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Abstract
We propose a theoretical, yet realistic agent-based model and simulation platform of animal embryogenesis, 
called MecaGen,1 centered on the physico-chemical coupling of cell mechanics with gene expression and 
molecular signaling. This project aims to investigate the multiscale dynamics of the early stages of biological 
morphogenesis. Here, embryonic development is viewed as an emergent, self-organized phenomenon based 
on a myriad of cells and their genetically regulated, and regulating, biomechanical behavior. Cells’ mechani-
cal properties (such as division rate, adhesion strength, or intrinsic motility) are closely correlated with their 
spatial location and temporal state of genetic and molecular dynamics (such as internal protein and external 
ligand concentrations) and affect each other concurrently. In a second part, we illustrate our model on artificial 
data (gene regulation motifs and cell sorting), then demonstrate a customization and application to a real bio-
logical case study in the zebrafish early development. We use as an example the episode of intercalation pat-
terns appearing during the first phase of epiboly and the movements of the deep cells between the yolk and 
the enveloping layer. A domain of the model’s multidimensional parameter space is explored systematically, 
while experimental data obtained from microscopy imaging of live embryos is used to measure the “fitness” 
of the virtual embryo and validate our hypotheses.

1  INTRODUCTION

The spontaneous making of an entire multicellular organism from a single cell ranks 
among the most exquisitely complex phenomena in nature. Through a precise spatiotempo-
ral interplay of genetic switches, chemical signals, and mechanical constraints, an elaborate 
form is created without any of its myriad of cells containing the explicit map of the result-
ing architecture. An eternal source of fascination for generations of philosophers, artists, 
and scientists, biological morphogenesis is the epitome of what can be called today a self-
organizing complex system. To follow the metaphor proposed by Enrico Coen in his book 
The Art of Genes (Coen 1999), it could be said that the embryo is similar to a “canvas that 
paints itself ” (where colors represent differentiated cell types) at the same time that it is 
growing and sculpting itself —both patterning and shaping affecting each other in a tight  
feedback loop.

Schematically, it means that the mechanical properties of cells, such as their division rate, 
adhesion strength, or intrinsic motility, are closely correlated with their current spatial loca-
tion and temporal state of genetic and molecular dynamics, such as concentrations of internal 

1 available at http://mecagen.org.
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proteins and external ligands, and affect each other concurrently. The genetic dynamics forms 
distinct morphogenetic fields (an emergent “hidden geography” on the embryo (Coen 1999)), 
while the mechanical dynamics causes these fields to expand, fold, and deform. The mech-
ano-genetic coupling operates at the scale of individual cells, but has consequences at multi-
ple scales across the entire embryo and throughout the whole developmental process. It 
creates a cascade of (non-self-similar) “fractal” re-patterning and re-shaping of the morpho-
genetic fields, which, as they are expanding, segment themselves again into subfields by fur-
ther spatial rearrangements and differentiation of cells.

In this introductory part, we propose a brief historical summary of developmental biology, 
born from classical embryology (Section 1.1), followed by a review of a few important fami-
lies of embryogenetic models, such as reaction-diffusion, morphogen gradients, cell shaping, 
and differential adhesion (Section 1.2). Then, we identify the common modeling challenges 
and principles that will constitute the basis of our generic model and platform, called 
MecaGen (Section 1.3). Its purpose is to contribute to the understanding of the coupled 
mechanical-genetic dynamics that drives the growth of a multicellular organism, through 
agent-based modeling and computational experiments.

1.1  Developmental biology

Biological development, also referred to as “embryogenesis” in the earlier stages, can be 
generally defined as a dynamical process leading a given organism to a certain morpho-
logical state. In that sense, studying development means investigating the mechanisms that 
preside over the coordination of cellular differentiation in an organism through space and 
time. The dynamics of morphogenesis, or “morphodynamics,” is far from steady, how-
ever, as embryos often alternate phases of drastic transformations with uniform periods 
dedicated to growth only. The most dramatic events occur in the beginning, when the egg 
divides into a great number of cells within a short time. These cells soon begin to per-
form a collective ballet of complex movements precisely coordinated by a complex web 
of physico-chemical interactions. It is interesting to note that this process never ends, the 
morphology of an organism undergoing constant change, albeit at smaller levels of detail, 
until senescence and death.

The definition of development has its own embryogenesis: it has also changed and reformed 
itself through the numerous discoveries and practical methods that have punctuated the his-
tory of the field. Four major periods are conventionally distinguished (Hopwood 2008): (a) 
pre-1880: classical descriptive embryology, (b) 1880–1930: classical experimental embryology; 
(c) 1930–1960: reconciling genetics and embryology, leading to developmental genetics; (d) 
1960-today: modern developmental biology, molecular genetics, and biomechanics.

Descriptive and experimental embryology: According to the old theory of preformation, organ-
isms were believed to simply unfold and expand from miniature versions of themselves, but 
not create new structures. In the 1820s, Christian Pander explained that development was actu-
ally based on the transformation of primitive sheets of tissue, called the germ layers. During the 
first half of the 19th century, under the influence of Johannes Müller, the cell theory attempted to 
unify the development of various observed eggs. Cells had then become the fundamental 
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building blocks of every living species in the minds of the scientists. Additionally, Robert Remak 
stated that every cell was produced by a preexisting cell, and introduced the concept of germ-
layer specificity in vertebrates, i.e. the fact that each layer (endoderm, mesoderm, and ectoderm) 
specified the type or fate of the cells originating from it (e.g. intestine, muscle, or skin cells).
In the 1880s, with the discipline of Entwicklungsmechanik (developmental mechanics), Wilhem 
Roux and others applied to embryos various kinds of perturbations (mechanical, thermal, 
chemical, or electrical) to study their effects. The key question was whether the differentiation 
of embryo parts was endogenous, calling it autonomous, or whether it was under external 
influence, i.e. dependent. Later, it was recognized that this debate had no definitive answer 
and reality was somewhere in the middle. Neither totally mosaic nor totally regulative, devel-
opmental principles strike a balance between both principles (Lawrence and Levine 2006). 
The early 20th-century embryologists refined these questions with new experiments such as 
grafts, in particular on the newt embryo, aimed at deciphering what determined cell fates. 
Ross Harrison introduced the concept of morphogenetic fields, then Hans Spemann and Hilde 
Mangold observed that a piece of tissue, the blastopore lip, when transplanted from the gas-
trula to another embryo, induced a neurulating process and the formation of a secondary 
embryonic axis. They called this tissue the primary embryonic organizer.

Developmental genetics: During the rise of genetics, Conrad Hal Waddington stressed the 
importance of genes in development as “controllers” of cellular fate. By comparing mutated 
Drosophila embryos, he observed that a presumptive tissue (the imaginal disc) could trans-
form into either a leg or an antenna. He illustrated his view by the concepts of epigenetic land-
scape and canalization, which he compared to grooves and bumps guiding a rolling “ball” 
symbolizing cell fate on a hilly terrain. We will use these Waddingtonian operational con-
cepts when coupling the mechanic and genetic parts of our model in Part 4. Developmental 
genetics established a new methodology for the study of embryology. Instead of perturbing 
tissues, mutant phenotypes were generated by modifying their genetic expression, especially 
by “knocking out” genes one by one and inferring their role in absentia. Such experiments 
were most systematically conducted during the 1980s by Christiane Nüsslein-Volhard and 
Eric Wieschaus in Drosophila (Nüsslein-Volhard and Wieschaus 1980) and several other model 
organisms, more recently in the zebrafish (Nüsslein-Volhard 2012).

Molecular genetics: The discovery of the operon-lactose mechanism by Jacob and Monod in 
1961 marked the start of the molecular genetic trend in embryology. It applied the idea of 
induction at the subcellular level by introducing genetic determinants, the regulator and opera-
tor genes, which explain how the rate of protein synthesis was controlled by the action of 
repressors. This crucial discovery reconciled the embryological orchestration of cell behavior 
with the molecular paradigm. The modern view systematized the role of genetic regulators by 
casting them into arrays of target sites for transcription factors (TFs) on the DNA (Arnone and 
Davidson 1997). Taken together, these arrays define a web of genetic interactions called a gene 
regulatory network (GRN), whose dynamics depends on the network topology and the various 
TF quantities. Since 2002 rapid progress in systematic sequencing and functional genetics has 
led to the publication of large-scale GRN maps, such as the one underlying the early pattern-
ing of the zebrafish embryo (Chan et al. 2009). GRN dynamics is initialized by various mater-
nal factors (Pelegri 2003), which are TFs already present in the egg and whose anisotropic 
distribution is also an important cause of the patterning of the body plan (Gavis and Lehmann 
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1992). Critically, it also involves communication capabilities through secretion, diffusion, and 
binding of extracellular ligands, which trigger transduction processes and subsequent modi-
fication of the cytoplasmic dynamics. More recently, a growing number of epigenetic regula-
tory mechanisms have also been identified, such as mechanotransduction, methylation, and 
other epigenetic modifications, notably “gene silencing” by RNA interference.

Cell biomechanics: Today, the post-genomic era is bringing back the cell as the integrator of 
the molecular and genetic machinery. Understanding precisely how the cell behaves physically 
has become a major question. Cell motility, cell adhesion, and membrane deformation are all 
part of the biomechanics underlying morphogenetic processes and their emergent features at a 
macroscopic level. As reviewed by Keller (2012), this field remained quiet for a long period 
but was recently revived. Keller distinguishes two notions in the physical shaping of embryos, 
already envisioned by Johannes Holtfreter in the 1930s: selective affinity modulated by adhe-
sion, and physical integration of multiple local cellular behaviors. In particular, Holtfreter 
observed that cells from different germ layers mixed together were still able to recognize their 
lineage origins and adopt different preferential association or “affinities” accordingly. In the 
1960s, Malcom Steinberg refined this idea into the Differential Adhesion Hypothesis (DAH) 
(Steinberg 1962), stating that cells are both cohesive and mutually motile in such a way that 
the interfacial surface tension leads the ensemble toward the most stable configuration. These 
concepts form the basis of more recent quantitative approaches of cell biomechanics in cul-
ture and in vivo (von Dassow and Davidson 2011).

