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On the one hand, research in self-assembling systems, whether natural or artificial, has 
traditionally focused on pre-existing components endowed with fixed shapes. Biological de-
velopment, by contrast, dynamically creates new cells that acquire selective adhesion proper-
ties through differentiation induced by their neighborhood. On the other hand, pattern forma-
tion phenomena are generally construed as orderly states of activity on top of a continuous 2-D 
or 3-D substrate. Yet, again, the spontaneous patterning of an organism into domains of gene 
expression arises within a multicellular medium in perpetual expansion and reshaping. Finally, 
both phenomena are often thought in terms of stochastic events, whether mixed components 
that randomly collide in self-assembly, or spots and stripes that occur unpredictably from in-
stabilities in pattern formation. Here too, these notions need significant revision if they are to 
be extended and applied to embryogenesis. Cells are not randomly mixed but pre-positioned 
where cell division occurs. Genetic identity domains are not randomly distributed but highly 
regulated in number and position. In this work, I present a computational model of program-
mable and reproducible artificial morphogenesis that integrates self-assembly and pattern for-
mation under the control of a nonrandom gene regulatory network. The specialized properties 
of cells (division, adhesion, migration) are determined by the gene expression domains to 
which they belong, while at the same time these domains further expand and segment into 
subdomains due to the self-assembly of specialized cells. Through this model, I also promote a 
new discipline, embryomorphic engineering to solve the paradox of “meta-designing” decen-
tralized, autonomous systems. 

1   Self-Assembly of Pre-Patterned Components 

1.1   From puzzles to self-assembly 
In the “jigsaw puzzle” metaphor of self-assembling systems, in particular molecular 
and biological self-assembly, a “piece” of the puzzle represents an elementary com-
ponent of the system, such as a molecule or a cell. The “shape” of this piece repre-
sents its binding affinities with other components—an electric field in the case of 
molecules (via ionic or hydrogen bonds) or differential adhesion in the case of cells 
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(via specific membrane proteins). At any instant, the puzzle finds itself in a certain 
state, which corresponds to a particular spatial arrangement of its pieces. Associating 
an energy or cost function with states, the “solutions” of the puzzle can then be de-
fined as the energy minima, i.e., those states where all pieces “fit” well together and 
satisfy each other’s constraints. 

Naturally, several fundamental aspects also distinguish complex self-assembling 
systems from jigsaw puzzles (Fig. 1): 
(i) Affinities: The fit between components is not necessarily all-or-none but ap-

proximate or flexible (compare Fig. 1a,d) and may exhibit different degrees of 
well-formedness, associated with varying energy costs. Thus, the “solutions” of 
the system need not be strict energy minima but simply low-cost states. 

(ii) Component types: Components’ shapes are far from unique. The system is gen-
erally composed of distinct types (molecule species or cell types) shared by a 
multitude of components that are copies of each other (Fig. 1d-f). This allows for 
a large number of equivalent states, invariant by permutation of components, and 
greatly facilitates convergence toward one of the many low-energy solutions. 

(iii) Control: No centralized control or “visible hand” actually moves the pieces. 
 

 
 

Fig. 1: Differences between jigsaw puzzles and self-assembly. (a)-(c) Jigsaw puzzles are made 
of uniquely “shaped” pieces, where shape constraints result from specific geometry as in (a), 
specific markings as in (b) or both geometry and markings as in (c). Compatibility with other 
pieces is a rare or unique event, and fit between pieces is rigidly all-or-none. Generally, there is 
only one solution, which requires a long time to find. (d)-(e) By contrast, natural self-assembly 
(molecular or multicellular) consists of only a few types of identical components—schematized 
by one type in (d), two in (e), three in (f)—fitting each other tightly in tilings (e) or loosely in 
aggregates (d) and (f). This multiplicity and flexibility give rise to many possible approximate 
“solutions” via quick convergence times. Finally, no central process is steering the pieces. 
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1.2   From molecular self-assembly to multicellular self-assembly 
How, then, do self-assembling pieces find their way to their final positions on the 
basis of purely local interactions and create global order at the system level? At this 
point, principles of molecular self-assembly, on the one hand, and multicellular self-
assembly, on the other hand, diverge in several important regards: 
(iv) Existence of components: Molecules generally pre-exist in the solution before 

they self-assemble. Cells, however, are dynamically created during self-
assembly by the division of other cells.1 

(v) Binding fate: Molecules initially form a homogeneous mixture (the puzzle box) 
and bind to each other through stochastic collisions (possibly with help from en-
zymes, but the original encounter remains stochastic). Cells, however, appear on 
the spot, again by cellular division, in the neigborhood of the cells to which they 
bind (possibly later changing neighborhood through migration, but this is also a 
highly nonrandom process). 

