: the division, proliferation and spatial 
rearrangement of cells; (b) ”grad”, representing the first half of 
the PF behavior: the diffusion of morphogen proteins across the 
swarm (coded with integer counters; see below); and (c) ”patt”, 
representing the second half of the PF behavior: the readout and 
transformation of the gradient signals into various regions of gene 
expression levels (via the response of a gene regulatory network; 
see below). In the numerical simulation, these three operations 
run in parallel: cells continuously divide (div) while at the same 
time they exchange gradient signals (grad) and immediately 
interpret these signals to calculate their new type (patt). A 
fundamental aspect of the embryomorphic model is its 
hierarchical organization in developmental stages, where each 
stage repeats the execution of the (div, grad, patt) trilogy at a 
lower spatial scale. The example of Figure 1 shows three such 
stages: (div1, grad1, patt1), (div2, grad2, patt2) and (div3, grad3, 
patt3). Stage 2 is applied to two of the nine regions that appeared 
during stage 1, forming “limbs” that extend up and down. Stage 3 
is executed inside two of the eight regions of the lower limb, 
creating two “digits”. This recursive process may continue to later 
stages, in a multiscale, fractal fashion resembling generative 

grammatical systems, such as L-systems [22]—although in a self-
dissimilar way (and with other differences described in part 4). 

2.1 Developmental Mechanisms and Genetic 
Parameters 
2.1.1 Self-Assembly by Division and Adhesion (SA) 
An embryomorphic swarm in 2-D is composed of cells with 
neighbor interactions calculated from a Delaunay-Voronoi 
tessellation. They follow two major laws of cellular biomechanics 
in a simplified format: (i) cell division, coded by a uniform 
probability p for any cell to split into two, and (ii) cell adhesion, 
represented by elastic forces derived from a quadratic potential V 
with resting length re, hard-core radius rc, and scope of visibility 
r0 [24] (Figure 2a). Under these laws, cells tend to form a quasi-
regular hexagonal mesh. At any time, each cell c is characterized 
by its 2-D coordinates (x, y) and its interaction links with 
neighboring cells {lcd}, where l = 0 or 1. An extra parameter g 
regulates the proliferation time: cells stop dividing when one of 
their gradient values reaches g (see next section). In summary, the 
SA genetic parameters (common to the whole region) and the SA 
state variables (in each particular cell c) are: 

• GSA = (p, rc, re, r0, g)  
• Qc

SA(t) = (x, y, {lcd})(t) 

2.1.2 Positional Information by Gradients (PF-I) 
The model distinguishes between two types of PF signals that 
cells continuously exchange and process: gradient variables 
(PF-I) and pattern variables (PF-II). Gradient values propagate 
from neighbor to neighbor and establish positional information 
[26] across the swarm (Figure 2b). Each cell receives a counter g 
from neighboring cells and increments it by 1, resulting in a wave 
pattern of counter values [8], [2], [21]. Two waves W and E 
running in opposite directions create a midline WE where cells 
have approximately equal gW and gE values. The model uses four 
gradients forming a coordinate system based on two midlines WE 
and NS (the four sources W, E, N, S are not placed by hand but 
self-position by migrating away from each other inside the 
swarm). These midlines in turn become sources and generate two 
roughly perpendicular planar gradients, alternatively denoted by X 
and Y. In summary, there are no PF-I genetic parameters, while 
the PF-I state variables in each particular cell c are: 

• GPF-I = ∅ 
• Qc

PF-I(t) = (gW, gE, gWE=X, gN, gS, gNS=Y)(t) 

2.1.3 Patterning by Gene Expression Levels (PF-II) 
Pattern values correspond to gene expression levels calculated on 
top of the X and Y gradient values to create different cell types 
(Figure 2c). This calculation relies on a gene regulatory network 
(GRN), whose weights constitute the genetic parameters of the PF 
process. Patterning represents the emergence of heterogeneity, 
i.e., the segmentation of the swarm into “identity regions” 
corresponding to high levels of expression of particular genes Ik. 
A well-known example is the early striping of Drosophila, 
controlled by a five-layer hierarchy of segmentation genes along 
the anteroposterior axis (maternal, gap, primary and secondary 
pair-rule, segment polarity) [1]. 