1.2  Models of embryonic development

Although the works cited above made important theoretical hypotheses and proposed 
key ideas to explain development, they did not propose formal models per se, whether of a 
mathematical-analytical or a computational type, i.e. they performed no symbolic or numeri-
cal processing. In recent years, however, an ever increasing number of theoretical and quan-
titative models and simulations of development have emerged. In this section, we provide a 
small sampler of studies that constitute typical illustrations of the most common modeling 
and simulation paradigms currently in practice.

Reaction-diffusion systems: A historical landmark in the advent of developmental models 
was established by Alan Turing in 1952 with his work on “The chemical basis of morphogen-
esis” (Turing 1952). He proved that ordered patterns, such as stripes and spots of alternating 
color, could spontaneously arise from the amplification of unstable fluctuations in an initially 
homogeneous substrate. This idea was further elaborated and popularized by Gierer and 
Meinhardt in the 1970s (Gierer and Meinhardt 1972). They showed that, by combining “a 
short-range positive feedback with a long-range negative feedback,” they could generate all 
possible Turing patterns. Typically, a pigmented medium such as an animal coat could 
undergo spontaneous symmetry-breaking by diffusion and reaction of an activator substance 
with an inhibitor substance, called morphogens, characterized by two different decay rates and 
distances (Meinhardt and Gierer 1974). This was also demonstrated by abstract models of 
vertebrate skin patterning, such as the stripes of the angelfish, implemented in cellular 
automata (Young 1984; Kondo and Miura 2010).
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However, this did not imply that the in vivo mechanisms were actually understood. 
Although reaction-diffusion models can theoretically account for all sorts of patterns, biologi-
cal striping phenomena where this framework applies are much more rare. For example, it is 
now established that the gene expression patterns in the Drosophila segmentation cannot be 
explained by reaction-diffusion models (Bieler et al. 2011). The zebrafish pigmentation offers 
another contrasting example of pattern that does not form via reaction-diffusion stricto sensu, 
i.e. based on putative molecules diffusing at long range, but rather via a “combination of 
other signaling mechanisms that have long and short functional distances” (Inaba et al. 2012).

Morphogen gradients and positional information: Most biological systems distinguish them-
selves by strong morphological features, i.e. an elaborate shape and body plan architecture, 
which are much more sophisticated than texture-like pattern formation. The precisely arranged 
body shape of animals, made of articulated segments and subparts, is not the result of free-
forming random instabilities, but rather a “genomically guided” morphogenesis process. This 
aspect can be better captured through the paradigm of positional information (PI) introduced by 
Lewis Wolpert in the 1960s (Wolpert 1969, 2011). At an abstract level, the key idea is simply that 
cells must establish long-range communication system that allows them to create different parts 
of the organism in different locations. It is inevitable that some form of PI should be at work in 
multicellular organism development, embodied in various ways, for example via passive diffu-
sion of morphogens spreading throughout the tissue or cell-to-cell intermediate-messenger sig-
naling (Lawrence 2001; Lander et al. 2002; Tabata and Takei 2004).

Several experimental techniques have been developed to study these modes of morphogen 
propagation (Kicheva et al. 2012). In any case, they all give rise to concentration gradients, 
either in the extracellular matrix (ECM) or in the cells’ cytoplasm. In effect, PI is a genuine 
coordinate system that self-organizes by decentralized chemical signaling among cells. Recurring 
at multiple levels of details in a (non-self-similar) fractal fashion, it constitutes the basis of an 
entire “hidden geography” covering the embryo, following Enrico Coen’s image (Coen 1999), 
and is also employed in abstract models of development and artificial life systems (Eggenberger 
1997; Kumar and Bentley 2003; Doursat 2006). On the other hand, a major issue with concentra-
tion gradients is their robustness (Barkai and Shilo 2009). Since gradient diffusion and signal 
propagation are highly noisy and approximative, the stability of the emergent structures is 
believed to rather emerge from a combination of PI and gene regulation, in particular via some 
“attractor dynamics” in the GRN (Kauffman 1969; Reinitz and Sharp 1995), amidst the con-
tinually changing spatial environment of the growing organism (Rolland-Lagan et al. 2012).

Epithelial cell shaping and division patterns: A relatively recent interest in epithelial tissue 
modeling has generated a certain number of models focused on cell shaping, distribution of 
neighborhood sizes, and division axis fields. In (Gibson et al. 2006), the authors use a Markov 
chain model to explain the evolution of the distribution of cell shape in the Drosophila epithe-
lium. They propose that cell proliferation, not cell packing, is responsible for the shaping of 
cells in monolayered epithelia. The model is generalized and compared to different organ-
isms. Other investigators (Farhadifar et al. 2007) contend that physical forces, in addition to 
cell division, are also required to explain epithelial cell shape in the wing disc of Drosophila. 
They use a vertex-based model in which vertices represent intersections between the junc-
tions linking wing cells. Forces are derived from an energy function that takes into account 
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cell elasticity, cortical tension, and intercellular adhesion. The model is tested on experimen-
tal data obtained by laser ablation.

Sandersius et al. (2011) have investigated epithelium patterning before and during the 
primitive streak formation in the chick embryo. For them, against Gibson et al. (2006), non-
spatial Markov models are not sufficient to explain the histogram of number of neighbors in 
proliferating-only epithelium. They argue that any attempt to improve biological plausibility 
of this type of model (e.g. with 3-sided cells or asynchronous division) induces a deviation 
from, instead of a refinement of, the “standard” histogram observed in various species. On 
the other hand, they show that their own geometrical epithelium model (based on a 
“Subcellular Element Model,” Section 2.1) predicts the histogram with growth rate being the 
unique meaningful parameter.

Differential adhesion and cell sorting: The concept of patterning and compartment forma-
tion through cell sorting by differential adhesion, which was developed by Steinberg under 
the name of Differential Adhesion Hypothesis (DAH), is both powerful from a theoretical point 
of view and for its adequacy to describe the biological systems in agreement with typical 
biological observations at the tissular, cellular, and molecular level. Theoretical modeling and 
computer simulation in 2D and 3D of DAH-based cell sorting have been repeatedly carried 
out. In 1992, Graner and Glazier published their seminal cellular Potts model (Graner and 
Glazier 1992; Glazier and Graner 1993). Other theoretical frameworks were used to simulate 
similar processes: Broadland and Chen favored a finite element model (Brodland and Chen 
2000), Landsberg et al. developed a vertex model for a network of adherens junctions to simu-
late the formation of compartments in Drosophila embryogenesis (Landsberg et al. 2009; Aliee 
et al. 2012), Beatrici and Brunnet explored the possibility to achieve cell sorting solely by 
motility differences in a model of self-propelled particles (Beatrici and Brunnet 2011).

The relevance of DAH has been reinforced by the characterization of cell adhesion mole-
cules and their quantitative contribution to the surface tension in aggregates, thus providing a 
molecular basis to cell sorting (Foty and Steinberg 2005). The nature of the dependency between 
the surface tension of an aggregate and the cadherin expression level has also been explored 
theoretically (Zhang et al. 2011). More recent studies have tried to experimentally distinguish 
the respective contribution of cell adhesion and cortex tension in cell-cell contact formation, cell 
sorting, and tissue segregation. Heisenberg, Paluch, and colleagues approached these issues in 
zebrafish early development and the segregation of embryonic progenitors (Maitre et al. 2012).

1.3  Toward common modeling principles

Most of the models reviewed in the previous section were focused on specific aspects of 
development, whether certain episodes of embryogenesis localized in space and time, or par-
ticular mechanical or genetic components of the dynamics. The ambition of the MecaGen 
project is to integrate all these dimensions into one comprehensive, or in toto, framework.

In biological systems, three levels of organization are generally considered: the subcellu-
lar level (in which the individual elements are molecules), the cellular level (cells), and the 
organism level (tissues and organs). Even though cell-cell mechanical and chemical interac-
tions are ultimately grounded in the same physics of molecular interactions (covalent, ionic, 
hydrogen, and electrostatic bonds), they seem to obey their own laws and “cell behavior 
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ontology” on a higher phenomenological level. Therefore, designing a model of multicellu-
lar development requires identifying custom laws at each level—as the reductionist dream 
of a huge atom-based simulation is not conceivable or just completely impractical. This 
involves a mix of continuous and discrete approaches, bringing analytical, statistical, and 
agent-based computational models together.  Several works have ventured proposing such 
integrated frameworks at various degrees of completion and with different emphasis: mul-
tiscale mechanical forces (Blanchard and Adams 2011; van Leeuwen et al. 2009), multiscale 
pattern formation (Grima 2008; Little and Wieschaus 2011), multimodel and simulation plat-
forms such as CompuCell3D (Izaguirre et al. 2004; Cickovski et al. 2007; Swat et al. 2008), or 
multiscale abstract models and artificial life systems (Doursat 2008; Joachimczak and Wróbel 
2008; Schramm et al. 2011; Doursat et al. 2012).

The two major groups of mesoscopic properties that appear in most of these studies, and 
constitute the foundation of our own model, are (a) biomechanical properties and  
(b) genetic regulation and molecular signaling properties. The key toward understanding 
the morphogenesis and systemic properties of the organism lies in the coupling of both. It 
concerns how (b) influences (a) through the production and modulation of the cytoskele-
ton, molecular motors, and cell adhesion, but also how (a) influences (b) through the trans-
duction of mechanical stress. The modeling work should identify the appropriate level of 
schematization, i.e. capture the essential causal relationships without going into fine molec-
ular details.

