

# The self-organization and variability of *a* **complex modular architectures**

## as a prerequisite to evolutionary innovation





**René Doursat** 

http://doursat.free.fr



## From flocks to shapes







## **Toward Morphogenetic Engineering**

- 1. Self-organized *and* structured complex systems
- 2. Toward "evo-devo" engineering
- 3. A model of programmable morphogenesis
- 4. Evolutionary meta-design
- 5. Extension: programmable complex networks

## From "statistical" to "morphological" complex systems

#### > A brief taxonomy of systems

|     | Category                              | Agents /<br>Parts | Local Rules   | <i>Emergent<br/>Behavior</i> | A "Complex<br>System"?                        |
|-----|---------------------------------------|-------------------|---------------|------------------------------|-----------------------------------------------|
|     | two-body<br>problem                   | few               | simple        | simple                       | NO                                            |
|     | three-body pb,<br>low-D chaos         | few               | simple        | complex                      | NO – too small                                |
|     | crystal, gas                          | many              | simple        | simple                       | <i>NO – few params suffice to describe it</i> |
| 530 | patterns, swarms,<br>complex networks | many              | simple        | <i>"complex"</i>             | <b>YES</b> – but mostly random and uniform    |
| ×   | structured<br>morphogenesis           | many              | sophisticated | complex                      | <b>YES</b> – reproducible and heterogeneous   |
|     | crowds with<br>leaders, machines      | many              | sophisticated | "simple"                     | COMPLICATED<br>– not self-organized           |

## Statistical (self-similar) systems

Many agents, simple rules, "complex" emergent behavior

→ the "clichés" of complex systems: diversity of pattern formation (spots, stripes), swarms (clusters, flocks), complex networks, etc.



- ✓ yet, often like "textures": repetitive, statistically *uniform*, information-poor
- spontaneous order arising from amplification of *random* fluctuations
- *unpredictable* number and position of mesoscopic entities (spots, groups)

## Morphological (self-dissimilar) systems



*"I have the stripes, but where is the zebra?"* —(attributed to) A. Turing, after his 1952 paper on morphogenesis

## Morphological (self-dissimilar) systems

#### Many agents, sophisticated rules, complex emergence

→ natural ex: organisms (cells)



- ✓ mesoscopic organs and limbs have intricate, *nonrandom* morphologies
- development is highly *reproducible* in number and position of body parts
- ✓ heterogeneous elements arise under information-rich genetic control

## Biological organisms are self-organized <u>and</u> structured

- ✓ because agent rules are more "sophisticated": they can depend on the agent's *type* and/or *position* in the system
- ✓ the outcome (development) is truly complex but, paradoxically, can also be more *controllable* and *programmable*

## Statistical vs. morphological systems

Physical pattern formation is *free*, biological PF is *guided* 



convection cells www.chabotspace.org



reaction-diffusion texturegarden.com/java/rd



fruit fly embryo Sean Caroll, U of Wisconsin



Iarval axolotl limb Gerd B. Müller

## Statistical vs. morphological systems

#### Biotic forms combine a bit of "free" with a lot of "guided"

 $\checkmark$  domains of free pattern embedded in a guided morphology





spots, stripes in skin angelfish, www.sheddaquarium.org

repeated copies of a guided form, distributed in free patterns





segments in insect centipede, images.encarta.msn.com

ommatidia in eye

dragonfly, www.phy.duke.edu/~hsg/54

cherry tree, www.phy.duke.edu/~fortney

flowers in tree

## Beyond statistics: heterogeneity, modularity, reproducibility

Complex systems can be much more than a "soup"

- ✓ "complex" doesn't necessarily imply "homogeneous"...
  → heterogeneous agents and diverse patterns, via positions
- ✓ "complex" doesn't necessarily imply "flat" (or "scale-free")...
  - → modular, hierarchical, detailed architecture (at specific scales)
- ✓ "complex" doesn't necessarily imply "random"...
  - → *reproducible patterns relying on programmable agents*



## **Toward Morphogenetic Engineering**

- 1. Self-organized <u>and</u> structured complex systems
- 2. Toward "evo-devo" engineering
- 3. A model of programmable morphogenesis
- 4. Evolutionary meta-design
- 5. Extension: programmable complex networks

## **Complex systems research**

> The challenges of complex systems (CS) research

Transfersamong systems



*CS science: understanding "natural" CS* (*i.e. spontaneously emergent, including human activity*)

#### **Exports**

- decentralization
- autonomy, homeostasis
- learning, evolution

- Imports
- observe, model
- control, harness
- design, use



CS engineering: designing a new generation of "artificial" CS (i.e. harnessed, including nature)

## **Complexity in ICT systems**

#### Ineluctable breakup into myriads of modules/components,



## The need for morphogenetic abilities: self-architecturing

➢ Model natural systems → transfer to artificial systems

- need for morphogenetic abilities in biological modeling
  - organism development
  - brain development
- need for morphogenetic abilities in computer science & Al
  - self-forming robot swarm
  - self-architecturing software
  - self-connecting micro-components
- need for morphogenetic abilities in techno-social eNetworked systems
  - self-reconfiguring manufacturing plant
  - self-stabilizing energy grid
  - self-deploying emergency taskforce



