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Abstract 

Outside biological and social systems, natural pattern formation 
is essentially “simple” and random, whereas complicated struc-
tures are the product of human design. So far, the only self-
organized (undesigned) and complex morphologies that we 
know are biological organisms and some agent societies. Can 
we export their principles of decentralization, self-repair and 
evolution to our machines, networks and other artificial con-
structions? In particular, can an “embryomorphic” engineering 
approach inspired by evo-devo solve the paradoxical challenge 
of planning autonomous systems? In this work, I wish to better 
understand and reproduce complex morphogenesis by investi-
gating and combining its three fundamental ingredients: self-
assembly and pattern formation under genetic regulation. The 
model I propose can be equivalently construed as (a) moving 
cellular automata, in which cell rearrangement is influenced by 
the pattern they form, or (b) heterogeneous collective motion, 
in which swarm agents differentiate into patterns according to 
their location. It offers a theoretical framework for exploring 
the causal and programmable link from genotype to phenotype. 

Introduction 

Faced with a rapid growth in size and complexity of computer 
systems, whether hardware, software or networks, engineers 
are gradually led to rethink ICT in terms of complex systems. 
In particular, as the field of Artificial Life demonstrates, it is 
compelling and fruitful to seek inspiration from biological and 
social examples such as organism development, neural net-
works, insect colonies, or human communities. Understanding 
natural emergence should help design a new generation of 
artificial complex systems by importing into our machines 
highly desirable properties that are still largely absent from 
traditional engineering: decentralization, autonomy (self-
organization, homeostasis) and adaptation (learning, evolu-
tion). Simply formulated, the new challenge is: How can we 
make a multitude of agents get together and do something 
useful without placing them by hand? Emergent engineering 
will be less about direct design than developmental and evolu-
tionary meta-design. Changing from micro-managers to law-
makers, future engineers would “step back” from their crea-
tion and only set generic conditions for systems to self-
assemble and evolve, instead of building them directly. 

Darwinian evolution consists of random variation followed 
by non-random selection. Concerning evolutionary engineer-
ing, the present work stresses the importance of establishing 
fundamental laws of developmental variations before these 

can be selected on the evolutionary time scale [20]. Under-
standing variation by comparing the development of different 
species is the concern of “evo-devo”, a fast growing field of 
biology [4, 12]. The genotype-phenotype link cannot remain 
an abstraction if we want to unravel the generative laws of 
development and evolution—and ultimately transfer them to 
artificial self-organized systems. Moreover, fine-grain, hy-
perdistributed architectures (i.e., many light-weight agents, as 
opposed to a few heavy-weight agents) such as multicellular 
organisms might be in a unique position to provide the “solu-
tion-rich” space needed for successful selection. 

Within this framework, the goal of this article is to under-
stand and model the self-organization of complex morpholo-
gies. To this aim, it proposes to combine three ingredients: 
morphogenetic self-assembly (SA) and pattern formation (PF) 
under the control of non-random, structured genetic regula-
tion (GR) stored inside each agent of a swarm. 

Toward Self-Organized Complex Architectures 

Non-biological/social self-organization exhibits “simple” 
patterns. Self-organized systems of physical-chemical matter 
generally form random, repetitive spatial patterns: ripples in 
sand dunes, convection cells in hot liquids, spots and stripes 
in reaction-diffusion solutions à la Turing [1], etc. Despite a 
huge and fascinating diversity of pattern formation behaviors 
across many scales and substrates, emergent structures at the 
macroscopic level are fairly regular, essentially consisting of 
repeated motifs. They display a statistical uniformity and rela-
tive “poorness of information” similar to textures. Moreover, 
most of these pattern formation phenomena rely on instabili-
ties and amplification of fluctuations to generate order. Be-
cause of this inherent stochasticity, the number and position 
of emerging entities (spots, stripes, etc.) are generally unpre-
dictable. The only self-organized systems able to create truly 
complex structures are biological organisms and agent socie-
ties (e.g., termite mounds, cities, markets, Internet). 

Non-biological/social complex structures are deliberately 
designed. Outside biology and agent societies, most compli-
cated structures made of segments and parts arranged in spe-
cific ways are the product of direct human control: computers, 
cars, buildings, etc. Contrary to physical pattern formation 
systems, human constructions are fundamentally reproducible 
and programmable. They are made of a diversity of modules 
that are statistically heterogeneous and information-rich. 
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However, the cost of such complexity is heteronomy: these 
structures rely entirely on centralized design and deterministic 
planning at the macroscopic level, imposing order from the 
outside. Again, the only complex forms that are also truly 
undesigned, i.e., naturally emergent, are biological and social. 