The present model relies on a three-layer caricature of the same 
principle in 2-D, along the two intersecting X and Y axis. The 

Figure 1: A three-stage embryogeny simulation (see text). 
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bottom layer of the GRN contains the two positional variables gX 
and gY. The middle layer contains “boundary” genes Bi that 
segment the embryo into horizontal and vertical half-planes of 
strong and weak expression levels via 2-D step functions: Bi = 
σ(wix gX + wiy gY − θi), where {wix, wiy}i=1...n are the regulatory 
weights from gX and gY to Bi, parameter θi is Bi’s threshold and σ 
is a sigmoid function σ(u) = 1/(1 + e−λu). The top layer contains 
the identity nodes Ik derived from positive and negative products 
of Bi’s, i.e., various intersections of the Bi half-planes: 
Ik = ∏i, w’ki≠0 (w'kiBi + (1−w'ki)/2), where w'ki ∈ {−1, 0, +1} are 
ternary weights from Bi to Ik, meaning that Bi’s factor inside Ik can 
be either (1 − Bi) or Bi. Two of these regions, I4 and I6, are the 
location of further growth and patterning in stage 2 in most of the 
examples presented here. In summary, the PF-II genetic 
parameters (common to the whole region) and the PF-II state 
variables (in each particular cell c) are: 

• GPF-II  = ({wix, wiy, w'ki, θi}) 
• Qc

PF-II(t) = ({Bi, Ik})(t),  where k’ = argmax { Ik } is  the 
cell’s type (and codes for its color in the figures) 

2.1.4 Simultaneous Growth & Patterning (SA & PF) 
SA and PF behaviors are combined to create growing patterns at 
every stage. Cells continually adjust their positions according to 
the elastic SA constraints, while continually exchanging gradient 
values and PF signals over the same dynamic links. This dual 
dynamics is guided by the combined genotype G = (GSA, GPF), 
where GPF = (GPF-I, GPF-II). Daughter cells inherit all the attributes 
of mother cells, including G and the internal Qc

PF variables 
(current gradient counters and gene levels). The Qc

SA variables 
(coordinates and edges) are recalculated from a position close to 
the original cell. Both sets of variables are immediately updated, 
as the newly born cell starts contributing to SA forces and the 
traffic of PF gradients that maintain the pattern’s consistency at 
all times in the swarm. 

2.1.5 Modular, Recursive Development (SA & PF)-k 
Embryological patterns do not develop in one shot but in 
numerous incremental stages. An adult organism is produced by 
modular, recursive growth and patterning [7], [1]. In Drosophila, 
regions of the embryo that acquire leg, wing or antenna identity 
(“imaginal disc”) develop local coordinate systems of morphogen 
gradients to support the prepatterning and construction of the 
planned organ. The present model includes a pyramidal hierarchy 
of network modules able to generate patterns in a recursive 
fashion (Figure 2d). First, the base network GPF

(0) establishes 
main identity regions, then subnetworks GPF

(k) triggered by the 
identity nodes Ik further partition these regions into smaller, 
specialized compartments at a finer scale. Other shapes than blobs 
can also be created by inhomogeneous and anisotropic SA 
dynamics, i.e., by varying and diversifying the cells’ GSA  
parameters (cell division p and elastic adhesion V) as a function of 
their PF type and spatial position. For example, limb-like 
structures can grow by imitation of meristematic plant offshoots. 
In this process, only the tip or “apical meristem” of the organ is 
actively dividing at any time. (Cells forming the tip can self-
identify as the local maxima of a gradient generated by the base 
of the limb.) 