Typical systemic properties of living organisms, such as development, autopoiesis or 
homeostasis, can only be understood through a complex systems approach of their underly-
ing biological processes. Complex systems are composed of a great number of small ele-
ments that interact locally and produce a collective behavior in a decentralized and 
self-organized fashion. Concerning embryogenesis, this perspective requires new experi-
mental methods, in particular the use of animal models chosen for their accessibility, trans-
parency, and phylogenetic position. The originality of MecaGen is to directly confront the 
level of the complexity of living processes, something that biology has so far partly evaded 
in its traditional attempts to address the “function” of single genes, or dissect subcellular 
processes in isolated cultured cells. Now that the pieces of the puzzle have been (more or 
less) well identified, it is time to try and integrate them all together at the level of thousands 
of genes and millions of cells in order to see the big picture of the growing organism.

In the remainder of this chapter, the two modules, MECA and GEN, are explained 
separately, then coupled in Parts 2–4 (Figure 16.7 for a preview of the main components 
of the model and their relationships). The resulting agent-based simulations create an “in 
silico” embryo, i.e. a virtual test object that can be manipulated and measured in ways 
impossible with a real embryo. Next, Part 5 shows two illustrations on artificial data: gene 
regulation motifs and cell sorting, and Part 6 demonstrates a custom application of 
MecaGen to a real biological case study: the zebrafish early development. We take as an 
example the intercalation patterns appearing during the first phase of epiboly and the 
movements of the deep cells. Measures from the simulated embryo are confronted to mea-
sures extracted from microscopy imaging. The goal is to show that the parameters of our 
model can be tuned to validate the simulations, hence draw biologically meaningful con-
clusions. Finally, Part 7 offers a critical discussion of the choices made and perspectives 
for future work.
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2  MECA: MODEL OF CELL BIOMECHANICS

In this first part of the model, we formalize the mechanical interactions and behav-
ioral properties of the cells. We begin with a brief review of various biomechanical models  
(Section 2.1), in continuous or discrete spaces, of geometrical or physical nature, paying closer 
attention to off-lattice, particle-based methods, which will be the basis of our own approach. 
Next, we present a discrete-element model using one particle per cell, driven by an overdamped 
equation of motion (Section 2.2) of the type λ �vi = �FP

i + �FA
i , where �vi is the velocity of one  

cell i, �FP
i  represents “passive” interaction forces controlling cell stiffness and adhesion (Section 

2.3), and �FA
i
 represents “active” interaction forces, i.e. specific cell behavior, such as protru-

sive activity or apical constriction, based on polarization axes. (Section 2.4). These forces are 
calculated by adding contributions from cells j in the neighborhood Ni of cell i, defined by 
topological criteria.

2.1  Challenges in biomechanical modeling

Through his theory, Wilhelm Roux established the importance of mechanics in the study of 
developmental systems. Since then, a great number of theoretical models of biomechanics have 
been proposed at various levels of abstraction—and speculation. Depending on the researchers’ 
background and their focus of interest, embryogenesis has been assimilated to differential geom-
etry, pattern formation, fluid dynamics, material physics, systems architecture, cellular autom-
ata or collective motion, among many disciplines. In particular, the growth and shaping of cells, 
tissues and organs have been variously compared to manifolds, balloons, tensegrity structures, 
bubbles, swarms, and so on. This diversity is due to the extremely elusive nature of multicel-
lular systems compared to the traditional objects studied by classical mechanics. Whereas the 
Newtonian framework is well suited to fixed objects presenting high spatiotemporal regulari-
ties, living matter is riddled with heterogeneity, irregularities, and ceaseless internal adaptivity. 
Local cell behaviors and global tissue properties can change rapidly as they rest upon a molecu-
lar structure in constant flux and state of self-reorganization. Therefore, this heterogeneity of 
behaviors gave rise to a heterogeneity of models, unfortunately not always compatible with each 
other. Nonetheless, these attempts are useful to help capture pieces of the puzzle and bring us 
closer to a more accurate and complete rendition of organism development.

We distinguish here between “macroscopic” models relying on continuous space and 
“microscopic” models relying on discrete elements. The latter will constitute the basis for the 
particle-based approach that we follow in our own model.

Macroscopic viewpoint: continuous-space laws: Macroscopic descriptions of the embryo set 
behavioral laws directly at the global tissular level without explicit underlying cellular or 
molecular components. They are generally based on macroscopic partial (spatial) differential 
equations, which have the benefit of compactness, as they offer an inclusive representation of 
development in one or a few formulas. On the other hand, the main disadvantage of grand 
formalisms is often too much generality or vagueness, with a consequent lack of operational 
tools. In any case, cell tissue in this paradigm is construed as a continuous mass, equivalent to 
an infinity of infinitesimal points. Mathematical biology (Murray 2003) epitomizes the continuum 
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mechanics paradigm, which is broadly divided into solid mechanics and fluid mechanics  
approaches. A distinctive feature of solids and fluids is their unequal ability to resist the action 
of a tangential shearing force. Both fields distinguish different types of bulk behavior and both 
have been applied to biological matter and multicellular tissue. In the case of fluids, stresses are 
linked to velocity fields through a continuity equation and conservation laws. In the case of 
solids, stresses are linked to a deformation tensor (strain) (Fleury 2005).

Microscopic viewpoint: discrete-element rules: Microscopic descriptions of biological tissue 
consider the cells that constitute it (sometimes the subcellular structures and molecules, too)
as autonomously acting components. It is their collective behavior that determines the 
mechanical properties of the tissue at the emergent level. As the elements of discrete models 
do not always coincide one-to-one with cells (being possibly subcellular or supracellular), 
they are alternatively called “particles.” Their properties generally include spatial coordi-
nates and geometric features, and optionally mechanical and physical properties. There are 
four main groups of discrete models, depending on whether particles are confined to a dis-
crete grid or not, and whether cells are made of several particles or only one: (i) on-lattice 
models with one particle per cell, corresponding to cellular automata (extensively reviewed by 
Deutsch and Dormann (2005)); (ii) on-lattice models with multiple particles per cell, essen-
tially represented by the Cellular Potts Model (introduced by Graner and Glazier (1992) and 
best exemplified by Marée and Hogeweg (2001)); (iii) off-lattice models with one particle per 
cell, composed of a 2D/3D irregular network whose vertices represent cells and edges repre-
sent cell-cell interactions (typically as in the Delaunay-Object-Dynamics model by Schaller and 
Meyer-Hermann (2004)); and (iv) off-lattice models with multiple particles per cell, in which 
the fine grain of subcellular particles is preserved (most notably the Subcellular Element Model 
(ScEM) of Newman (2005)). The framework we eventually adopted in MecaGen belongs to 
category (iii) and its specific features are explained below.

2.2  Central equation of cell motion

The biomechanical model presented here is a type of particle-based physics, meaning that 
cells are represented by “particles”—here, only one per cell. The classical Newtonian equation 
of motion describing a particle with mass m and acceleration �a reads m�a = �F( �X, �v, R), where the 
sum of forces �F can depend on the particle’s location �X, velocity �v, and/or radius R. Cells, how-
ever, are small, ambivalent fluid-solid entities, and their interactions are “sticky,” which makes 
their inertial forces negligible with respect to viscosity (corresponding to a low Reynolds num-
ber). In that case, applied forces become proportional to velocity, not acceleration: if m ≪ λ, 
then m�a = −λ�v + �F yields λ�v = �F.

Generalizing to a multicellular swarm S, the motion of each cell i is governed by the sum 
of forces �Fij exerted by all other cells j belonging to its neighborhood Ni:

where �FP
i  represents “passive” interaction forces, �FA

i  represents “active” interaction forces 
(explained in Sections 2.3 and 2.4), and the damping coefficient is proportional to the surface 

(16.1)λi�vi =
∑

j∈Ni

�Fij =
∑

j∈Ni

�FP
ij + �FA

ij = �FP
i + �FA

i
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area of the cell: λi = λ0Ri
2. The neighborhood Ni is calculated in two steps: first, a preselection 

of potential neighbors that obey certain metric criteria, then a refinement of this list according 
to topological features (Figure 16.1). According to the metric criteria, two cells of radius Ri, Rj 
and locations �Xi, �Xj are considered neighbors if their distance is smaller than a cutoff value:

In the following, we denote rij =

∥

∥

∥

�Xi − �Xj

∥

∥

∥
 and rmax

ij = cmax(Ri + Rj), i.e. rij ≤ rmax
ij  for neighbor 

cells i and j. Although cells are “spheroidal,” they also have the possibility to deform in order 
to interact with farther away neighbor cells. Radius rmax

ij  sets the maximum distance of this 
deformation. To evaluate cmax, we established an empirical law relating rij to the contact area 
between i and j, denoted by Aij, such that it vanishes for rij = rmax

ij :

In the absence of real data, we constructed an artificial testbed experiment to infer an approxi-
mate relationship. It consisted of an ellipsoidal domain that was filled with three consecutive 
generations of dividing cells, then distorted in various ways to force the cells into different 
spatial rearrangements. We found the best empirical fit for values a = 1.3697 and cmax = 1.2414
, which are used throughout the model.

A purely metric neighborhood, however, is not viable as it often leads to collapsing volumes 
during simulation when adhesion between interacting cells is high. This is why we ultimately 
used a topological neighborhood denoted by N t

i , based on a variant of the Voronoi diagram and 
its dual, the Delaunay triangulation, called a Gabriel graph. In 2D, this method imposes that no 
node be found inside the circle whose diameter is a valid neighborhood edge. We generalized 
the Gabriel criterion to the 3D case using spheres as follows:

(16.2)N
m
i =

{

j ∈ S :

∥

∥

∥

�Xi −
�Xj

∥

∥

∥
≤ cmax(Ri + Rj)

}

.