Re-creating structures that are complex and self-
organized. Compared to physical pattern formation, the 
unique feature of biological and social morphogenesis is that 
it relies on agents (cells, insects, computers, humans) that 
carry sophisticated instruction sets (DNA, stigmergy, pro-
gram, cognition). This functional information endows the 
agents with a repertoire of non-trivial behaviors, vastly supe-
rior to units of inert matter. Most importantly, it opens the 
door to agent diversity through differentiation and evolution, 
which in turn allows rich combinations and recombinations of 
agents into modules and hierarchical constructions. Therefore, 
focusing for now on multicellular organisms, can we strive 
toward a new kind of morphogenesis-inspired or “embryo-
morphic” engineering? It is the purpose of this work to show 
how genetic-like regulation at the agent level can be used to 
control an artificial process of complex self-organization. 

Integrating Self-Assembly and Pattern Formation 
Under Agent-Level Genetic Regulation 

In this modeling work, I propose that, from an abstract view-
point, self-organized complex morphologies such as biologi-
cal development can be best understood as a combination of 
self-assembly (SA) and pattern formation (PF). To take an 
artistic metaphor, this would be similar to mixing “self-
sculpting” and “self-painting” in one composition [6]. On the 
one hand, embryogenesis can be seen as a “self-made puzzle”, 
i.e., a spontaneous sculpting process in which the puzzle 
pieces (the cells) reshape and reassemble themselves dynami-
cally. On the other hand, it can also be seen as a “deformable 
screen”, i.e., a spontaneous painting process where color 
strokes (gene expression levels) modify each other on top of 
an irregular and shifting geometry. 

Self-assembly (SA). Research in natural or artificial self-
assembling systems, mostly following “molecular soup” mod-
els, has traditionally focused on pre-existing components en-
dowed with fixed shapes. Biological development, by con-
trast, dynamically creates new cells that acquire selective ad-
hesion properties through differentiation induced by their 
neighborhood. I propose here a model of self-organized 
swarm in which the agents undergo dynamical positioning 
from neighbor forces, dynamical creation by division, and 
dynamical reshaping by non-uniform modification of their 
interactions. These elementary SA behaviors are induced and 
controlled by agent differentiation (see PF in next subsection). 

Pattern formation (PF). Pattern formation phenomena are 
generally construed as orderly states of activity on top of a 
continuous 2-D or 3-D substrate. Yet, again, the spontaneous 
patterning of an organism into regions of gene expression 
arises within a multicellular medium in perpetual expansion 
and reshaping. In the present model, agents undergo dynami-
cal differentiation into various types and subtypes. The swarm 
becomes inherently heterogeneous, breaking up into local 
groups. PF activity is based on the exchange of two categories 
of signals within and among these groups: positional informa-

tion (spread of gradients or signalling “counters”) and identity 
information (gene-expression levels). These elementary PF 
behaviors are induced and controlled by agent positions (see 
SA in previous subsection).  

Genetic regulation (GR). Finally, traditional SA and PF are 
often thought of in terms of stochastic events, i.e., collisions 
and fluctuations. By constrast, biological cells are not ran-
domly mixed but pre-positioned where divisions occur (before 
migrating). Genetic identity regions are not randomly distrib-
uted but highly regulated in number and position. They dy-
namically unfold in time, on the basis of simple calculations 
and decisions carried out by each agent at every time step. 
Agents contain a complete genotype G, of which they execute 
only a small portion at any time, depending on their current 
differentiation type and input from their neighborhood. 

From Biology to Engineering  

This study is inherently interdisciplinary, as it closely follows 
biological principles at an abstract level, but does not attempt 
to model detailed data from real genomes or organisms. Thus, 
it lies at crossroads between different families of works, from 
developmental and systems biology to artificial life, in par-
ticular spatial computing, evolutionary programming and 
swarm robotics. It is an original attempt to integrate the three 
mechanisms of SA, PF and GR discussed above. Only few 
previous theoretical models of biological development or bio-
inspired artificial life systems have combined them in various 
ways. The evo-devo works of [11, 17], or [19, 16] with lesser 
morphogenetic abilities, are among these notable achieve-
ments. Other interesting studies have explored the combina-
tion of two out of three: SA and PF, no GR—self-assembly 
based on cell adhesion and signalling pattern formation, but 
using only predefined cell types without internal genetic vari-
ables (e.g., [15]); PF and GR, no SA—non-trivial pattern for-
mation from instruction-driven intercellular signalling, but on 
a fixed lattice without self-assembling motion (e.g., [7]); SA 
and GR, no PF—heterogeneous swarms of genetically pro-
grammed, self-assembling particles, but in empty space with-
out mutual differentiation signals (e.g., [18]). 