3. THE GENERATION OF VARIATION BY 
MODULES 
The embryomorphic model presented in Part 2 demonstrates that 
entire complex, programmable and reproducible morphologies 
can develop and self-organize from a handful of cells following 
local rules of reproduction and differentiation. These 
morphologies are architecturally complex because they can be 
made of any variety of modules and parts that are not necessarily 
repeated in any periodic or self-similar way. They represent 
programmable phenotypes because they emerge from the same 
given genotype carried by every cell of the swarm. They are 
reproducible, as their structure and shape are not left to chance 
but tightly controlled by the genotype. Naturally, the exact 
positions of cells at the microscopic level are still random, but not 
the mesoscopic and macroscopic regions that they form. 

Moreover, the modularity of the phenotype is a direct reflection 
of the modularity of the genotype. The hierarchical SA and PF 
dynamics recursively unfolds inside the different regions and 
subregions that it creates. Each module G(k) = (GSA

(k), GPF
(k)) can 

have different internal genetic SA and PF parameters, potentially 
giving each region a different morphodynamic behavior and 

Figure 2: Overview of the developmental mechanisms of 
the multiagent model (see text, part 2). (a) Self-assembly 
by division and elastic interactions (top: mesh of edges). 
(b) Gradient diffusion. (c) Patterning by gene regulation. 
(d) A 3-stage genotype gives rise to a 3-stage phenotype. 
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different gene activity landscape. The integration between SA and 
PF is controlled by the identity nodes Ik: these nodes switch on the 
execution of subordinate modules G(k), i.e., their gene expression 
activity (parametrized by GPF

(k)) to create new local segmentation 
patterns, and their mechanical behavior (parametrized by GSA

(k)) 
to create new morphodynamical behaviors. 

This part presents a few experiments involving hand-made 
mutations of the genotypes of embryomorphic systems and their 
corresponding phenotypes. For now, these systems are purely 
developmental and do not serve a specific function. No organism 
“fitness” is defined (neither structural, nor functional) and no 
selection is performed during a systematic search. The goal here 
is rather to illustrate the link between genotype modularity and 
phenotype modularity, and the programmable and predictable 
effect that mutating the former can have on evolving the latter. 

Figures 3-6 show several examples of modular embryogeny and 
how certain mutations in the genotype correlate with quantitative 
or qualitative changes in the phenotype. The organism of 
Figure 3a is taken as the reference or “wild type”. Its genotype is 
composed of two different modules: a base module establishing 
the body plan (lower module) and a specialized module in charge 
of growing a limb-like appendage (upper module). As described 
previously, each module consists of two types of “genes” or 
genetic parameters: self-assembly genes GSA, coding how cells 
divide and spread spatially, and pattern formation genes GPF, 
coding how cells acquire their types. In the simplified 
representation of Figures 3-6, the gene regulatory network of GPF 
is not shown. Instead, only the type of checkered pattern it 
produces (explained below) and the switch identity genes are 
displayed.  

In the example of Figure 3a, the GSA part of the body plan 
imposes a uniform division rate p = 0.05 and a stop signal at 
gradient value g = 15. This means that each cell divides on 
average every twentieth time step, and stops dividing when one of 
their gradient counters gW, gE, gN or gS reaches 15 (via a stop 

signal that the border cells propagate across the swarm). This 
results in a regular disc-shaped swarm about 15 cells wide. 
Meanwhile, the GPF part of the same body-plan module produces 
a 3×3 checkered pattern, i.e., nine different types of cells I1 ... I9. 
(Incidentally, this relies on two horizontal and two vertical 
boundary genes, B1, B2 and B3, B4, not shown here; see Figure 2c). 
Then, during stage 2, the execution of the limb module is 
triggered twice, in two different regions of the body plan pattern, 
by identity genes I4 and I6 (resp. the middle left and middle right 
regions). In the limb module, the GSA part also imposes a 0.05 Hz 
frequency of division, however it is restricted to the tip of the 
growing region, i.e., cells of maximal gW or gE values (see 2.1.5). 
All other cells in the stem of the limb have a zero rate. As for the 
GPF part of the limb, it does not involve any further internal 
patterning, thus is equivalent to a 1×1 checkered pattern with a 
unique identity gene. 