(16.3)Aij = A(rij, Ri, Rj) = a(rij − rmax
ij )

2 iff rij < rmax
ij , otherwise 0.

(16.4)N
t
i =

{

j ∈ N
m
i : ∀k ∈ N

m
i ,

∥

∥

∥

∥

�Xk −
1

2
( �Xi +

�Xj)

∥

∥

∥

∥

≥
rij

2

}

.

FIGURE 16.1  Output of the neighborhood algorithm. Left: A 2D swarm of cells characterized by various given 
positions and radii. Right: The neighborhood links (black edges, radiating from the centers) and contact areas (red 
edges, tangential to the circles) between cells calculated by the method described in this section. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this book.)
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2.3  Interaction potential forces
For every pair of neighboring particles (i, j) we focus in this section on the interaction potential 

EP
ij from which the “passive, or relaxation” force �FP

ij is derived. Like most particle-based interaction 
potential models, we distinguish three distance domains (Figure 16.2): (a) a repulsion domain 
(decreasing E) at distances shorter than an equilibrium distance defined by req

ij = c
eq

i Ri + c
eq

j Rj, 
where ceq

i  is a coefficient that may depend on the cell; (b) an attraction domain (increasing E) at 
distances greater than req

ij ; and (c) a neutral domain (constant E) beyond the maximum limit of the 
interaction field rmax

ij = cmax(Ri + Rj).
Toward short distances, as soon as two cells touch each other, adhesive forces tend to 

increase their contact area Aij until inner resistance compensates the push. This implicitly 
defines an equilibrium surface area and distance. Accordingly, the expression of the relax-
ation force is made of three parts:

where Aij = a(rij − rmax
ij )

2 is the contact area introduced earlier, while the depth of the well is 
controlled by a repulsion coefficient wrep until req

ij  and an adhesion coefficient wadh beyond req

ij .
In the previous section, we estimated a universal average value for coefficient cmax based on 

empirical statistics of the contact areas between neighboring particles. Here, we need to esti-
mate the equilibrium coefficients ceq

i  of the relaxation forces. For this, we rely on the densest 
arrangement of sphere packing, in which each sphere touches 12 other spheres, as an approx-
imation. In this scenario, we obtain a uniform value ceq

i ≡ ceq = (π/(3
√

2))
1/3

≃ 0.904.

(16.5)�FP
ij =



















−Aijwrep(rij − r
eq

ij ).�uij if rij < r
eq

ij

−Aijwadh(rij − r
eq

ij ).�uij if rij ≥ r
eq

ij and rij < rmax
ij

�0 if rij ≥ rmax
ij

FIGURE 16.2  Plot of the interaction potential EP  with distance, under various values of the adhesion 
coefficient wadh. The relaxation force �FP is derived from EP. Curves are composed of three domains: repulsion at short 
range (until the minimum, i.e. F = 0), attraction at mid-range (after the minimum), and neutrality at long range 
(constant F). See text for details.
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2.4  Behavioral forces

Another crucial difference with solid objects is that surrounding cells are responsible 
not only for dampening motion but also for motion itself. To progress, a cell needs to 
cling and push back surrounding cells, somewhat like a swimmer pushes back water to 
move forward. Thus, in addition to the passive attraction/repulsion forces �FP

ij, we intro-
duce proactive behavioral forces �FA

ij , composed of an “intrinsic” term �FA,int
ij  and its “extrinsic” 

counterpart �FA,ext
ij , whose purpose is to provide a schematic model of the cells’ specialized 

biomechanics. During development and across numerous species, cells manifest a wide 
variety of mechanical properties and behavioral phenomena. We focus here on one such 
mechanism, cellular protrusion, which we believe is the main driving force in the zebrafish 
early gastrulation.

2.4.1  Protrusion behavior
Cell protrusion is essentially a cyclic activity, similar to the activity of tracked vehicles 

(such as tanks) except that, since inertia plays no part in cellular interactions, adhesion is 
regulated in a special way to avoid sliding between the cell surfaces in contact. Protrusive 
activity induces an intercalation of the cell between its neighbors. One condition is the pres-
ence of an axis of polarization, which is generally related to the diffusion of external ligand 
molecules and an asymmetrical distribution of internal substances (explained in Part 4). 
This axis can also be caused by mechanotransduction from neighboring cell-cell contacts, 
or feedback from the active forces themselves, but these aspects are not modeled here. In 
any case, it determines two regions of the cell, or poles, where protrusive activity occurs: 
if only one pole is active, the cell is called “monopolar”; if both are active, it is called 
“bipolar.”

At the subcellular level, the main structure underlying protrusion is the cellular scaf-
folding of the cytoskeleton, whose three main components are microfilaments (similar to 
an “envelope” that contracts and dilates), intermediate filaments (“cables” exerting a ten-
sion), and microtubules (“beams” resisting compression). To explain protrusion, we focus 
on the microfilaments, which constitute most of the cell cortex, a mesh-like network made 
of actin and myosin molecules that lie just below the plasma membrane and are attached 
to it by catenin molecules. The active deformation of this acto-myosin network, essen-
tially by (re)polymerization of actin, provides the driving mechanism of protrusion 
(Figure 16.3).

The coupled action of acto-myosin cortex and the focal adhesion points form a sort of 
“treadmill” originating at the tip of the protrusion (Figure 16.4). This movement induces a 
torque transmission between the protruding cell and each of the neighbor cells attached by 
focal adhesion points. The transfer of cell material in the bulge results from the “intrinsic” 
force generated by the acto-myosin cortex, while the “extrinsic” force is exerted on the adja-
cent cell through the focal adhesion points. In some cases, an additional mechanism of cellu-
lar contraction at the back of the cell (not included here) amplifies the intrinsic force. We 
assume that the distribution of focal adhesion points is homogeneous on the surface area of 
the cell, so the quantity of torque transmitted between two neighboring cells i and j is propor-
tional to their contact area Aij.
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FIGURE 16.3  Cellular protrusion illustrated at the subcellular level. A cell is attached to its neighbors by molec-
ular bridges (essentially cadherin molecules, symbolized by thin orange edges), which actively deform their internal 
acto-myosin cortical network in the direction of the polarization axis (blue mesh of lines and curves) indicated by the 
internal chemical gradient (yellow-green shades across the cell). A bulge eventually appears at the active pole, push-
ing away neighboring cells. No intercalation process would be observed, however, without a precise regulation of the 
adhesion contacts between the cells. Thus, in addition to the regular adhesion bonds, special focal adhesion points 
(thick red edges carrying numbers) also appear at the surface of the protruding region of the cell. These bonds bear 
extra load generated by the protrusive activity of the acto-myosin cortex. They become visible around the tip of the 
bulge and, as the cell is advancing, maintain spatial cohesion between neighboring cytoskeletons. Without them, the 
cell would slip on the surface and the efficiency of the protrusion would be greatly reduced. Focal adhesion points 
gradually disappear from the cell membrane as the cell advances relatively to the bonded neighbors. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web version of this book.)
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FIGURE 16.4  Idealized view of the protrusive activity in MECA. Internal arrows represent the cell interior flow 
and external arrows the cell neighborhood flow, as the central cell exerts a protrusion over its surroundings. The 
schematized focal adhesion points of Figure 16.3, which appear at the tip of the cell, move back then disappear as the 
cell moves forward. 

FIGURE 16.5  Schematic representation of active protrusive forces in MECA. See text for details. These schemas 
illustrate the formalization of the idealized mechanism of Figure 16.4 in the particle-based framework. (a, b) The 
polar domain (green slice) of cell i, denoted by N t+

i , contains two neighbor cells j and k, over which i exerts a protru-
sive force. “Intrinsic” forces are shown in green and extrinsic forces in red. (a) Highlighting one pair of opposite 
forces. (b) Forces produced by i’s activity. (c) Forces produced by j’s activity if j, too, happens to be protruding. (d) 
The net resulting “active” forces (not shown) are obtained by adding the net resulting “int” (thick green) and “ext” 
(thick red) arrows on each cell. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this book.)
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2.4.2  Active force model

In our particle-based framework, the mathematical interpretation and representation of 
this mechanism is the following (Figure 16.5a): a cell i possesses a normalized polarization 
axis �Ui (black arrow), considered given in this part. Inside N t

i , we denote by N t+
i  the sublist of 

neighbors that make contact with cell i on its “positive” pole, i.e. are positioned relative to i 
in the same general direction as �Ui (green pie-slice domain, covering two cells j and k in the 
figure):

A threshold value η controls the relative size of the protrusion (the opening of the pie slice). 
Similarly, we denote by N t−

i  the sublist of neighbors that share a contact area on the “nega-
tive” pole of the cell, i.e. away from the polarization vector. This opposite neighborhood is 
used in the case of an opposite monopolar or a bipolar protrusion behavior.

In the regular monopolar case illustrated here, for each neighbor j ∈ N
t+
i , a pair of equal 

and opposite forces contribute to the motion of both i and j: an intrinsic force �FA,int
ij  (larger 

dashed green arrow in Figure 16.5a) and its simultaneous and exact counterpart �FA,ext
ji  (larger 

dashed red arrow), such that �FA,ext
ji = −�FA,int

ij . The common axis of these forces is designed to 
roughly emulate the profile of the contact area that can be seen in the polygonal representa-
tion of Figure 16.4 (but not in the disc-particle representation of Figure 16.5). It is a linear 
combination of the unitary protrusion axis �Ui and its orthogonal complement �U

⊥j

i  passing 
through j:

where the angle ν tunes the profile of the contact area (small dashed arrows resulting in the 
larger dashed arrows in Figure 16.5a) and coefficient f A tunes the intensity of the force. The 
angle could be precisely calculated as a function of the angular position of each neighbor, but 
we deemed such sophistication unnecessary and opted instead for a constant value of 
arctan(4/3) ≈ 53◦ (experiments with other values around 45° showed no significant 
difference).