Model 

This section presents a computational model, with illustrative 
numerical simulations, of programmable and reproducible 
artificial morphogenesis. The differential properties of cells 
(adhesion, division) are determined by the regions of gene 
expression to which they belong, while at the same time these 
regions further expand and segment into subregions due to the 
self-assembly of differentiating cells. The model can be con-
strued from two different vantage points: either (a) pattern 
formation on moving cellular automata, in which the cells 
spatially rearrange under the influence of their activity pattern, 
or (b) collective motion in a heterogeneous swarm, in which 
the agents gradually differentiate and modify their interactions 
according to their positions and the regions they form. 

First, the motion of a homogeneous swarm (pure SA) and 
the patterning by gradient propagation on a fixed swarm (pure 
PF) are introduced separately. Then, these two components 
are combined to form reproducible growing patterns 
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(SA + PF). The genetic program controlling these arrange-
ments inside every agent is also explained. Finally, this com-
bination is repeated as modules (SA

(k)
 + PF

(k)
) inside a larger, 

heterogeneous system to create complex morphologies by 
recursive refinement of details. All swarm formations pre-
sented in the figures result from actual simulations (in Java).  

Deployment of a Homogeneous Swarm (SA) 

Exploring the principles of multicellular development as an 
inspiration for self-organized artificial systems, the model 
incorporates two major aspects of cellular biomechanics: cell 
adhesion, in the form of elastic rearrangement, and cell divi-
sion (addressed in a later subsection). Schematically, a self-
assembling swarm is composed of agents or “puzzle pieces” 
described by their geometrical variables, motion dynamics 
and interaction network. In 2-D, each agent A has a position 
rA = (xA, yA), velocity drA/dt and shape at a certain orientation. 
In this model of swarm dynamics, agent shapes actually repre-
sent mutual adhesion affinities implemented by local interac-
tion potentials V(rA, rB) around the agents. Thus, swarm mo-
tion is caused by agent-centered forces derived from V. Here, 
simple discs of diameter rc are used, creating isotropic poten-
tials V(|| rA − rB ||) = V(rAB) in their vicinity. Similar to other 
collective motion models [21], V(r) consists of three parts 
(Fig. 1a): (i) infinite repulsion for r < rc representing non-
deformable particles, (ii) elastic (quadratic) attraction around 
an equilibrium distance re representing the resting length of 
small springs, and (iii) flat potential for r > r0 representing the 
absence of force beyond a certain “visibility” horizon. Agents 
interact through a dynamic network topology that depends on 
their positions. Edges A→B are created and removed accord-
ing to a given connectivity scheme, e.g., circular scope 
(rAB < r0), k-nearest neighbors, Delaunay triangulation, or a 
combination thereof. For low values of r0 and k = 6, these 
schemes are roughly equivalent. Starting from a compressed 
swarm, agents quickly relax to a resting state, in which they 
tend to form quasi-regular triangular meshes (Fig. 1c). Ex-

periments in the rest of this paper are based on the Delaunay 
triangulation with additional pruning for r > r0. 

Thus, at this stage, each agent in the swarm possesses 
(a) fixed “genetic” SA parameters, denoted by GSA (Fig. 1d), 
and (b) dynamic SA state variables—its position and connec-
tions with other agents. The genetic parameters consist of V’s 
parameters rc, re and r0. Typically, rc < re = 1 << r0 for attrac-
tive potentials, but V can also become neutral or repelling if 
r0 ≤ re. Repulsion will be later used between different types of 
agents (see last subsection about modular development).  

Propagation of Positional Information (PF-I) 

Pieces of a jigsaw puzzle are defined not only by their posi-
tion and shape but also by the “image” they carry. In the self-
organized swarm, this translates into state variables inside 
each agent that determine their PF activity. The present model 
distinguishes between two kinds of PF-specific state vari-
ables: gradient variables (PF-I) and pattern variables (PF-II), 
addressed in the next subsection. Gradient values propagate 
from neighbor to neighbor and establish positional informa-
tion across the swarm [23]. Pattern values are calculated from 
the gradient values and create different agent types, which in 
turn affect the SA behavior (see SA + PF integration below). 

Thus, agents not only interact mechanically according to 
the SA forces, but also exchange activity signals on the same 
graph edges according to PF rules. Halting the SA dynamics 
for now, let us consider a fixed swarm such as the one pro-
duced by Fig. 1b. Assume that one agent denoted by W con-
tains a counter variable nW = 0 and passes messages to its 
neighbors, instructing them to set their own nW to 1. These 
neighbors in turn instruct their neighbors to set nW to 2, and so 
on. To avoid back-propagation effects, the actual value of nW 
remains the minimum of all received values. The result is a 
roughly circular wave pattern centered on W (Fig. 2a), which 
represents a discrete approximation of a heat-like diffusive 
gradient in continuous space. Discrete counter increments are 
also the method of choice for spreading positional informa-

Figure 1: Deployment of a homogeneous swarm (SA; see text). 