3.1 Quantitative Variations 
3.1.1 Varying Limb Thickness by GRN Weights (PF) 
In Figure 3b, the same organism has been affected by a “thin-
limb” mutation of the base body plan. Although not shown, the 
weights of the base module’s gene regulatory network GPF have 
been modified in such a way that they now create a checkered 
pattern with a narrower central row allowing less space for the 
limbs to grow, hence making them actually thinner. This is 
accomplished by modifying the thresholds of the B3 and B4 genes 
(see Figure 2c) so that they are respectively less and more 
sensitive, i.e., shrink and increase their regions of expression, 
causing both boundary lines to shift closer to the center. The 0.5 
coefficient encodes this drift (compared to 1 for the wild type). 
The reverse, “thick-limb” mutation is shown in Figure 3c, with 
coefficient 2 (B3 and B4 boundaries shifted away from the center). 
This is a good example of the compactness of the genotype and its 
large-scale effect on the phenotype: just varying the sensitivity of 
a couple of genes can result in dramatic morphogenetic changes. 

Figure 3: Simulations from the multiagent model showing quantitative variations. (a)-(c) Varying limb thickness by 
modifying GRN weights (see text, 3.1.1). (d)-(f) Varying length and size by stopping division earlier/later (see text, 3.1.2). 
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3.1.2 Varying Limb Length by Division Signals (SA) 
By modifying the division rate and/or the stop conditions of 
proliferation, the size of various parts of the embryo can also be 
varied. For example, in Figure 3f, both body plan and limbs stop 
growing beyond gradient values g’= 8, producing a phenotypic 
shape that is proportionally smaller to the wild type. In Figures 3d 
and 3e, cell proliferation is regulated only in the limbs, 
respectively by stopping it sooner (g’= 10) and later (g’= 40). 
Note that similar effects can also be achieved by decreasing or 
increasing the probability of division p, while keeping the 
maximum gradient values constant (see Figure 4c). 

3.2 Structural Variations 
3.2.1 Changing Limb Position by Module Switching 
In Figure 4, the modularity of the limb component is demonstrated 
through various mutations reminiscent of experiments on biological 
organisms such as Drosophila. The identity genes marking the 
regions (“imaginal discs”) responsible for the growth of a specific 
appendage can be literally turned on or off in new regions with 
respect to the wild type of Figure 3a. For example, in Figure 4a, a 
virtual case of “antennapedia” (the growth of a leg where there 
should be an antenna) is obtained by connecting a new identity 
region to the limb module, here region I2 instead of region I6. This 
means rewiring the gene regulatory network GPF to reflect the fact 
that the limb genes’ regulatory sites in the DNA have mutated and 
now accept gene I2’s proteins as a promoters instead of gene I6’s 
proteins. In the three-limb mutation of Figure 4b, these regulatory 
sites have duplicated themselves before mutating, accepting gene I2 
in addition to gene I6 (not just in replacement), so that the limb 
module is now executed three times instead of twice. 

3.2.2 Serial Homology by Duplication & Divergence 
Later in the course of evolution, similar copies of the same organ 
can diverge and acquire specialized characteristics, as Figure 4c 
illustrates. In this scenario, three copies of the entire limb module 
were produced by duplication. In the DNA, this corresponds to 
actually copying the section of genome that contains all of the 
limb’s genes and their regulatory sites. Then, these copies can 
mutate independently from each other. In this artificial example, the 
upper module of the genotype appears now three times with three 