#### MAST agents, Rockwell Automation Research Center {pvrba, vmarik}@ra.rockwell.com 14





#### > Development: the missing link of the Modern Synthesis

- ✓ biology's "Modern Synthesis" demonstrated the existence of a fundamental correlation between genotype and phenotype, yet the molecular and cellular mechanisms of development are still unclear
- ✓ the genotype-phenotype link cannot remain an abstraction if we want to unravel the generative laws of development and evolution
- ✓ understanding variation by comparing the actual development of different species is the focus of evolutionary developmental biology, or "evo-devo"



*"When Charles Darwin proposed his theory of evolution by variation and selection, explaining selection was his great achievement. He could not explain variation. That was Darwin's dilemma."* 

"To understand novelty in evolution, we need to understand organisms down to their individual building blocks, down to their deepest components, for these are what undergo change."

<u>How</u> does a static, nonspatial genome dynamically unfold in time and 3-D space?

<u>How</u> are morphological changes correlated with genetic changes?

#### > ... and of evolutionary computing: Toward *"meta-design"*

organisms endogenously *grow* but artificial systems *are built* exogenously

systems design systems "meta-design"



✓ future engineers should "step back" from their creation and only set *generic* conditions for systems to self-assemble and evolve

don't build the system (phenotype), <u>program the</u> <u>agents</u> (developmental genotype)—see, e.g., "artificial embryogeny"



## **Embryomorphic Engineering**

#### ➢ Observing, modeling → exporting biological development

- ✓ automating the observation and description of developing organisms with image processing, statistical and machine learning techniques
- ✓ designing mathematical/computational models of embryonic growth
- → *implementing* biological development in engineering systems: distributed architectures as a prerequisite for evolutionary innovation



European projects "Embryomics" & "BioEmergences"

## **Toward Morphogenetic Engineering**

- 1. Self-organized <u>and</u> structured complex systems
- 2. Toward "evo-devo" engineering
- 3. A model of programmable morphogenesis
- 4. Evolutionary meta-design
- 5. Extension: programmable complex networks

#### Developmental genes are expressed in <u>spatial</u> domains

✓ thus combinations of switches can create patterns by union and intersection, for example: I = (not A) and B and C



#### Segmentation & identity domains in Drosophila

 ✓ periodic A/P band patterns are controlled by a 5-tier gene regulatory hierarchy



 intersection with other axes creates organ primordia and imaginal discs (identity domains of future legs, wings, antennae, etc.)



From DNA to Diversity, p63

#### Three-tier GRN model: integrating positional gradients

 $\checkmark$  A and B are themselves triggered by proteins X and Y



- ✓ X and Y diffuse along two axes and form concentration gradients
- → different thresholds of lock-key sensitivity create different territories of gene expression in the geography of the embryo

#### Programmed patterning (PF-II): the hidden embryo map

- a) same swarm in different colormaps to visualize the agents' internal patterning variables *X*, *Y*, *B*<sub>i</sub> and *I*<sub>k</sub> (virtual *in situ hybridization*)
- b) consolidated view of all identity regions  $I_k$  for k = 1...9
- c) gene regulatory network used by each agent to calculate its expression levels, here:  $B_1 = \sigma(1/3 X)$ ,  $B_3 = \sigma(2/3 Y)$ ,  $I_4 = B_1B_3(1 B_4)$ , etc.



### Propagation of positional information (PF-I)

- a) & b) circular gradient of counter values originating from source agent W
- c) opposite gradient coming from antipode agent E
- d) & e) planar gradient from WE agents (whose W and E counters equate  $\pm 1$ )
- f) & g) complete coordinate compass, with NS midline.



#### Simultaneous growth <u>and</u> patterning (SA + PF)

- a) elastic adhesion forces; b) swarm growing from 4 to 400 agents by division
- c) swarm mesh, gradient midlines; pattern is continually maintained by source migration, e.g., *N* moves away from *S* and toward *WE*
- d) agent *B* created by *A*'s division quickly submits to SA forces and PF traffic
- e) combined genetic programs inside each agent



#### Simultaneous growth <u>and</u> patterning (SA + PF)

 example of simulation: 3 movies showing the same development highlighting 3 different planes (in different embryos)



highlighting gene patterning (PF-II) highlighting gradient formation (PF-I) highlighting lattice (SA) with gradient lines

#### Summary: simple feedforward hypothesis

- developmental genes are broadly organized in tiers, or "generations": earlier genes map the way for later genes
- ✓ gene expression propagates in a directed fashion: first, positional morphogens create domains, then domains intersect



#### > Naturally, toolkit genes are often multivalent

- ✓ exception to the feedforward paradigm: "toolkit" genes that are reused at different stages and different places in the organism
- ✓ however, a toolkit gene is triggered by different switch combos, which can be represented by duplicate nodes in different tiers



Endless Forms Most Beautiful, p125

#### More realistic variants of GRNs

- ✓ add recurrent links within tiers → domains are not established independently but influence and sharpen each other
- ✓ subdivide tiers into subnetworks → this creates modules that can be reused and starts a hierarchical architecture



#### Morphological refinement by iterative growth

✓ details are not created in one shot, but gradually added. . .