Suppose for now that only cell i exerts a monopolar protrusive activity on its neighbors 
(Figure 16.5b). For each j ∈ N

t+
i , this creates a pair of forces �FA,int

ij  and �FA,ext
ji  as described above. 

Therefore, the total behavioral force generated by i’s protrusion (solid green arrow, not neces-
sarily parallel to �Ui in 3D) is the sum of its neighbors’ contributions: �FA,int

i = �FA,int
ij + �FA,int

ik  
(dashed green arrows). Similar, if j also protrudes, then an equivalent set of forces is created 
around it (Figure 16.5c, symmetric of Figure 16.5b). In that case, combining both protruding 
activities from i and j, each cell in the neighborhood can be the site of both intrinsic and extrin-
sic forces (Figure 16.5d): the former come from its own protruding activity (green arrows), the 
latter from the protruding activity of its neighbors (red arrows). In this particular illustration, 
the third cell k is not protruding, thus its own total active force is only made of extrinsic com-
ponents coming from i and j. The sum of “int” and “ext” forces on i (resp. j and k) yields the 

(16.6)N
t+
i =







j ∈ N
t
i :

�Xj − �Xi
�

�

�

�Xj −
�Xi

�

�

�

· �Ui ≥ η







(16.7)�FA,int
ij = f AAij.

(

cos(ν) �Ui + sin(ν) �U
⊥j

i

)
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net “active” force on this cell (not shown in Figure 16.5d), which corresponds to �FA
i  (resp. �FA

j  
and �FA

k ) in its motion equation. Each net active force leads a cell to move alongside its neigh-
bors and pass through.

Finally, at the scale of the whole embryo, the net global force resulting from this complex 
field of local intrinsic/extrinsic active forces is zero, due to their mutual compensation: 
�FA

≡
∑

i

∑

j∈Ni

�FA
ij =

∑

i
�FA

i = �0. This is a reasonable expectation, as the relative movements of 
cells with respect to each other (protrusion, constriction, migration, etc.) should not have the 
effect of moving the embryo but only reshaping it.

Summary: The biomechanical model MECA proposes basic rules that are sufficient to simulate 
the physics of a high number of cells in a deforming tissue. Among its original features, we 
have defined a new neighborhood based on an adaptation of the Gabriel rule to 3D sets of par-
ticles; we have obtained a new approximation of the classical inter-particles force potential (of 
the Morse or Lennard-Jones type) by scaling an elastic potential via an estimation of the contact 
area; we have also distinguished “passive” interaction forces, responsible for simple attraction 
and repulsion, from “active” interaction forces, responsible for more complex cell behaviors 
such as protrusion. Altogether, these modeling choices allow us to carry out massive computa-
tional simulations and explore large domains of parameter space relatively quickly (Part 6).

3  GEN: MODEL OF GENETIC REGULATION AND MOLECULAR 
SIGNALING

The goal of this part is to briefly review the principles of gene regulatory networks (GRNs) 
and chemical signaling, and describe the corresponding components of our model. The molecu-
lar and genetic interactions occurring during development are a subject of intense research 
(Wilczynski and Furlong 2010; Ben-Tabou and Davidson 2009; Giacomantonio and Goodhill 
2010), at the crossroads between bioinformatics, systems biology, and chemical kinetics. 
Nonetheless, we believe that relevant insight can already be gained by adopting three simple 
and easily computable types of rules: (1) a set of rules driving the dynamics of intracellular 
gene/protein reactions (Section 3.1); (2) rules driving the dynamics of cellular secretion and 
transduction, linking the intracellular with the extracellular milieu (Section 3.2); and (3) rules 
driving the dynamics of extracellular reactions, transport, and diffusion (Section 3.3).

These rules are generally expressed in a chemical kinetic framework by ordinary differen-
tial equations (ODEs) of the type dp/dt = f (p, g, q, r), where p represents protein concentra-
tions, g gene expression levels, q external ligands, and r membrane receptors. Extracellular 
reactions, transport, and diffusion of ligands are also taken into account via partial differen-
tial equations (PDEs) involving ∂q/∂t and fluxes �J = −D �∇q.

3.1  Intracellular gene and protein reactions

Protein concentrations p = {pa} representing the various protein types Pa inside the cell can 
evolve through (i) protein-protein reactions, (ii) synthesis by encoding genes, or (iii) degrada-
tion by the molecular environment. Conversely, gene activities g = {gb} are regulated by the 
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proteins (bypassing RNA) via Boolean functions representing a logical combination of pro-
moters and repressors. For example, two protein reactants yielding one protein product can 
be formalized by the following reaction and rate equations:

where k′
= kp0 is the linear “pseudo-coefficient” of the reaction, assuming that P0 is predomi-

nant (p0 ≫ p1) and its variations negligible, γa is a linear rate of Pa’s synthesis by encoding gene 
Ga, and κa is a constant rate for Pa’s degradation.

Conversely, the activity of a gene Gb can be enhanced by the presence of promoting tran-
scription factors (TFs) and/or the absence of repressing TFs. Here, a TF is assumed to be one 
of the proteins Pa and we denote by Pa � Gb its structural ability to bind one of the cis-regula-
tory sites of Gb (regions of DNA near the gene sequence). Since multiple TFs may simultane-
ously influence a single gene, a binary matrix Ŵ = {Ŵab} is a well-suited schematization (Peter 
et al. 2012):

where θab is the concentration threshold above which protein a effectively binds site b. Then, 
the activity of gene Gb is determined by the output of a logic function fb, a combination of the 
Boolean operators and, or, and not: gb(t) = fb (Ŵ(t)). For example, if fb is a pure and operator, 
then all promoters must be present and all repressors absent to activate Gb. If it is a pure or 
operator, then a single promoter suffices.

3.2  Signal secretion and transduction

Cells in the developing embryo communicate chemically through various means. Two 
of the most common mechanisms are: (a) secretion, typically by exocytosis, of proteins or 
metabolites through the cell membrane, and (b) transduction via receptors in the membrane, 
by which a signal triggers a second messenger on the other side. The interfacing module con-
nected to the GRN that exports and imports these molecules will be generically named here 
ligands. A ligand Qa can be externalized from the cellular domain into the space between cells, 
called “interstitium,” with a secretion rate σa. Conversely, an extracellular signal can be trans-
duced into an intracellular protein through a signal transduction module, comprising a recep-
tor protein Rab on the membrane, to which Qa can bind and trigger the intracellular synthesis 
of protein Pb. The corresponding kinetic equations are not detailed here.

3.3  Extracellular reactions, transport, and diffusion

Various models of the spatial configuration of the interstitium have been elaborated (Kojić 
et al. 2010), but we prefer using the graph of neighborhood relationships Ni derived from 
the Gabriel rule (Section 2.2) to serve as transport infrastructure. The diffusion dynamics 
is based on Fick’s law, stating that ligands move from high- to low-concentration regions 

(16.8)P0 + P1

k
→ P2 with







ṗ1 = −k′p1 + γ1g1 − κ1

ṗ2 = +k′p1 + γ2g2 − κ2

(16.9)Ŵab(t) = 1 iff Pa � Gb and pa(t) ≥ θab, otherwise 0
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proportionally to the gradient of concentration. Therefore, a discrete approximation of the flux 
of ligand Qa on the edge between cell i and j, denoted by �Ja,ij, reads

where qa,i is the ligand’s concentration near the surface of cell i, Da a diffusion coefficient, �uij the 
unit vector from i to j, and rij = ||�uij|| (Figure 16.6). Note that this expression is invariant by rever-
sal of direction. Then, the temporal evolution of the concentration is determined by the continuity 
equation, which is a local form of conservation law. The divergence theorem gives the integral 
form of the continuity equation, applied to the volume of the cell. Its continuous expression is

where �Ja,i =
∑

j
�Ja,ij is the total flux of ligand a with respect to cell i, �dA is the normal vector of 

the closed surface of the cell, sa,i is the “source” term corresponding to the rate of ligand pro-
duced by secretion, and da,i is the “sink” term corresponding to the rate of extracellular ligand 
Qa disappearing by transduction (terms from Section 3.2 not detailed here). Finally, importing 
the previous discrete approximation, we obtain

Summary: The GEN model of genetic regulation and molecular signaling provides a new 
adaptation of the classical reaction-diffusion framework to a moving substrate. The 

(16.10)�Ja,ij = −Da

qa,j − qa,i

rij

�uij

(16.11)
∂qa,i

∂t
+

∫∫

O

�Ja,i. �dA = sa,i + da,i

(16.12)
∂qa,i

∂t
= Da





�

j∈N
t
i

Aij

rij

(qa,j − qa,i)



 + sa,i + da,i

FIGURE 16.6  Schema of the flux of ligand. Here, �J represents �Ja,ij = �Ja,ji, the flux of ligand Qa between the cellular 
volumes occupied by neighboring particle-cells i and j.
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discretized form of the ligand diffusion equation relates the local concentrations of ligands to 
the cells’ positions. As a consequence, the ligand patterns can be modified by deformation of 
the tissue. Moreover, each cell can independently harbor chemical “reactions” organized into 
genetic and molecular processes that are modeled by differential equations and Boolean oper-
ators. Communication between the intracellular protein quantities and the extracellular 
ligand quantities is achieved by transduction and secretion modules. Similarly to the MECA 
part, these features allow running simulations that involve thousands of cells in reasonable 
computing time.