(a) Agent-level interaction potential V similar to elastic springs. 

(b) Relaxation of a 400-agent swarm from an initially com-

pressed state (only half of the end state shown). (c) Same swarm 

without nodes, showing interaction mesh obtained by Delaunay 

triangulation and pruning of edges longer than r0. (d) Genetic 

SA parameters inside every agent (here, attractive mode only). 

Figure 2: Propagation of positional information (PF-I; see text). 

(a) Circular gradient of counters originating from source agent 

W in red (gradient ends in blue). (b) Opposite gradient coming 

from antipode agent E viewed by a cyclic color map. (c) Planar 

gradient triggered by agents WE, whose W and E counters are 

equal ±1. (d) Full coordinate compass on mesh, with midlines. 
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tion in amorphous and spatial computing systems [7, 16, 2]. 
In the present model, the role of source W can be transferred 
to another agent, thereby shifting the entire gradient landscape 
in successive corrective waves, as agents continually commu-
nicate with each other to adjust their counters. 

In parallel to W, assume that another gradient propagates 
from a source agent E located at a certain distance from W, 
e.g., at two antipodes of the swarm (Fig. 2a,b). All agents 
have now two counters, nW and nE. In the example of Fig. 2, 
nW = 0 and nE = 22 in W and conversely in E. Together, these 
two gradients define a midline across the swarm, denoted by 
WE. It is the subset of agents that are equidistant from W and 
E, i.e., nW ≈ nE, for example | nW − nE | ≤ 1 (see, e.g., [16]). 
Agents belonging to the WE midline become in turn the 
sources of a new gradient, creating a planar wave of nWE 
counters that propagates symmetrically toward W and E 
(Fig. 2c; nWE = 0 in WE, and 11 in W or E). Finally, assume 
that two other gradient sources, N and S, are located at two 
other antipodes of the swarm on the WE midline. This creates 
a second midline NS perpendicular to WE and a second planar 
wave of nNS counters (Fig. 2d). Each agent now has 6 count-
ers: nW, nE, nWE, nN, nS and nNS. Together, they establish a 2-D 
pattern coordinate system (X, Y) in the swarm—distinct from 
the physical coordinates (x, y) of the SA process—for exam-
ple by setting: X = sign(nW − nE)nWE, and Y = sign(nS − nN)nNS. 
To obtain normalized coordinates, each agent can also divide 
X and Y by local estimates of the global width w and height h 
of the swarm: X' = X /w, where w = maxA(nWE)/2 ≈ nWE + nW 
for X < 0 and w ≈ nWE + nE for X > 0—and similarly for the 
vertical axis, replacing X, W, E and w by Y, S, N and h.  

Naturally, the polar and equatorial locations of the four 
sources N, S, W and E are not imposed by hand, but are them-
selves the result of a self-organizing process via a feedback 
loop between gradients and sources. This is explained below 
in the subsection about SA + PF integration. 

Programmed Patterning (PF-II) 

On top of the coordinate system created by the gradient vari-
ables, each agent calculates another set of variables that are 

responsible for the swarm’s patterning or “image”. This proc-
ess represents the emergence of heterogeneity, i.e., the seg-
mentation of the swarm into different types of agents. In prin-
ciple, any arbitrary pattern I (at the level of resolution offered 
by the swarm) could be programmed into the agents as a di-
rect function of the gradient coordinates I(X, Y). However, for 
reasons explained below (see modular patterning), it is prefer-
able to proceed stepwise and let the swarm build itself in a 
modular fashion. The present model uses elementary patterns 
such as stripes and checkerboards. Naturally, unlike Turing 
patterns, each region is controlled here by a different gene set. 

A biological embryo is a swarm of cells, where each cell 
contains a gene regulatory network (GRN) coding for its sig-
nalling and mechanic behavior. Through intercellular cou-
pling between neighboring GRNs, the embryo becomes pat-
terned into identity regions of differentiated gene expression, 
creating a “hidden geography” revealed by in situ hybridiza-
tion. Essentially, logical combinations of regulatory switches 
(‘or’, ‘and’) translate geometric combinations of precursor 
patterns into new patterns (by union and intersection). Devel-
opmental genes are roughly organized in tiers or “genera-
tions”. Earlier genes map the way for later genes, and gene 
expression propagates in a cascade. This principle has been 
beautifully demonstrated in the Drosophila embryo (see [4]). 
The intersection of various striping patterns along its three 
main axes gives rise to smaller regions such as the organ pri-
mordia and “imaginal discs,” which are groups of cells mark-
ing the location and identity of the fly’s future appendages 
(legs, wings, antennae). Going back in time, the whole proc-
ess begins with concentration gradients of maternal proteins 
that diffuse across the initial cluster of cells and create the 
functional equivalent of a coordinate system, in a way similar 
to the PF-I process described in the previous subsection. 