(vi) Shape determination: Possibly folding upon themselves after synthesis, mole-
cules settle on a relatively fixed (passive) geometrical shape and admit only a 
limited amount of deformation when coming into contact with other molecules. 
Cells, however, dynamically and actively change their shape as they differentiate 
under the influence of molecular signalling from other cells (such as induction). 

1.2.1   Existence of components and binding fate 
The distinctions outlined in points (iv) and (v) are illustrated here with a simple 
model of swarm behavior (Fig. 2). In 2-D space, two types of particles, α and β (re-
spectively dark and light colored spots in the figure), interact via attractive and repul-
sive forces. By analogy with electric fields, these interactions are modeled as local 
energy potentials V(r) that each particle emits in its vicinity as a function of vector r 
from its center. In this model, interaction potentials are the equivalent of the geomet-
rical “shapes” of components, i.e., the specific binding affinities that they have with 
their neighbors. The two types of isotropic potentials, Vα(r) and Vβ(r), with r = || r ||, 
used in Fig. 2 are graphed in Fig. 3a,b. In both cases, they contain an impenetrable 
core of infinite values below rc, representing the fact that particles are nondeformable 
discs of radius rc/2. At the other end of their interaction range, their “horizont” is de-
fined by r0. Beyond that distance, the energy landscape is flat and particles do not see 
one another. What distinguishes the two types is that an α particle is surrounded with 
a ring-shaped basin of attraction at some equilibrium distance re < r0 (Fig. 3a), while 
a β particle is not and simply repels other particles that come too close without at-
tracting them (this virtually corresponds to r0 < re). The type-α basin is quadratic, 
simulating the establishment of a spring-like force with resting length re as soon as 
two particles come closer than r0 (but farther than rc). 
                                                 
1 Naturally, a new cell does not appear ex nihilo but is itself the result of self-assembly at a 
lower level of molecules synthesized by the mother cell, which draws pre-existing biochemical 
resources from the extracellular matrix. The present analogy, however, focuses on whole com-
ponents and whether they are ready to assemble with other components at their own level. 
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Fig. 2: Constrasting molecular-style self-assembly with multicellular-style self-assembly by a 
simple swarm model and metaphorical illustrations. The model contains particles of two types, 
α (dark color discs) and β (light color discs), that exert an attractive and/or repulsive potential 
V on their neighbors, with V = Vα for α−α interactions (Fig. 3a with rc = 1.6, re = 3.5, r0 = 5) 
and V = Vβ for α−β and β−β interactions (Fig. 3b with rc = 1.6, r0 = 2.5). Molecular self-
assembly (a) relies on a random mix of pre-existing particles that sort out and aggregate 
through chance encounters. This would be equivalent to shaking a magnetic construction block 
game (b), in which pieces bear selective geometrical affinities. Multicellular self-assembly (c), 
however, as in animal development (d), mostly results from growth through cell division, not 
stochastic collisions. New cells are born already pre-positioned and rearrange only locally. 

 
This swarming system is similar to previous models of collective motion in com-

puter graphics [Reynolds 1987] and physics [Vicsek et al. 1995; see, e.g., Grégoire & 
Chaté 2004], with the difference that in those models particles are self-propelled at 
constant speed v0 and only their direction of motion θi is updated at every time step. 
In the present model, the velocity may vary in both norm and direction according to a 
simplified equation of motion: 
 

ηλ +−= ∑ ),( ijj ii V xxx ∇&   (1) 

 

where xi is the position of particle i, V(xj, xi) is the potential created by particle j in xi, 
and η is white noise. (The above equation can be derived from m d2xi/dt2 = 
−λ dxi/dt − ∑j ∇iV(xj, xi) + η by neglecting the inertia term mx'' in front of the viscos-
ity term λx', or assuming that particles are quasi-stationary.) Now, in the mixed type 
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system of Fig. 2, V(xj, xi) depends on both types of particles i and j, such that 
V(xj, xi) = Vα(rij), with rij = || xi − xj ||, if and only if i and j are of type α; otherwise 
V(xj, xi) = Vβ(rij) for the other type interactions α−β and β−β. This means that only α 
particles attract and lock in with other α particles, whereas they repel β particles, 
which also repel each other. “Shape” is thus a relative concept for α particles, as they 
can switch between two affinity configurations depending on their neighbor’s type. 
 