4  MECAGEN: MODEL OF MECHANIC-GENETIC COUPLING

This last part lays out the foundations of an integrated morphogenetic model linking bio-
mechanics (from Part 2) and genetic regulation/molecular signaling (from Part 3). To this 
goal, it proposes a “cell behavior ontology” (CBO) relating cell states to cell behaviors. Ideally, 
a complete model would “plug” the MECA and GEN modules into each other via this CBO, 

FIGURE 16.7  Flowchart of the complete MecaGen model, illustrating its core principles. Three modules are 
described in this chapter. (1) A particle-based framework supports both the biomechanics (3D cell space, Part 2) and 
the extracellular diffusion (3D ligand space, Section 3.3). (2) Intracellular molecular signaling and genetic regulation 
are modeled by a GRN via differential equations and Boolean operators (Section 3.1). (3) A cell behaviorontology 
(CBO) is also discussed in  Section4.1. Here, we temporarily simplify this diagram by introducing a custom cell dif-
ferentiation tool, the Waddingtonian Timeline Specification (WTS, Section 4.2), which allows us to test the other 
mechanisms in artificial contexts (Part 5) as well as real biological scenarios (Part 6).
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as illustrated in Figure 16.7. For the moment, however, we restrict ourselves to a simplified 
scheme bypassing the actual molecular and genetic processes on the GEN side. Kinetic equa-
tions are replaced with predefined cell states, or cell types, serving as entries into a “lookup 
table” containing one set of output values per cell type or pair of cell types. Only the diffu-
sion dynamics of Section 3.3 is preserved here. This continuous-to-discrete abstraction has 
been commonly practiced (Thomas 1973) and will allow us to test the mechanical hypotheses 
introduced in MECA.

4.1  Cell behavior ontology

First, biological systems modeling requires the choice of an ontology, i.e. a hierarchy of 
predefined categories and relationships among them. Here, the appropriate candidates are 
the various cell behaviors that occur during a developmental process. In our model, we pro-
pose a simpler mapping between the dynamical rules of MECA and those of GEN. Ideally, 
mechanical properties should “emerge” from the regulative molecular microstructure, repre-
sented by a certain subset M of intracellular protein concentrations pi = {pa,i}a∈M. In particu-
lar, genetic output should determine the values of the two main mechanical parameters: the 
adhesion coefficient wadh of the relaxation forces (Section 2.3), and the polarization axes �Ui 
determining active protrusion (Section 2.4). In principle, such parameters are local functions 
of pairs of cells (i, j) via (pi, pj). Instead, they depend here on pairs of cell types, denoted by 
(T , T ′

). For example, the adhesion coefficients become wadh
T T

′ = wadh(pT , pT
′), where pT  is typi-

cally an average over {pi}i∈T . Other features, such as cell cycle length and cell volume control, 
are always decoupled from genetic regulation, and receive fixed parameter values. Yet other 
mechanisms, such as cell death and the structure of the extracellular matrix (ECM), are not 
included for now.

4.2  Waddingtonian timeline specification

We “read out” behavioral parameters of the CBO directly from a new tool that we call a 
Waddingtonian Timeline Specification (WTS, Section 1.1), for which a dedicated graphical user 
interface was created (Figure 16.8a). The first step in setting up a WTS is to “carve the hillside” 
by specifying a temporal series of cell types {T (i, t)} that cells may adopt during the develop-
mental process, along with the transition rules among these types. To this aim, we segment 
the timeline into stages delimited by particular points in time {t1, t2, . . .} at which new cell types 
may be introduced. For example, Stage 2 corresponds to the time interval [t2, t3). During any 
given stage, cells may transition from one existing type to another type under the rules speci-
fied in a table (see next). The overall WTS structure can be represented by a pseudo-tree of cell 
types, with lateral transfers among the branches, expanding over time.

4.2.1  Differentiation table D

To specify the conditions inducing a cell to change its type, we rely on the classical concept 
of differentiation. In our simplified model, cell differentiation depends on a Wolpertian posi-
tional information mechanism (Section 1.2). During stage S, corresponding to interval [tS, tS+1), if 
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the local ligand concentration qa,i of molecular species Qa on cell i crosses (i.e. either exceeds or 
sinks below) a given threshold θa, then cell i changes types. Generally, the new type is a func-
tion of the current type via a differentiation operator D represented by a ruleset or “lookup table” 
predefined for each stage S (Figure 16.8b), which we denote by DS. This table is organized in 
modules indexed by triplets composed of the ligand species, their differentiation thresholds, 
and the threshold signs. A module can be denoted by T (i, t) ← DS

[

T (i, t), {(Qa, θa, ǫa)}a∈M

]

 , 
where the sign ǫa expresses whether the condition is about an exceeding or a sinking concen-
tration, which can be written ǫaqa,i ≥ ǫaθa.

FIGURE 16.8  Waddingtonian timeline of cell types {T (i, t)} and differentiation table D. (a) The gray bar at 
the top is the time axis (oriented left to right), segmented into stages S = [tS, tS+1). The colored horizontal branches 
symbolize the types that cells can potentially take, corresponding to the grooves of a Waddingtonian landscape. 
Here, five stages in the timeline indicate the onset of one type (red), two types (red and blue), …, until five types 
(red, cyan, green, blue, yellow). Differentiations, i.e. type transitions, may happen within each stage, for example 
shown here in Stage 3: the three thin dashed arrows represent the differentiation table ((b), see below), indicating 
that type red may become green, green may become red, and blue may become green. In this WTS graphical 
interface, stages can also be selected manually to specify their parameters (next figures): here, Stage 5 is selected 
by clicking on t5, which is represented by gray circles on all the type nodes. (b) Differentiation table D3 represent-
ing the possible type transitions during Stage 3. It contains three differentiation modules displayed in one col-
umn, one module by origin type. In each module, the current cell type T (i, t) is represented by the round-corner 
frame color, the target cell type by the color (or id) of the bottom-right block, and the ligand-threshold-sign triplet 
(Qa, θa, ǫa) by the top-left block’s color (or id), bottom-left block’s value, and top-left block’s value. Each cell 
changes its type depending on whether ǫaqa,i ≥ ǫaθa. Bottom right: The generic template of one differentiation 
module inside one origin type, as followed by the other three modules. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this book.)
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4.2.2  Passive adhesion table P
Once the differentiation backbone of the WTS has been established, the adhesion coefficient 

parameters of relaxation forces �FP
ij can be specified for each pair of cell types, thus we can 

denote them by wadh
T T

′ for i ∈ T  and j ∈ T
′. Since passive adhesion forces are symmetrical, we 

have wadh
T T

′ = wadh
T

′
T
 and these values can be organized into a triangular T × T

′ matrix, denoted 
here by P. An example can be seen in Figure 16.11.

4.2.3  Ligand sinks and sources table L
At each stage S, we define sources and sinks for each ligand through another table denoted 

LS. Each cell type can potentially secrete or absorb any ligand type Qa. Additionally, the spa-
tial configuration of the ligand sources must also be specified. The module used for this type 
of specification can be seen in the example of Figures 16.11 and 16.16. We define, per cell 
type, the id of the ligand and the geometrical border of the volume of secretion. Assuming a 
spherical embryo, an orthonormal coordinate frame is set up along the animal-vegetal (AV) 
axis, antero-posterior (AP) axis, and bilateral symmetry left-right (LR) axis. On each axis, we 
define two cutoff values to extract a slice, then take the intersection of all three slices to define 
the source region of ligand release. Several such source regions can be defined per cell type. 
Thus the spatial ligand source table is composed of sextuplets of cutoff coordinate values for 
each ligand inside each cell type module. External sources of ligands, such as the yolk (see 
example in Figure 16.16), may also be added.

4.2.4  Active protrusion table A
Finally, once the ligand sources/sinks table L is defined, the “active” cell behavior 

can be set up by adding other behavioral modules for a given cell type at a given stage. 
To this aim, we define an active protrusion table A composed of modules associated to 
an origin cell type, whose parameters are explained below. Every “active” cell behavior 
exploited in MecaGen requires a polarization axis. In real cells, polarization correlates with 
an asymmetry of intracellular molecular concentrations. In our model, since we adopted 
one particle per cell, there can be no spatialization of intracellular material. Thus we chose 
to represent this asymmetry by 3D vectors �Ui passing through the centers of the cells 
(Section 2.4). More precisely, a cell i can be potentially polarized by multiple mechanisms 
as the developmental process unfolds, corresponding to multiple “candidate” polariza-
tion axes. These modes of polarization determination can be: (a) a local gradient-based 
or “chemotactic” mode (one of the possible GEN-to-MECA coupling links), (b) a cell-
cell contact propagation mode or (c) a force-induced mode (both of the MECA-to-MECA 
sort), and (d) a default mode used only if a polarized cell has no input to trigger any of 
the above three mechanisms, in which case the axis is randomly reoriented until another 
polarization mode takes over.

When a new polarization axis �U ′

i has been calculated via one of these four modes, the cur-
rent axis is updated through an inertia coefficient ω according to �Ui ← ω �Ui + �U ′

i, followed by 
renormalization to keep the vectors unitary. In the remainder of this chapter, we only use the 
chemotactic mode (a) to modulate the dynamics of protrusion with ligand diffusion (beside 
the default mode (d), which is only a random reset). The hypothesis underlying mode (a) is 
that a cell is able to detect an asymmetry of extracellular ligand concentration in its local 
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vicinity. Accordingly, the candidate axis of polarization is calculated by a linear average of 
the neighborhood edges �uij, in which the weights are functions of the differences in ligand 
concentrations:

where qa,i is the local quantity of extracellular ligand Qa surrounding i (Section 3.3), and m is 
an integer controlling the sensibility of detection of local concentration differences (m must be 
odd to conserve vector directions, typically m = 3).