different growth rates p’= 0.05, 0.03, and 0.1, respectively equal, 
lower and greater than the wild type’s rate, therefore creating a 
shorter and a longer limb. Serial homology is a major evolutionary 
process, resulting from duplication followed by divergence. 
Biological organisms often contain numerous repeated parts in their 
body plan. This is most striking in the segments of arthropods 
(several hundreds in millipedes) or the vertebrae, teeth and digits of 
vertebrates. After duplication, these parts tend to diversify and 
evolve more specialized structures (lumbar vs. cervical vertebrae, 
canines vs. molars, etc.). Homology exists not only within 
individuals but also between different species, as classically shown 
by comparing the forelimbs of tetrapods from the bat to the whale. 
Homology could also be explored as an important routine of 
artificial self-developing systems. 

3.2.3 Adding Limbs by Body Plan Expansion 
In the scenario of Figures 4d-e, new limbs are generated not by 
reusing the same body plan differently (Figure 4a-b) or by 
duplicating the limb module (Figure 4c), but rather by expanding 
the gene regulatory network GPF of the body plan in order to create 
new regions of gene identity that can host limb growth. Practically, 
this means expanding the Bi and Ik layers of the GRN (see 
Figure 2c) by periodically copying and appending some of their 
nodes. This increases the embryo’s geography from a 3×3 = 9-type 
checkered pattern to a 5×3 = 15-type (Figure 4d) or 9×3 = 27-type 
pattern (Figure 4e). In addition to identity regions I4 and I6, the limb 
module is now executed in regions I10 and I12 in the first case, and 
I16, I18, I22 and I24 in the second case. The SA part of the body plan is 
also slightly modified to accommodate these new regions. It 
assumes an oval shape resulting from a nonuniform distribution of 
the division rate p that follows the NS midline gradient (see 
Figure 2b), i.e., greater toward the north and south poles (p = 0.1) 
and lower in the center (p = 0.05). 

3.2.4 Adding Digits by Modular Hierarchy 
Finally, along the same principles, Figure 5 shows a few cases of  
simulations of three-tier organisms. Figure 5a is taken as the new 
wild type. After the usual development of two limbs from the 3×3 
body plan, extra “digits” grow from these limbs, guided by the top 
module of the hierarchical genotype. In these examples, the digits’ 
shape is similar to the limbs at a smaller scale (same SA behavior, 

Figure 4: Simulations showing structural variations. (a)-(c) Changing limb configuration by switching the limb-triggering 
genes and/or duplicating the limb module (see text, 3.2.1, 3.2.2). (d)-(e) Adding limbs by body plan expansion (see text, 3.2.3). 
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concentrating the actively dividing cells at the tip), although this is 
not a requirement. To make room and support the gorwth of these 
new digits, limbs have expanded their internal pattern from 1×1 to 
2×4 (see previous section). Figure 5a presents a double bilateral 
symmetry, with respect to both horizontal and vertical axes. The 
duplication and divergence of the middle-tier limb module in 
Figure 5b prevents region I4’s limb (left) from triggering the digit 
module and deprives it from its digits, compared to region I6’s limb 
(right). This reduces the bilateral symmetry to the horizontal axis 
only. Figure 5c is a further mutation of Figure 5b, in which region 
I6’s limb has accelerated its growth (p’= 0.15) and expanded into a 
2×6 checkered pattern able to support the development of two new 
digits, whereas, on the contrary, region I4’s limb has continued to 
regress back to an undifferentiated stump (division slowing down to 
p’= 0.03). 

4. DISCUSSION 
Figure 6 gives an overview of a possible phylogenetic tree based on 
the different forms detailed in part 3. Dashed branches suggest 
“convergent” speciation pathways. Embryomorphic systems of the 
kind presented here fall into the “implicit embryogeny” category of 
[3], and are hybrid between “cell chemistry” and “grammatical” 
models according to [23], by their use of gradients and relative 
closeness to biology, but also by their rewriting scheme based on 
cellular division. However, the main differences with L-systems are 
the inherent self-dissimilarity (later stages are not necessarily copies 
of earlier stages), the fine-grain resolution of development, 
incorporating microscopic randomness (cells proliferate and spread 
irregularly inside regions) and, above all, the fact that development 
is perpetually regulated by context-dependent adjustment and spatial 
differentiation of the genetic parameters G. Thus, unlike context-
free and open-ended generative systems, embryomorphic systems 
actually constitute a programmable and regulated (self-limiting) 
type of development. 