     
 

Fig. 3: The “shape” or binding affinities of self-assembling components can be modeled by the 
emission of local attraction/repulsion potentials V. In each frame: top—graph of V as a function 
of distance r from the particle’s core; middle—2-D view “from above” of a neighbor particle’s 
motion within V; bottom—example of a few particles interacting through V. (a) Isotropic elas-
tic potential used in the α−α interactions of Fig. 3. (b) Isotropic repulsion used in the α−β and 
β−β interactions of Fig. 3. (c) Anisotropic “polar” attraction potential used in Fig. 4. 

 
As a result, in Fig. 2a, an initial random mix of 110 particles of each type reliably 

converges toward a lower energy state: α particles collide by chance (random walk 
due to the stochastic term η), stick to one another and progressively form larger ag-
gregates until a giant component containing all α particles is created in the midst of a 
sea of β particles. Self-sorting processes such as this one have also been simulated 
using the Potts formalism [Graner & Glazier 1992], a multivalued Ising model in 
which a pixel on the grid represents a fragment of a biological cell, and a local region 
of equal pixel values represents one cell. Instead of the point-wise motion of swarm 
systems, the Potts model shifts cell boundaries by flipping pixel values according to a 
stochastic surface energy minimization. Similarly to Eq. (1), Potts surface energy 
includes differential adhesion as a sum of pairwise interactions between cell types. 

Although dissociated and mixed cells can spontaneously sort out again into ho-
mogeneous tissues, this phenomenon is seen mainly in artificial experiments whose 
goal is to demonstrate differences in cell adhesiveness. Cell sorting does not consti-
tute a major natural developmental mechanism—despite common features with cell 
migration at the level of adhesion proteins. It might intervene locally as a correction 
mechanism (e.g., to compensate for small fluctuations or errors in cell differentiation) 
but, in the end, an organism does not emerge from a giant swarm of trillions of disag-
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gregated cells that reassemble in parallel. Biological morphogenesis is mostly the 
product of regulated growth, i.e., guided positioning by division and migration, not 
chance encounters. 

For these reasons, Fig. 2a is a more faithful illustration of the molecular style of 
self-assembly (the first half of points (iv) and (v)), while multicellular-style self-
assembly is better captured by Fig. 2b (the second half of points (iv) and (v)). Here, 
the system starts out with only a few particles of each type, which later divide into 
same-type particles according to a certain probability. New particles pop up already 
pre-positioned near the type that produced them and only briefly rearrange within 
their local neighborhood. Not addressed in this simple model is cell migration, which 
also plays an important role in animal development. Yet again, migration has little to 
do with stochastic collisions. After its birth within a given neighborhood, a cell may 
traverse its environment toward a specific remote location, but it does so only under 
tight guidance from extracellular signals and cell-to-cell adhesion properties. 