Putting these features together, each module of the active protrusion table A is composed 
of four parameters (see example in Figures 16.11 and 16.16):

•	 the target cell type T ′ that the protrusion is affecting,
•	 the chosen index among all the various candidate axes of protrusion { �Ui}, which can be 

calculated here only by one of the ligand-based mode (a) or random mode (d),

(16.13)
�U ′

i =
∑

j∈N
t
i

(qa,j − qa,i)
m

�uij

FIGURE 16.9  “Double negative gate” GRN subcircuit and protein concentration dynamics. Top: Network 
map. Bottom: Evolution of protein concentrations in the region where X is expressed. See text for the explanation of 
the curves’ profile. The tagged vertical bars a, b, c, and d indicate the timing of the snapshots shown in Figure 16.10. 
The curve of Target1 (pink) is hidden by the curve of Target2 (blue) as their dynamics is exactly the same. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this book.)
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•	 the intensity f A of the protrusive force (Section 2.4; the length of the dashed arrows in 
Figure 16.5),

•	 a ternary value equal to +1 if the cell is monopolar in the direction of N t+
i , −1 if it is 

monopolar in the opposite direction N
t−
i , or 0 if it is bipolar i.e. protruding in both 

directions.

Summary: The Waddingtonian timeline concludes our modeling framework. It is a novel, yet 
limited, method of specifying cell behaviors through space and time. It allows a partial exploi-
tation of the principles involved in MecaGen but is sufficient to start exploring the mechanical 
space and coupling principles. We now illustrate this framework on artificial data (Part 5), 
then on a biological case study of intercalation patterns in the zebrafish early development 
(Part 6).

5  ILLUSTRATIONS ON ARTIFICIAL DATA

5.1  Gene regulation motifs
This section offers a glimpse of the possibilities of our genetic regulation and molecu-

lar signaling model through a simple, idealized example. We follow here Eric Davidson’s 
article “Emerging properties of animal gene regulatory networks” (Davidson 2010), which 
describes various small GRN subcircuits, showing their involvement in embryonic devel-
opment, and focus on one of them: the double negative gate. Our example is a small part of 
the sea urchin embryo’s GRN (Peter and Davidson 2009; Davidson 2009) allowing the acti-
vation of a series of genes in a specific region of the embryo under the control of localized 
expression, represented by protein X (Figures 16.9, 16.10). The interesting feature of this 
circuit is that X does not directly promote the set of regulated genes (Target1 and Target2), 
but rather inhibits inhibitors of these genes (Repressor1 and Repressor2). The net effect is 
that the target genes are expressed in a particular region of the embryo and shut down 
everywhere else.

We illustrate the dynamics of this particular motif in an artificial cell population compris-
ing 4,886 cells laid out in a thin 3D space delimited by two planes at a distance equivalent to 
two cell diameters (Figure 16.10). The cells are assumed immobile, in a mechanical equilib-
rium state, and no active forces are present.
•	 In the beginning, protein Ubiquitous (present in all cells) activates at the same time genes 

Target1 and Target2 and their repressor Repressor2, so that only the protein encoded by 
Repressor2 is expressed ubiquitously (Figures 16.9a and 16.10a).

•	 At a later point in time, protein X is introduced in one region of the cell population by 
switching its concentration rate in these cells to a constant value of 0.1 unit per time step. 
In parallel, all proteins have a similar degradation rate of 0.99 unit per time step, so that the 
concentration of X tends toward an equilibrium quantity of 10 units.

•	 As soon as the concentration of X exceeds a binding threshold θX,Rep1 = 1 on the cis-
regulatory element of Repressor1, the corresponding protein is produced at a rate of 0.1 
unit per time step. (Figures 16.9b and 16.10b).

•	 Once the concentration of protein Repressor1 exceeds in turn another threshold θRep1,Rep2 = 9,  
the Repressor2 gene state is switched to 0 via the and Boolean function relating the 
Repressor1 and Ubiquitous transcription factors.
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•	 Finally, the concentration of Repressor2 protein, which is no longer produced by its encod-
ing gene, decreases by degradation. Once it passes below concentration thresholds 
θRep2,Tar1 = θRep2,Tar2 = 9 on the sites of genes Target1 and Target2 via another AND operator, 
the target genes start to be expressed in the spatial region of the X protein (Figures 16.9c 
and 16.10c).

The temporal evolution of all proteins is shown in Figure 16.9, and their spatial map in 
Figure 16.10.

5.2  Cell sorting
A main point of MecaGen is that a cell’s motility is due to its protrusive activity. In this 

section, we illustrate this principle through an abstract simulation of cell sorting. Historically, 
spontaneous cell rearrangement is one of the multicellular phenomena most studied by 

FIGURE 16.10  Spatial evolution of protein concentrations in the double negative gate experiment. The letters 
correspond to the bars of Figure 16.9. Each image is composed of six simultaneous views of the simulated cell popu-
lation. View location (correlated with color) represents the protein type, from left to right and top to bottom: 
Ubiquitous, X, Target1, Target2, Repressor1, Repressor2. Shade represents the protein concentration (dark for low, 
bright for high). The top left corner of each image is the region where protein X is artificially secreted.
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theoretical models, notably the Differential Adhesion Hypothesis (DAH) (Steinberg 1962) 
and the Cellular Potts Model (Graner and Glazier 1992) (Section 1.2). These models often use 
a “temperature” parameter, derived by analogy from thermodynamics and corresponding to 
an intrinsic cell motility coefficient (Zhang et al. 2011), which controls membrane fluctuations 
and sorting efficiency. We perform here a similar experiment, but explore our own parameter 
ontology based on the orientation of the polarization axis. We start from the same cell tissue 
as Section 5.1 with the essential difference that cells can now move but not change types. In 
the WTS framework presented above, it means that we are zooming inside one stage S with 
only two horizontal cell type lines, one red and one green, and no transition arrows between 
them, i.e. no differentiation table D. Initially, cells are randomly assigned one of two cell 
types: a “red” cell type Tred and a “green” cell type Tgrn, creating two populations of fixed size.

Passive adhesion table P: Taking after the DAH, we postulate that both cell populations 
have a strong homotypic adhesion, i.e. a large adhesion coefficient wadh for the passive forces 
exerted between cells of the same type, and a weak heterotypic adhesion, i.e. a small adhesion 
coefficient between cells of different type. Using our previous notations from Section 4.2, this 
results in a simple two-type table P (Figure 16.11c) with one high value wadh

T T = wadh
T

′
T

′ = 1.0 and 
one low value wadh

T T
′ = wadh

T
′
T

= 0.1, where T , T ′ stand for Tred, Tgrn.

FIGURE 16.11  Tables for the cell sorting experiment. See definition in Section 4.2 and text for details. (a) Active 
protrusion table A: protrusion behavior here is heterotypic, i.e. cells act only upon neighboring cells of a different 
type. Axis id 1 (resp. 2) is the gradient-based polarization mode (a) with ligand 1 (resp. 2). (b) Ligand diffusion table 
L: both cell types secrete both ligand types Q1 and Q2 with the same rates s1 = s2 = 200, in simulation units. They do 
this, however, only if they enter one of the source regions on either vertical border of the domain. (c) Passive adhe-
sion table P.
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Ligand table L: Polarization axes are specified by the ligand-based chemotactic mode (a) (Section 
4.2). Two different ligand molecular species are secreted, Q1 and Q2, and both types of cells Tred and 
Tgrn are potential sources for these ligands with the same secretion rates s1 and s2 (Figure 16.11b). 
No cell absorbs any ligand, so there is no boundary condition on the low concentration end. On 
the high concentration end, however, there is a spatial constraint on where the ligand sources are 
located: two rectangular domains are predefined on the left and right border of the frame, and 
whenever a cell of any type enters the right (resp. left) domain, it starts secreting Q1 (resp. Q2).

Active protrusion table A: In this particular experiment, the protrusive behavior is hetero-
typic, i.e. red cells protrude on the green cells only, and vice versa. It means that the active 
mechanical interactions described in Figure 16.5 occur at the interface between the two popu-
lations, not within populations. Another rule is that Tred cells respond only to the gradient 
created by ligand Q1, and Tgrn cells only to Q2. The rest of the active protrusion table A (Figure 
16.11a) concerns the protrusion force intensity f A and the polarity, which is +1 here for both 
cell types, meaning that all cells protrude in the uphill direction of their preferred gradient. 
The net effect is that red cells orient their polarization axis toward the left border (higher q1 
concentration values) and green cells toward the right border (higher q2).

Results: Although cells collectively exhibit a clear sorting behavior (Figure 16.12), we 
observe that the boundary line between the two populations does not become flat, as 

FIGURE 16.12  Ligand-based heterotypic protrusion, planar diffusion sources. See text for comments. Two hid-
den ligands are diffusing from the left and right borders of the cell bilayer. Green (right-half) cells’ polarization axes 
are oriented toward the right source and red (left-half) cells’ axes toward the left source. Each cell type is exerting 
monopolar protrusion over the other cell type (heterotypic contacts).
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would be expected from a classical DAH study. In the present experiment, all cell polar-
ization axes �Ui are roughly colinear and aligned with the horizontal direction. This is 
because at later stages (here, after time step 3500), the profile of the boundary line between 
the red and green populations is directly related to η, the dot-product limit determining 
the “positive” polar neighborhood N

t+
i  centered around �Ui (Section 2.4; pie slice in 

Figure 16.5). Due to this limit, a green cell near the boundary line, which protrudes toward 
the right side of the tissue, does not have any more red cells in its polar neighborhood, 
therefore the equilibrium state of tissue dynamics displays a jagged boundary line. In 
conclusion, the manner in which protrusion behavior is modeled here is not sufficient to 
obtain the smoother boundary of regular cell sorting phenomena, and would require 
additional mechanisms.