The early striping process of Drosophila is controlled by a 
regulatory hierarchy containing five main tiers of regulatory 
genes [4]. The present model relies on a three-tier caricature 
of the same idea, the positional-boundary-identity gene net-
work [8, 9], which represents the genetic parameters of the PF 
process and is denoted by GPF (Fig. 3c). In each cell-agent of 
our 2-D virtual embryo-swarms, the bottom layer of GPF con-

Figure 3: Programmed patterning (PF-II; see text). (a) The same swarm in different colormaps to visualize the agents’ internal patterning vari-

ables X, Y, Bi and Ik (virtual equivalent of in situ hybridization in biology). (b) Consolidated view of all identity regions Ik for k = 1...9. 

(c) Gene regulatory network used by each agent to calculate its expression levels, here: B1 = σ(1/3 − X), B3 = σ(2/3 − Y), I4 = B1B3(1 − B4), etc. 
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tains the two positional variables X and Y seen previously; the 
middle layer, n “boundary” nodes {Bi}i=1...n; and the top layer, 
m identity nodes {Ik}k=1...m. Variables X, Y, Bi and Ik denote the 
gene expression levels or “activity” of the nodes. The bound-
ary nodes compute linear discriminant functions of the posi-
tional nodes: Bi = σ(wixX + wiyY − θi), where {wix, wiy}i=1...n are 
the regulatory weights from X and Y to Bi, parameter θi is Bi’s 
threshold and sigmoid function σ(u) = 1/(1 + e

−λu
). The effect 

of a boundary node is to segment the embryo’s plane into 
half-planes of strong and weak expression levels, 1 and 0 
(Fig. 3a, middle row). Finally, the identity gene levels are 
given by logical combinations of the near-binary boundary 
gene values, for example, by calculating the products 
Ik = ∏∏∏∏i |w'ki|(w'kiBi + (1−w'ki)/2), where w'ki ∈ {−1, 0, +1} rep-
resent ternary weights from Bi to Ik. This means that the i-th 
factor inside Ik can take three possible values: (1 − Bi), 0 or Bi. 

With this type of gene regulatory network, the “identity re-
gions”, i.e., the regions of high I expression, take the form of 
polygons at the intersection between several boundary lines 
(Fig. 3a, top row). When viewed together, they create a check-
ered pattern (Fig. 3b). These different colored regions repre-
sent different agent types and will be the starting point of new 
local SA and PF processes (see below). At this stage, similar 
to SA, each agent in the swarm also possesses (a) fixed “ge-
netic” PF parameters in GPF and (b) dynamic PF state vari-
ables—the gradient values n and the activity of GPF’s nodes. 

Simultaneous Growth and Patterning (SA + PF) 

After describing the self-assembly of a non-patterned swarm 
and the patterning of a fixed swarm, SA and PF are now com-
bined to create growing patterns (Fig. 4). Agents continually 
adjust their positions according to the elastic SA constraints, 
while continually exchanging gradient values and PF signals 
over the same dynamic links. This dual dynamics is guided by 
both genotypes GSA and GPF (Fig. 4d). Another mechanism, 
cell division, is also introduced at this point. Any agent A may 
divide with probability p at every time step and produce a new 
agent B, which is initially positioned a small distance from A 
with a random angle (Fig. 4c). Then the position of B and its 
neighbors rearrange under potential V as usual. Agent B inher-
its all of A’s attributes, including genotype GSA+PF and internal 
PF variables. It immediately starts contributing to the traffic of 
PF gradients that maintain the pattern’s consistency at all 
times in the swarm. 

From the SA point of view, a dividing swarm starting from 
few agents reliably grows through successive round shapes 
(Fig. 4a,c). In Fig. 1, the number of agents was constant and 
the expansion of the swarm was only due to elastic relaxation. 
In Fig. 4, agents are perpetually added while the swarm re-
mains approximately in mechanical equilibrium at all times.  
From the PF point of view, the pattern is also maintained at all 
times by the continual propagation and readjustment of the 
gradients but also by the continual self-positioning of the four 
source agents N, S, W and E. To achieve a well-deployed 
compass as the one of Fig. 4b, source migration rules are 
added. Each agent contains four binary variables or “source 
flags” sW, sE, sN and sS, which are 0 almost everywhere and 1 
in one of the four sources. According to the first migration 
rule, the W source must then always transfer value 1 of the sW 
flag to a neighbor that has a greater nE count than itself, and 

vice versa for E (same between N and S). This makes labels W 
and E move away from each other, hopping from agent to 
agent. The second migration rule stipulates that the W and E 
agents must also seek to minimize | nS − nN |, i.e., hop toward 
the NS midline (and symmetrically for N and S toward WE). 