Another crucial aspect of embryomorphic systems is modularity. 
Building a complicated image I(gX, gY) directly on top of the initial 
global X and Y gradients would require maintaining a large number 

of pattern variables in each agent to implement every detail, and 
thus would be difficult to evolve. Modularity, by contrast, is an 
essential condition of evolvability [25]. Most previous examples 
show that the body plan can be modified independently from the 
organs by mutating the appropriate module inside the genotype. 
Thus different genes can have very different qualitative effects on 
the phenotype at different architectural scales. Moreover, without 
modules it would not be possible to have differential SA behavior, 
necessary for the growth of new structures and shapes (limbs, digits) 
other than blobs. Finally, modules can be reused, as different 
identity genes Ik can trigger the same (GSA, GPF) block. In summary, 
modularity is a desirable feature in natural genotypes and 
phenotypes just as in any artificial architecture or system. It seems 
that biological evolution “discovered” this principle naturally [4]. 
An important future challenge of the present work will be to show 
how the modularity of the genotype, hence the phenotype, can in 
fact spontaneously evolve by duplication rules on GRN parts. 

This study is inherently interdisciplinary, as it closely follows 
biological principles at an abstract level, yet does not attempt to 
model detailed data from real genomes or organisms. Thus it lies at 
crossroads between different families of works, from developmental 
and systems biology to artificial life, spatial computing, and 
evolutionary computation. It is an original attempt to integrate self-
assembly and pattern formation under genetic control. Naturally, 
beyond the proof-of-concept simulations presented here, a more 
systematic evolutionary exploration by automated mass-production 
and analysis of virtual organisms is needed. It should involve the 
meta-design of a functional “fitness”, i.e., define what cell-agents 
and organ-regions represent in a practical applications, and to what 
degree their spontaneous collective arrangement is beneficial: 
processor-carrying micro-units, sensors and actuators, software 
agents, robot parts, mini-robots, and so on. Different selection 
strategies would be possible, either focusing on pre-specified forms 
(optimizing shape), pre-specified functions (optimizing 
performance), or allowing unspecified outcomes (open-ended 
evolution). 

Figure 5: Adding digits via a third tier in the modular hierarchy of the developmental genotype (see text, section 3.2.4). 

689



5. REFERENCES 
[1] Ball, P. The Self-Made Tapestry. Oxford Univ. Press, 1999. 
[2] Beal, J. and Bachrach, J. Infrastructure for engineered 

emergence on sensor/actuator networks. IEEE Intell. Sys., 21, 
2, 10-19, 2006. 

[3] Bentley, P. and Kumar, S. Three ways to grow designs: A 
comparison of embryogenies for an evolutionary design 
problem. In Proceedings of the Genetic and Evolutionary 
Computation Conference (Orlando, Florida), W. Banzhaf et al., 
Eds. Morgan Kaufmann, vol. 1, 35-43, 1999. 

[4] Callebaut, W. and Rasskin-Gutman, D., Eds. Modularity. MIT 
Press, Cambridge, MA, 2005. 

[5] Carroll, S. B., Grenier, J. K. and Weatherbee, S. D. From DNA 
to Diversity. Blackwell Scientific, Malden, MA, 2001. 

[6] Christensen, A., O’Grady, R. and Dorigo, M. Morphology 
control in a self-assembling multi-robot system. IEEE Robotics 
& Automation Magazine, 14, 4, 18-25, 2007. 