1.2.2   Shape determination 
Once positioned, biological cells, unlike puzzle pieces or molecules, are also able to 
modify their individual shape dynamically and, consequently, the local geometrical 
arrangement that they form with their neighbors. This is an important aspect of multi-
cellular self-assembly that was mentioned in point (vi) and will be modeled here by a 
variant of the previous swarm system. In this variant, illustrated in Fig. 3c and Fig. 4, 
the isotropic potentials Vα(r) and Vβ(r) are replaced with an anisotropic or “polar” 
potential Vγ(r). Instead of Vα’s ring-shaped basin of attraction at distance re from the 
cell center, the potential landscape Vγ has two localized basins of attraction (quadratic 
wells of radius rb) centered around two poles r1 = (θ1, re) and r2 = (θ2, re). For exam-
ple, in Fig. 3c the values of θ1 and θ2 are 0 and π in the case of the horizontal (green) 
segments. In Fig. 4, the swarm consists of γ particles with “vertical” binding affinities 
θ1 = π/2 and θ2 = −π/2 (Fig. 4a,c) or variable angles (Fig. 4b,d). To represent the 
shape of this polar potential, these particles are displayed as short segments of length 
re and thickness rc, instead of discs. In Fig. 4a-b the particles pre-exist in a mix and 
have fixed shapes, whereas in Fig. 4c-d they dynamically appear and reshape them-
selves. Thus, while the constrast between Fig. 4a (colliding) and Fig. 4c (growing) 
reiterates points (iv) and (v) already illustrated in Fig. 2, here in the case of polar par-
ticles, the contrast between Fig. 4b (fixed shapes) and Fig. 4d (dynamical shapes) 
focuses on point (vi). By dynamically changing their shape after placing themselves 
into chain formation (through colliding or growing), the particles of Fig. 4d create a 
specific morphology, which is otherwise difficult or impossible to attain spontane-
ously through sheer stochastic encounters (Fig. 4b). The preshaped particles of 
Fig. 4b have specific pairs of angles that replicate the final state of Fig. 4d but are 
unable to coordinate; they only explore suboptimal and unstable states. By contrast, 
Fig. 4d is analogous to the invagination of cell membranes, a common mechanism of 
animal development most striking during gastrulation, whereby a few cells constrict 
one of their sides (using filaments of motor proteins) and adopt an elongated “wedge” 
aspect that draws the entire sheet of neighbor cells towards them. 
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Fig. 4: Constrasting different modes of self-assembly in 1-D. In all frames, particles are of the 
same type γ, i.e., they interact via the polar potential Vγ(r) of Fig. 3c. To remind of their anisot-
ropic affinities, particles are drawn as small rectangles instead of discs. (a) Colliding self-
assembly: 15 particles with vertical poles (θ1, θ2) = (π/2, −π/2) quickly snap into place, form-
ing a straight chain. (c) Growing self-assembly: as in Fig. 2c, the same string can be formed by 
dividing particles. (d) Reshaping self-assembly: each particle of (c) now dynamically bends its 
shape in specific ways (see Fig. 5c), making the string invaginate. (b) Preshaped self-assembly: 
the invagination cannot be reproduced by giving fixed angles to the particles in advance (the 
same angles that appear at the end of (d)) and letting them randomly collide. 

 
In summary, biological self-assembly at the cellular level relies on principles that 

greatly facilitate and accelerate morphogenesis. When designing self-organized artifi-
cial systems in future, letting components dynamically create and reshape themselves 
“on the spot,” as cells do, would be a far more efficient approach than letting them 
haphazardly try to match each other’s pre-existing constraints, like molecules in a 
solution. (Obviously, a major technical difficulty will be to implement and control the 
self-replication of artificial components made of electric, chemical or even biological 
materials.) In any case, to transition from stochastic (molecular-style) self-assembly 
to programmable (multicellular-style) self-assembly, components must be able to 
modify their behavior (divide, differentiate, migrate) dynamically through communi-
cation. Cells do not just snap into place; they send molecular signals to each other, 
forming patterns of differentiation at the same time that they are self-assembling. 

2   Pattern Formation in Pre-Assembled Media 
Since Turing’s 1952 seminal model of the spontaneous symmetry breaking and ap-
pearance of regular structures in biological organisms, the concept of morphogenesis 
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has largely, but somewhat inaccurately, become synonymous with pattern formation. 
Morphogenesis originally referred to the biological development of the organs and 
structures of an organism during embryogenesis and, by extension of its etymology, 
any “generation of form” at various scales in other types of complex systems, such as 
physical (geomorphogenesis) or social (urban morphogenesis). Pattern formation, in 
contrast, generally refers to the emergence of statistically regular motifs in quasi-
continuous and initially homogeneous 2-D or 3-D media. To be sure, both phenom-
ena involve the decentralized self-organization of a myriad of elements and produce 
contrast where there was uniformity, yet they do not emphasize the same aspect of 
emerging order. The latter looks at shimmering landscapes of activity on a more or 
less fixed backdrop, while the former emphasizes the creation of intricate architec-
tures and structures. Using an artistic metaphor, it could be said that pattern forma-
tion “paints” a pre-existing space, while morphogenesis “sculpts” its own space. 