Modular, Recursive Patterning (PF[k]) 

Embryological patterns do not develop in one shot but in nu-
merous incremental stages [6]. An adult organism is produced 
through gradual morphological refinement, following a cas-
cade of genetic regulation from precursor developmental 
genes to secondary genes, tertiary genes, and so on. Importing 
this critical feature into the present model, the above gene 
network GPF is extended to include a pyramidal hierarchy of 
network modules (Fig. 5g) able to generate patterns in a recur-
sive fashion. First, the base network GPF establishes main 
identity regions as before (Fig. 5a). Then a few subnetworks 
GPF

(k)
 further partition these regions into smaller identity com-

partments at a finer scale (Fig. 5e,f). The execution of GPF
(k)
 is 

triggered by the activity of node Ik in GPF. This means that all 
agents with a high value of Ik start trading new local gradient 
counters nW

(k)
 … nS

(k)
, nWE

(k)
 and nNS

(k)
 (Fig. 5c,d). 

Moreover, the sources of the four cardinal gradients are po-
sitioned at the borders of the Ik regions by “induction” from 
neighbors (Fig. 5b). This means that high-Ik agents set their 
source flags sW

(k)
 … sS

(k)
 to 1 if they are connected to agents 

from other regions Ik'. The exact flags that are switched on 
depend on the relative location of the regions, for example, 
sE

(4)
 = 1 for all I4 agents in contact with region I5, while 

sS
(4)
 = 1 for I4 agents in contact with I1, and so on (Fig. 5b,c). 

In cases where a particular gradient is missing because there is 
no adjacent border, e.g., the W sources in I4, its sources are 
created from the ends of the opposite gradient (blue circles in 
Fig. 5d). Locally, an agent can recognize that it is the end of a 
gradient if it is a local maximum of that gradient counter n 
with respect to its neighborhood. Thus, in addition to source 

Figure 4: Simultaneous growth and patterning (SA+PF; see text). 

(a) Swarm growing from 4 to 400 agents by division. (b) Swarm 

mesh, showing gradient sources and midlines continually maintained 

by source migration, e.g., N moves away from S and toward WE. 

(c) Detail: an agent B created by A’s division submits to SA forces 

and PF traffic. (d) Combined genetic programs inside each agent. 
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flags s, agents also contain “end flags” eW … eS that are 
switched on if the proper local-maximum conditions are 
filled. For example, eE

(4)
 = 1 (hence sW

(4)
 = 1) where nE

(4)
 is 

maximum, and conversely in region 6. 
Modular, recursive patterning is similar to the imaginal 

discs of Drosophila; once a region has been marked to be the 
future site of a leg, wing or antenna (high Ik activity), a local 
coordinate system of morphogen gradients arises inside this 
region to form that organ [4]. From the artificial-life engineer-
ing viewpoint, recursive patterning is also preferable to one-
shot patterning. In theory, Fig. 5f could also be produced by a 
direct I(X, Y) mapping, but as the swarm continues to increase 
it would require maintaining global gradients over longer dis-
tances and would be unstable. Building a complicated image 
I(X, Y) directly would also require maintaining a large number 
of pattern variables in each agent to implement every detail, 
and thus would be difficult to evolve. Modularity, by contrast, 
is an essential condition of evolvability [22]. In Fig. 5g, mutat-
ing GPF would modify the whole body plan of Fig. 5a, 
whereas mutating GPF

(4)
 or GPF

(6)
 would only modify the “or-

gans” of Fig. 5e. Moreover, without modules it would not be 
possible to have differential SA, necessary for the growth of 
morphogenetic structures and “limbs” other than blob swarms 
(see next subsection). Finally, modules can be reused, e.g., I4 
and I6 could point to a common GPF block. In summary, 
modularity is a desirable feature in genotypes just as in any 

software architecture or evolvable system. It seems that bio-
logical evolution discovered this principle naturally [3]. 

Modular, Anisotropic Growth (SA[k]) 

What is so far missing from the model is a true topological 
deformation dynamics, or “morphodynamics”, that can confer 
non-trivial shapes to the organic system beyond simple blobs. 
To this aim, agents must be able to diversify their SA charac-
teristics, depending on their PF type and spatial position, thus 
closing the feedback loop between SA and PF. In particular, 
they have to exhibit inhomogeneous, anisotropic cell division 
(varying p) and differential adhesion (varying V). For exam-
ple, the growth of limb-like structures can be achieved by a 
coarse imitation of meristematic plant offshoots. In this proc-
ess, only the tip or “apical meristem” of the organ is actively 
dividing at any time (Fig. 6). It is implemented here by letting 
agents have a non-zero probability of division p if and only if 
they are ends of a gradient (blue circles in Fig. 6c,d). These 
dividing cells can also control the angle of the “plane of 
cleavage”. For example, a daughter cell B spawned by cell A 
can be placed opposite to the center of mass of A’s neighbors 
(Fig. 6b). Almost equivalently, that position can be computed 
by factoring in the gradient values of the A’s neighbors, i.e., 
calculating a discrete estimate of the local gradient slope in A. 