[7] Coen, E. The Art of Genes. Oxford University Press, 2000. 
[8] Coore, D. Botanical Computing: A Developmental Ap-proach 

to Generating Interconnect Topologies on an Amorphous 
Computer, Ph.D. thesis, Dept. of Elec. Eng. & Computer 
Science, MIT, 1999. 

[9] Doursat, R. The growing canvas of biological development: 
Multiscale pattern generation on an expanding lattice of gene 
regulatory networks. InterJournal: Complex Syst 1809, 2006. 

[10] Doursat, R. Organically grown architectures: Creating 
decentralized, autonomous systems by embryomorphic 
engineering. In Organic Computing, R. P. Würtz, Ed. 
Springer-Verlag, Berlin, 2008, 167-200 (ch. 8), 2008a. 

[11] Doursat, R. Programmable architectures that are complex and 
self-organized: From morphogenesis to engineering. 11th Int’l 
Conference on the Simulation and Synthesis of Living Systems, 
Winchester, UK, August 5-8, 2008b. 

[12] Doursat, R. and Ulieru, M. Emergent engineering for the 
management of complex situations. 2nd International 
Conference on Autonomic Computing and Communication 
Systems, Turin, Italy, September 23-25, 2008. 

[13] Floreano, D. and Mattiussi, C. Bio-Inspired A.I.: Theories, 
Methods, and Technologies. The MIT Press, 2008. 

[14] Goldstein, S. C., Campbell, J. D. and Mowry, T. C. Pro-
grammable matter. IEEE Computer, 38, 6, 99-101, 2005. 

[15] Hofmeyr, S. A. and Forrest, S. Architecture for an artificial 
immune system. Evolutionary Comput, 8, 4, 443-473, 2000. 

[16] Hornby, G. S. and Pollack, J. B. Creating high-level 
components with a generative representation for body-brain 
evolution. Artificial Life, 8, 3, 223-246, 2002. 

[17] Kirschner, M. W. and Gerhart, J. C. The Plausibility of Life: 
Resolving Darwin’s Dilemma. Yale University Press, 2005. 

[18] Lipson, H. and Pollack, J. B. Automatic design and manu-
facture of robotic lifeforms. Nature 406, 974-978, 2000. 

[19] Miller, J. F. and Banzhaf, W. Evolving the Program for a Cell: 
From French Flags to Boolean Circuits. In On Growth, Form 
and Computers, S. Kumar and P. Bentley, Eds., Elsevier 
Academic Press, 2003. 

[20] Minai, A. A., Braha, D. and Bar-Yam, Y. Complex engineered 
systems. In D. Braha, Y. Bar-Yam and A. A. Minai, eds., 
Complex Engineered Systems: Science Meets Technology. 
Springer Verlag, 2006. 

[21] Nagpal, R. Programmable self-assembly using biologically-
inspired multi-agent control. 1st International Conference on 
Autonomous Agents, Bologna, Italy, July 15-19, 2002. 

[22] Siero, P., Rozenberg, G. and Lindenmayer, A. Cell division 
patterns: syntactical description and implementation. Comput 
Graphics and Image Processing 18, 329-346, 1982. 

[23] Stanley, K. O. and Miikkulainen, R. A Taxonomy for artificial 
embryogeny, Artificial Life, 9, 2, 93-130, 2003. 

[24] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet, 
O. Novel type of phase transition in a system of self-driven 
particles. Physical Review Letters, 75, 1226-1229, 1995. 

[25] Watson, R. A. and Pollack, J. B. Modular interdependency in 
complex dynamical systems. Artif Life, 11, 4, 445-458, 2005. 

[26] Wolpert, L. (1969). Positional information and the spatial 
pattern of cellular differentiation development. J. Theoret. 
Biology 25, 1-47, 1969. 

[27] Würtz, R. P., Ed., Organic Computing. Springer, 2008 

Figure 6: A possible phylogenetic tree (see text,  part 4). 
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