There is a huge diversity of pattern formation behaviors across many scales and 
substrates (e.g., fluid, electromagnetic, mechanical, chemical, biochemical), from 
which a few broad classes of mechanisms and models have been identified (e.g., con-
vection cells, reaction-diffusion, activator-inhibitors, synchronization of oscillators). 
The observed patterns can be static, steady-state or dynamically changing (e.g., trav-
eling waves) and organize themselves into patches or domains that also fall into a few 
classical geometrical families (e.g., spots, stripes, spirals, branches). Morever, the 
pattern formation processes typically studied are for the most part inherently stochas-
tic, at both the microscopic level of elements and the macroscopic level of the distri-
bution of patterns. Continuing the tradition initiated by Turing, most models have 
been focusing on systems that rely on instabilities and amplification of fluctuations to 
transition toward order and form patterns. Because of their randomness, and without 
carefully set boundary conditions (possibly themselves the product of morphogenesis; 
see below), the outcome of those processes is generally unpredictable in the number 
and position of the emerging mesoscopic domains (spots, stripes, convection cells). 
At the same time, the whole formation on the macroscopic level is fairly regular or 
even periodic, at least piecewise, since it essentially consists of repeated motifs. It 
displays statistical uniformity similar to textures. 

In biological development, by contrast, the mesoscopic elements (organs, limbs, 
parts, tissues, etc.) are always very reliably positioned—unlike random spots and 
stripes—and display complex and heterogeneous morphologies—unlike uniform tex-
tures. Although the well-known colorful animal coats, such as seashell, zebrafish or 
leopard, have been (debatably) assumed to arise from morphogen-based reaction-
diffusion pattern formation, they make up only a minor part of the whole organism. 
The unique characteristic of biological morphogenesis, absent from simpler physical-
chemical pattern formation, is that each one of its self-organizing elements, the cell, 
contains a rich source of information stored in the DNA, which endows it with a vast 
repertoire of highly nontrivial behaviors. Even admitting that DNA is less than a 
“program,” in the sense that it does not control the cell deterministically along a lin-
ear flow of execution, it is nonetheless, at the very least, a repository of stimuli-
response rules, vastly superior in quantity of functional information to any physical 
or chemical element involved in one of the habitual pattern formation dynamics. 
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Embryogenesis, therefore, combines both pattern formation and morphogenetic 
self-assembly in a tightly integrated loop: It creates shape from patterning (Fig. 5) 
and patterns from shaping. Structures are “sculpted” from the assembly of elements 
that have been prompted to do so by the “painting” of their genetic identity. Con-
versely, newly formed shapes are able to support, and trigger, new domains of ge-
netic expression. DNA is “consulted” at every step of this exchange, in every cell, to 
produce the proteins that will guide the cell’s highly specific biomechanic behavior 
(shaping) and signalling behavior (patterning) at a given time in a given location, 
depending on the signals received from the neighborhood. A schematic illustration of 
the “shape from patterning” process is shown in Fig. 5. 
 

 
 

Fig. 5: “Shape from patterning” examples: deriving morphogenetic self-assembly (bottom 
frames) from pattern formation (top frames). (a) Amoebae in the slime mold Dictyostelium first 
generate waves of chemical signalling, modeled as a lattice of coupled oscillators (top). After a 
while, the lattice breaks up as cells follow the concentration gradient toward wave centers and 
aggregate (bottom). (snapshots from T. Schmickl’s online simulations at http://zool33.uni-
graz.at/schmickl) (b) Augmented view of the swarm of Fig. 2a, where the α particles are as-
sumed to have differentiated from a prepattern of chemical concentration before assembling as 
above. (c) Augmented view of the chain of Fig. 4d, in which the bending angle of each cell is 
also determined by a prepattern of identity. (The type of pattern formation in (b) and (c), 
whether Turing-like, genetically regulated or a combination of the two, is not specified here.) 