Biological cells also stick to each other by means of adhe-
sion proteins that cover their membrane. A great diversity of 

Figure 5: Modular, recursive patterning (PF[k]; see text). (a) 9-region swarm, as in Fig. 4a. (b) Border agents highlighted in yellow circles. 

(c) Border agents become new gradient sources at a lower scale inside certain identity regions. (d) Missing border sources arise from the ends 

(blue circles) of other gradients. (e,f) Subpatterning of the swarm in I4 and I6. (g) Corresponding hierarchical gene regulation network. 

Figure 6: Modular, anisotropic growth (SA[k]; see text). (a) Genetic SA parameters are augmented with repelling V values r'e and r'0 used 

between the growing region (green) and the rest of the swarm (gray). (b) Daughter agents are positioned away from the neighbors’ center of 

mass. (c) Offshoot growth proceeds from an “apical meristem” made of gradient ends (blue circles). (d) The gradient underlying this growth. 
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these proteins gives cells the ability to selectively recognize 
one another, thereby modulating the intercellular adhesion 
force or “stickiness”. Some cells slide along one another with-
out attaching, while others form tight, dense clumps. In the 
simple elastic force model, differential adhesion can be mim-
icked by varying V’s parameters rc, re, and r0 depending on the 
agent types (Fig. 6a). For example, if agent A belongs to the 
limb region (green area) then V(rAC) is attractive (rc < re = 
1 << r0) for all neighboring agents C in that region, while it is 
repelling (r'0 < r'e) for all agents C outside that region (gray 
area). This can be decided locally by comparing the types of A 
and C, i.e., whether their respective highest-valued Ik nodes 
are the same or not. Just like inhomogeneous division, differ-
ential adhesion is an essential condition of complex shape 
formation [11, 15]. 

Modular Growth and Patterning (SA[k] + PF[k]) 

Putting everything together, full morphologies can develop 
and self-organize from a few agents (Fig. 7). These mor-
phologies are complex, programmable and reproducible. 
They are architecturally complex because they can be made of 
any number of various modules and parts that are not neces-
sarily repeated in periodic or trivial ways. They are program-
mable phenotypes emerging from the same genotype carried 
by every agent of the swarm (Fig. 7a). They are also repro-
ducible, as their morphological structures are not left to 
chance but dictated by the genotype. The exact agent positions 
at the microscopic level are still random, but not the 
mesoscopic and macroscopic regions that they form. 

The modularity of the phenotype is also a direct reflection 
of the modularity of the genotype: the hierarchical SA + PF 
dynamics recursively unfolds inside the different regions and 
subregions that it creates. Each SA

(k)
 + PF

(k)
 block can be re-

used, either by convergent Ik links (not shown here) or by 
exact duplication. It can also diverge from other blocks, i.e., 
receive different internal genetic SA and PF parameters that 
give each region a different morphodynamic behavior and 
activity landscape. Duplication followed by divergence is the 
basis of serial homology (e.g., vertebrae, teeth, digits), a ma-
jor natural evolutionary mechanism. The integration between 
SA and PF is controlled through the identity nodes Ik: just as 
these nodes turn on gene expression activity in subordinate 
GPF

(k)
 modules to create new local segmentation patterns, they 

also simultaneously turn on behavioral changes in subordinate 
GSA

(k)
 modules to create new morphodynamical behaviors. 

There remains to determine the scheduling policy of geno-
type execution inside each agent. When does an agent decide 
to follow the latest SA

(k)
 + PF

(k)
 branch opened by a new iden-

tity gene Ik? Since there is no centralized control in the swarm, 
module-switching decisions must be asynchronous. However, 
starting a new module k as soon as Ik’s activity is high would 
not be a good strategy, especially while the agent’s current 
region is still developing. For example, in the early stages of 
Fig. 4a, cells often change type (color) and should not start 
creating new subpatterns before they reach maturity. Thus 
there must be some regional synchronization mechanisms to 
help agents make scheduling decisions. The present model, 
however, only adopts a primitive clocked scheme based on the 
number of iterations. For now, all agents simply switch to the 
next SA

(k)
 + PF

(k)
 stage if their internal timer exceeds a time 

point tk set in advance and added to their genetic baggage. 