 $\checkmark$  . . . while, at the same time, the canvas grows





from Coen, E. (2000) The Art of Genes, pp131-135

#### Modular, recursive patterning (PF[k])...

- b) border agents highlighted in yellow
- c) border agents become new gradient sources inside certain identity regions
- d) missing border sources arise from the ends (blue circles) of other gradients
- e) & f) subpatterning of the swarm in  $I_4$  and  $I_6$
- g) corresponding hierarchical gene regulation network



#### … in parallel with modular, anisotropic growth (SA[k])

- a) genetic SA parameters are augmented with repelling V values  $r'_e$  and  $r'_0$  used between the growing region (green) and the rest of the swarm (gray)
- b) daughter agents are positioned away from the neighbors' center of mass
- c) offshoot growth proceeds from an "apical meristem" made of gradient ends (blue circles)
- d) the gradient underlying this growth



#### Modular growth <u>and</u> patterning (SA[k] + PF[k]): 3 levels

- a) example of a three-level modular genotype giving rise to the artificial organism on the right
- b) three iterations detailing the simultaneous limb-like growth process and patterning of these limbs during execution of level 2 (modules 4 and 6)
- c) main stages of the complex morphogenesis, showing full patterns after execution of levels 1, 2 and 3.



Modular growth <u>and</u> patterning (SA[k] + PF[k]): 3 levels



## **Toward Morphogenetic Engineering**

- 1. Self-organized <u>and</u> structured complex systems
- 2. Toward "evo-devo" engineering
- 3. A model of programmable morphogenesis

## 4. Evolutionary meta-design

5. Extension: programmable complex networks

## 4. Evolutionary meta-design

## Modular growth and patterning (SA[k] + PF[k]): 2 levels

a) wild type; b) "thin" mutation of the base body plan; c) "thick" mutation



## 4. Evolutionary meta-design

#### Modular growth and patterning (SA[k] + PF[k]): 2 levels

a) antennapedia; b) homology by *duplication*; c) *divergence* of the homology



## 4. Evolutionary meta-design

Modular growth and patterning (SA[k] + PF[k]): 3 levels



## 4. Evolutionary Meta-Design

#### > The paradoxical goals of complex systems engineering

- ✓ how can we expect specific characteristics from systems that are otherwise free to invent themselves?
  - how to plan self-organization?
  - how to control decentralization?
  - how to design evolution?
- ✓ the challenge is not so much to *allow* self-organization and emergence but, more importantly, to guide them
- ✓ ex: embryomorphic engineering:
  - given a desired phenotype, what genotype should produce it?



## 4. Evolutionary Meta-Design

### 3 challenges of CS engineers: growth, function, evolution

- 1. how does the system grow? (task of the developmental IMD engineer)
  - development results from a combination of elementary mechanisms: elements change internal state, communicate, travel, divide, die, etc.
  - starting from a single element, a complex and organized architecture develops by repeatedly applying these rules inside each element
  - $\rightarrow$  task 1 consists of combining these principles and designing their dynamics
- 2. how does the system function? (task of the functional IMD engineer)
  - this task is about defining the nature of the elements their functionality: nano/bio components? software modules? robot parts? swarm robots?
  - are they computing? physically moving? or both? etc.
  - how does the system evolve? (task of the EMD engineer)...
    - how the system varies (randomly)
    - how it is selected (nonrandomly)

3.

## 4. Evolutionary Meta-Design

#### Selecting without expectations?

- ✓ different degrees of fitness constraints
- a) selecting for a specific **organism** (shape, pattern)
  - reverse problem: given the phenotype, what should be the genotype?
  - direct recipe; ex: Nagpal's macro-to-microprogram Origami compilation
  - otherwise: learn or evolve under strict fitness → difficult to achieve!
- b) selecting for a specific **function**, leaving freedom of architecture
  - given a task, optimize performance (computing, locomotion, etc.)
  - be surprised by pattern creativity; ex: Avida, GOLEM, Framsticks
- c) selecting the **unexpected**: open-ended evolution
  - create a "solution-rich" space by (a) combinatorial tinkering on redundant parts and (b) relaxing/diversifying the requirements
  - harvest interesting or surprising organisms from a free-range menagerie

## **Toward Morphogenetic Engineering**

- 1. Self-organized *and* structured complex systems
- 2. Toward "evo-devo" engineering
- 3. A model of programmable morphogenesis
- 4. Evolutionary meta-design

5. Extension: programmable complex networks

## From flocks to shapes







#### From scale-free to structured networks





iterative lattice pile-up

clustered composite branching

single-node composite branching

## 5. Programmable complex networks

#### From preferential to programmed attachment

 $\checkmark$  modular structures by local counters and port logic



## 5. Programmable complex networks

From preferential to programmed attachment



## Morphogenetic Engineering Workshop, Paris 2009

## http://www.iscpif.fr/MEW2009

Exporing various engineering approaches to the artificial design and implementation of autonomous systems capable of developing complex, heterogeneous morphologies