3   Integrating Self-Assembly and Pattern Formation 
Under Genetic Regulation 
The model of artificial embryogenesis that I have recently proposed [Doursat 2006, 
2007] is an original attempt to integrate the three fundamental ingredients discussed 
above: (i) self-assembly (SA) and (ii) pattern formation (PF), triggering each other in 
a feedback loop under the tight control of (iii) nonrandom genetic instructions (GI)—
here, a gene regulatory network—stored in each cell of the system. Previous theoreti-
cal models of biological development or bio-inspired artificial life systems have sel-
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dom included all three mechanisms. The evo-devo works of Hogeweg [2000], Sala-
zar-Ciudad & Jernvall [2002] or, with lesser morphogenetic abilities, the Cellerator 
system [Shapiro et al. 2003] and Nagpal’s origami [2002] are a few notable achieve-
ments. Other interesting studies have explored the combination of two out of three 
ingredients: SA and PF, no GI—self-assembly based on cell adhesion and signalling 
pattern formation, but using only predefined cell types without internal genetic vari-
ables [e.g., Marée & Hogeweg 2001]; PF and GI, no SA—nontrivial pattern forma-
tion from instruction-driven intercellular signalling, but on a fixed lattice without 
self-assembling motion [e.g., von Dassow et al. 2000, Coore 1999]; SA and GI, no 
PF—heterogeneous swarms of genetically programmed, self-assembling particles, 
but in empty space without mutual differentation signals [e.g., Sayama 2007]. 

The present model has been explained in detail elsewhere [Doursat 2006, 2007]. It 
is summarized here, highlighting the interplay between pattern formation and self-
assembly, as illustrated in Fig. 6. 

3.1   Gene-regulated pattern formation 
A virtual embryo is a swarm of cells, where each cell contains a gene regulatory net-
work (GRN) coding for its signalling and mechanic activity. Through intercellular 
coupling between neighboring GRNs, the embryo becomes patterned into identity 
domains of differentiated gene expression, creating a “hidden geography” revealed by 
in situ hybridization (Fig. 6c,e). Essentially, logical combinations of regulatory 
switches (OR, AND) translate into geometric combinations of precursor patterns into 
new patterns (union, intersection). Developmental genes are roughly organized in 
tiers, or “generations.” Earlier genes map the way for later genes and gene expression 
propagates in a cascade. This principle has been beautifully demonstrated in the Dro-
sophila embryo. The intersection of various striping patterns along its three main axes 
gives rise to smaller domains such as the organ primordia and “imaginal discs,” 
which are groups of cells marking the location and identity of the fly’s future ap-
pendages (legs, wings, antennae). Going back in time, the whole process begins with 
concentration gradients of maternal proteins diffusing across the initial cluster of 
cells. These gradients are the functional equivalent of a coordinate system.  

3.2   Biomechanic self-assembly 
In parallel to genetic patterning, the embryo continues to grow and undergo extensive 
reshaping as cells divide and proliferate. Previous identity domains expand and de-
form while becoming partitioned into new and finer identity domains. Three main 
biomechanic principles responsible for these morphogenetic changes are integrated 
into the model as schematic rules: (a) differential adhesion as elastic forces between 
cells, (b) inhomogeneous cell division as internal probability rates, and (c) tropic cell 
migration as internal velocity vectors. In parallel to chemical coupling between their 
GRNs, neighboring cells are connected by abstract mechanical edges between their 
nuclei, established through Delaunay triangulation—the cell shapes being the com-
plementary Voronoi domains. Similarly to the Vα(r) potential of Fig. 3a, cell-to-cell 
edges are modeled as small springs, so that each cell tries to set the distance with its 
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neighbors’ nuclei to re. Biological cells also stick to one another by means of adhe-
sion proteins that cover their membrane. The great diversity of surface adhesion pro-
teins gives them the ability to selectively recognize one another by modulating their 
degree of “stickiness.” In the elastic force model, differential adhesion on edge i↔j 
between cells i and j is modeled by resting lengths lij spring coefficients kij that can 
vary from edge to edge. Different proliferation frequencies ρi also create deformation 
in the embryo, as compartments expand faster than others. Migration, represented by 
additional time- and space-varying vectors vi, is not shown in this article. 