Discussion 

The goal of this work was to contribute to a better theoretical 
understanding of complex morphogenesis, especially biologi-
cal, in order to reproduce it artificially and pave the way for 
development-based evolutionary innovation. It presented a 
model of pattern formation in self-assembling swarms that 
contained a large number of agents and displayed complex but 
reproducible phenotypic emergence from a modular genotypic 
program. As embryomorphic engineering, it essentially advo-
cated a “fine-grain” approach to systems design based on rela-
tively simple programmed agents. Naturally, beyond the 
proof-of-concept simulations presented here, and other pre-
liminary work [8, 9], a more systematic exploration is needed. 
Next steps should involve the mass-production of virtual or-
ganisms to support (a) statistical analysis of shape and (b) 
evolutionary search based on module variation and function. 

Future Work 

From form to function. While the task of “meta-designing” 
laws of artificial development inspired from biology is chal-
lenging, it only constitutes the first part of an embryomorphic 
engineering effort. Another important question is functional 

Figure 7: Modular growth and patterning (SA[k] + PF[k]; see text). (a) Example of a three-tier modular genotype giving rise to the artificial 

organism on the right. (b) Three iterations detailing the simultaneous limb-like growth process (Fig. 6) and patterning of these limbs during 

execution of tier 2 (modules 4 and 6). (c) Main stages of the complex morphogenesis, showing full patterns after execution of tiers 1, 2 and 3. 
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meta-design: once a self-developing infrastructure is mature, 
what computing capabilities can it support? What do its cell-
agents and organ-regions actually represent in practice? In 
biological organisms, although cell physiology often partakes 
in development (e.g., electrical signals of neurons guiding 
synaptogenesis), there seems to be a broad distinction be-
tween developmental genes and the rest of the genome. In 
computing systems, these two modes could also be decoupled 
into two different sets of agent variables. After reaching de-
velopmental maturation, and while still fulfilling maintenance 
and self-repair tasks, morphogenetic SA and PF activity (i.e., 
division, position information and patterning signals) would 
give way to another type of activity subserving functional 
computation. Obviously, the type of computation would en-
tirely depend on the nature of the agents: processors, software, 
robot parts, mini-robots, etc. In fact, in many computing do-
mains, there is already a demand for precise self-formation 
capabilities. A multitude of micro-components containing the 
same code could self-organize without traditional VLSI preci-
sion or reliability [7, 16]. Mobile sensor and actuators could 
dynamically connect in self-managing networks [2]. Small-
footprint software objects could diversify and self-deploy to 
achieve a desired level of application functionality (e.g., “im-
mune” security). Articulated robotic parts, reconfigurable 
devices [14, 13, 10], or mobile robot formations [5] could 
also be guided by complex and controllable morphologies. 

From ontogeny to phylogeny. After growth and function, 
one must also define how the system evolves, i.e., how it var-
ies (randomly) and how it is selected (non-randomly). Differ-
ent selection strategies are possible, either focusing on pre-
specified forms, or pre-specified functions, or allowing un-
specified outcomes. When selecting for form, a hard reverse 
engineering problem must be addressed: given a desired phe-
notype, what is the genotype that can produce it? While de-
terministic reverse compilation is possible in some cases [16], 
parameter search is difficult in general. Fitness criteria that 
reward only the target shapes create jagged landscapes of un-
reachable peaks. A smoother approach is to define a “shape 
distance” as an increasing function of favorable mutations. It 
is conjectured here that this kind of gradual search might ac-
tually benefit, not suffer, from the high genotype dimensional-
ity of an embryomorphic model, compared to the direct map-
pings of genetic algorithms. Hierarchical gene regulatory net-
works might be better at providing the fine-grain mutations 
required by the gentle-slope search. Complex systems inher-
ently have greater variational power, as they allow 
combinatorial tinkering on highly redundant parts. 

However, beside gaining self-repair properties, why con-
strain a self-assembling system to produce a pre-defined 
shape? More benefits might come from such systems by se-
lecting for function while leaving freedom of form. Gradual 
optimization could rely on a distance of performance to pre-
defined goals, instead of shapes, allowing the most successful 
candidates to reproduce faster and mutate. Functional selec-
tion under free form is used in evolutionary robotic systems 
[14, 13], but mostly based on macroscopic genotype-
phenotype encodings. Here, too, a larger number of agents, 
such as in multicellular embryogenesis, could prove more 
favorable to a successful search. Finally, in a third scenario, 
specifications could be relaxed to the point of being open to 

surprise and harvesting unexpected but useful organisms from 
a free-range menagerie. Reconciling the antagonistic poles of 
“planning” and “autonomy” ultimately hinges on two com-
plementary aspects: (a) fine-grain variation-by-mutation 
mechanisms yielding a large number of search paths and 
(b) loose selection criteria yielding a large number of fitness 
maxima. With more search paths covering more fit regions, 
evolution is more likely to find good matches. 
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