3.3   Pattern-regulated self-assembly, assembly-triggered patterns 
Closing the loop, the complete model establishes a functional dependency between 
cell identities and mechanical cell behaviors (Fig. 6). The self-assembly rules of sec-
tion 3.2 are linked to the self-patterning process of section 3.1 by making mechanical 
parameters ρi, lij and kij depend on the current state of the genetic expression of i and 
j, i.e., the identity (colored) domains to which cells belong. See Fig. 6 for details. 
 

 
Fig. 6: Integrating self-assembly (SA) and pattern formation (PF) under genetic regulation. 
(a) Starting from a small clump, cells proliferate at a uniform division rate to reach about 800. 
All cells are of same type α with an anisotropic 2:1 ratio along x (ellipsoid version of elastic 
potential Vα, Fig. 3a). (b) As in Fig. 2b, spontaneous rearrangements give the embryo a convex 
shape, here oval. During expansion, protein gradients (x-gradient in purple) spread across the 
unique domain. (c) The varying concentration levels are then read out by each cell and input 
into the first stages of their GRNs (not shown), producing in output different values of gene 
expression, i.e., defining new cell types α1, α2 and so on. (d) These types, in turn, determine 
the new division rates ρ(α) in each domain and adhesion coefficients k(α, α') between do-
mains. For example, α3 and three other types start proliferating at a faster rate than the rest of 
the embryo, while they lose adhesion with neighboring domains, thereby creating limb-like 
bulges. (e)-(f) The same alternation of PF-induced differentiation and heterogenous-type SA 
continues at a finer scale of detail with respect to the overall expanding organism. 
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4   Toward Evolutionary Meta-Design 
Exploding growth in hardware components, software modules and network users will 
force us to find an alternative to rigidly designing and controlling computational sys-
tems in every detail. Instead, future progress in information and communication tech-
nologies will depend on our ability to meta-design mechanisms allowing those sys-
tems to self-assemble, self-regulate and evolve. Nature offers a great variety of de-
centralized, autonomous systems, most conspicuously biological organisms. Deemed 
“complex,” these systems might in fact be less costly, more efficient or even “sim-
pler” than human-designed and centrally controlled contrivances. Complex systems 
are characterized by the self-organization of a great number of small, repeated ele-
ments into large-scale, adaptive patterns, where each element may itself obey the 
dynamics of an inner network of smaller entities at a finer scale (microprogram). The 
new engineering challenge is thus to “guide” this self-organization, i.e., to prepare the 
conditions and mechanisms favorable to nonrandom, heterogeneous and reproducible 
morphogenesis (macro-program). At the same time, it is also to allow the parameters 
of this process evolve in order to freely generate innovative designs. Finding efficient 
systems will require matching loose selection criteria with productive variation 
mechanisms. The first point concerns the openness of the designers to “surprising” 
outcomes; the second point concerns the intrinsic ability of complex systems to create 
a “solution-rich” space [Minai et al. 2006] by combinatorial tinkering on highly re-
dundant parts. Embryogenesis, the development of an entire organism from a single 
cell, provides the most striking example of self-organization guided by evolvable 
genetic information. 

This work describes an original model of bio-insipred, artificial embryomorphic 
system growth, integrating pattern formation and self-assembly under non-random 
genetic regulation. A virtual organism is represented by a mass of cells that prolifer-
ate, migrate and self-pattern into differentiated domains. Each cell contains an inter-
nal gene regulatory network and acquires a specific gene expression identity by inter-
action with neighboring cells. Differentiated cell types trigger different cell behav-
iors, which in turn induce new identities. The organism’s final architecture depends 
on the detailed interplay between the various rates of cell division and movement, 
propagation of genetic expression and positional information. Ultimately, on this 
score of “theme and variations” (developmental laws and parameters), evolution will 
be the player. 

Based on these first results, I propose a new discipline, embryomorphic engineer-
ing as a “fine-grain” approach to systems design, based on swarms of relatively sim-
ple, cloned elements. It emphasizes the need for hyper-distributed architectures and 
self-organized development as prerequisites for evolutionary innovation. In possible 
future hardware applications, nano-units containing the same instructions could self-
organize without the need for reliability or precise arrangement as in traditional VLSI 
[Coore 1999, Nagpal 2002]. In software or network applications (servers, security, 
etc.), a swarm of small-footprint software agents could diversify and self-deploy to 
achieve a desired level of functionality. 
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