6  BIOLOGICAL CASE STUDY: INTERCALATION  
PATTERNS IN THE ZEBRAFISH EPIBOLY

The zebrafish early development is the site of multiple morphogenetic events that illus-
trate the links between microscopic cell behaviors and macroscopic deformations. We choose 
to examine more closely and treat one of these events by modeling and simulation in order to 
illustrate the applicability of the MecaGen framework to biological data.

6.1  Hypotheses and model

We focus here on the first phase of a major developmental event, the epiboly, occurring 
between 3.3 hours postfertilization (hpf) and 5.5 hpf. It is characterized by a flattening of the 
deep cell mass and its spreading over the yolk cell toward the vegetal pole (Figure 16.13). 
At 3.3 hpf, or “high stage,” the deep cells lie on top of the yolk, sandwiched between the 
yolk syncytial layer (YSL) and a population of newly differentiated epithelial cells, called 
the enveloping layer (EVL). The interface between YSL and EVL is called the “margin.” As 
flattening occurs, the deep cells start to intercalate radially, i.e. migrate from the depth of the 
blastoderm toward its surface. The qualitative description highlighted by the names of the 
developmental stages, “high,” “oblong,” and “sphere,” refers to the flattening of the blasto-
derm and suggests that the overall shape of the embryo becomes gradually closer to spheri-
cal. Then, at 5.3 hpf, i.e. about 50% of the epiboly stage, the yolk bulges inside the blastoderm, 
forming a dome shape until the depth of the blastoderm is uniform over all latitudes.

While intrinsic deep cell behaviors are supposed to be responsible for most of the deforma-
tion of the embryo at these stages, we cannot exclude an active participation of the YSL or the 
newly differentiated EVL to the epiboly. In the present case study, we use two kinds of mea-
sures: macroscopic measures characterizing the doming phenomenon, and microscopic mea-
sures characterizing the intercalation patterns, in order to show that the intrinsic behavior of 
deep cells is sufficient to trigger upward yolk bulging (doming motion) and downward mar-
gin progression toward the yolk’s equatorial latitude. In this context, we also evaluate how 
the YSL margin and the EVL’s tangential stiffness modulate the deep cells’ driving force.
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6.1.1  Passive margin sliding scenario

We envision five possible, but non-exclusive scenarios explaining how the margin moves 
toward the vegetal pole (Figure 16.14): (i) the internal YSL (iYSL) actively spreads over 
the yolk (in its cortical region), carrying both the deep cells and the EVL margin with it; 
(ii) the EVL actively spreads over the blastoderm, carrying the margin with it; (iii) the margin 
is pulled downward by an active mechanism in the external YSL (eYSL); (iv) some active 
mechanism inside the yolk triggers the convex bulge inside the blastoderm area; and (v) the 
deep cells actively intercalate and their collective behavior induces a pressure at the marginal 
region, pushing the resisting margin toward the vegetal pole.

Scenarios (i) and (iii) would require some active mechanism in the network of microtu-
bules linking the yolk syncytial nuclei (YSN), either by pushing from the iYSL or pulling from 
the vegetal eYSL. Disruption of the microtubules with nocodazole at the sphere stage is not 
sufficient, however, to stop the epibolic motion (Solnica-Krezel and Driever 1994). Scenario 
(ii) would require an active flattening of the EVL apico-basal thickness and conjugated exten-
sion of its lateral surface. It would imply that, at the margin, the EVL would move toward the 
yolk equatorial latitude ahead of the deep cells, but this is not what we observe in our imag-
ing data (Figure 16.14). The inside of the yolk has also not been described to contain a well-
structured cytoskeleton. This penalizes the possibility envisioned by scenario (iv) of an active 
mechanism occurring in this domain.

FIGURE 16.13  Zebrafish early gastrula stages. Adapted from Kimmel et al. (1995), with permission. From the 
high stage to the 50% epiboly stage: lateral views with animal pole to the top and dorsal side, identified by the shield 
stage, to the right. The enveloping layer (EVL) is in yellow, the yolk syncytial layer (YSL) in pale yellow, and deep 
cells in blue. The whole spatio-temporal sequence is expected to last 2 h at 28.5 ◦ C. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this book.)
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All the experiments described in the literature indicate that epiboly is a robust process, 
probably relying on several redundant mechanisms. However, since the only scenario that 
has not been contradicted in the literature is (v), our goal will be to show by modeling and 
simulation in MecaGen that active intercalation of the deep cells is sufficient to drive epiboly 
during the studied period. This particular scenario requires a mechanism that will convert the 
push exerted by the deep cells over the margin into a sliding movement of the margin toward the vegetal 
pole. We describe here how this mechanism is modeled.

6.1.2  MECA: force model

The marginal deep cells are stuck in the corner formed by the YSL and the EVL. We expect 
that the margin will slide toward the vegetal pole if the norm of the tangential force exerted 
by the deep cells (DC) on the marginal yolk membrane particles (MYM), denoted by �Fm:D,�

ij , is 
larger than a given “resistance threshold” θm,‖ (Figure 16.15c). We call this force the “pushing 
force” as it expresses the localized quantity of force exerted by a DC particle j over an MYM 
particle i. Its equation reads:

where the repulsion coefficient wym:D
rep  is the same as the one controlling the repulsion at the 

YM-DC interface, Aij is the contact area, r‖

ij is the dot product of the relative position vector rij�uij 
and the tangential vector  − �U�

ym,i of the MYM particle i (Figure 16.15c,d), and req,�

ij = ceq(Ri + Rym). 
Only the repulsive part of the force (r < req) has a non-zero formulation because we do not 
consider here the reverse situation of marginal deep cells going back toward the animal pole 
of the yolk and pulling the margin with them.

(16.14)�Fm:D,�
ij =







−wym:D
rep (r�

ij − r
eq,�

ij ). Aij(r
�

ij, Ri, Rym). �U�

ym,i if r�

ij < r
eq,�

ij

�0 if r�

ij ≥ r
eq,�

ij

FIGURE 16.14  Wild type zebrafish embryo imaged live from the oblong stage to 30% epiboly. We observe here 
a slice passing approximately through the center and the animal pole of the embryo. a: oblong stage. b: transition 
between oblong and sphere stage. c: sphere stage. d: transition between sphere and dome stage. e: dome stage. f: 
transition from dome to 30% epiboly stage (dataset 071222bF from Nadine Peyriéras’s lab).
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6.1.3  GEN: chemical model

The objective of this study is to show that radial intercalation is sufficient to drive epib-
oly. At the cellular level, the mechanism attributed to the cells is bipolar protrusion. We pro-
pose two similar means of specifying radial polarization fields through the WTS described 
in Part 4:

•	 The first polarization field is specified by the ligand-based polarization mode (a), using a 
diffusive ligand Q1 secreted by the EVL. For this ligand, the YSL acts as a sink (Figure 16.16, 
top embryo).

•	 The second polarization field is obtained by reversing the sink and source roles, based on 
another ligand Q2 secreted by the YSL (Figure 16.16, bottom embryo).

If the interfaces between the EVL deep cells and the YSL deep cells were exactly parallel 
during epiboly, these two gradients would generate identical polarization fields. This is obvi-
ously not the case before 30% epiboly, justifying our choice of two different radial polariza-
tion fields. Using the ligand-based polarization mode (a), however, should not be interpreted 
as an explanation of how a polarization field is actually generated in the embryo. In this 

FIGURE 16.15  Mechanism controlling the passive sliding of the blastoderm and EVL margin toward the  
vegetal pole. a: Sagittal section of the simulated embryo at the onset of epiboly. b: Sagittal section at 30% epiboly. 
c: Zoom on the marginal region of the embryo at 30% epiboly. When a deep cell j (DC, in red) is in contact (green 
lines) with a margin yolk membrane (MYM, orange) particle i, a “pushing force” Fm:D,�

ij  is calculated to estimate the 
mechanical pressure exerted by j on the margin at the cellular level. If this force exceeds a certain “resistance thresh-
old” θm,‖, the MYM particle loses its marginal properties, and transmits it to one or several regular YM particle(s) at a 
more vegetal latitude. c: Schema describing the pushing force exerted by DC particle j over MYM cell i. The pushing 
force is non-zero only if the distance between the positions of j and i projected on the tangential vector �U‖

ym,i (not 
shown) is smaller than the equilibrium distance req,�

ij = ceq(Ri + Rym). The orange and red circles highlight the radii of 
cells i and j respectively. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this book.)
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study, we are agnostic with respect to the detailed physico-chemical polarization mecha-
nisms, and only interested in the effects that abstract fields have on cell movements and 
emerging morphogenetic processes at a macroscopic level.

The polarization fields specified above are highly regular, in any case much less fluc-
tuating than would be the case biologically. To test the effect of a certain amount of 
stochasticity in these fields, we also introduce a parameter λr ∈ [0, 1]: if λr = 0, the polar-
ization axes �Ui

 are as specified above; if λr = 1, the polarization field is purely random, 
i.e. for each cell i a random vector �Ur,i is generated every 15 mn of simulation time; inter-
mediate values provide a mix. Thus the effective polarization axis is now 
�Ue

i = λr
�Ur,i + (1 − λr) �Ui, followed by a renormalization step to keep the polarization vec-

tor unitary.

6.1.4  MecaGen: force-chemical coupling model

Once the polarization fields are established, the protrusive behavior of the cells must be 
parametrized. For the sake of simplicity, we subsume the deep cell population under one cell 
type Tred, and postulate homotypic, bipolar protrusion forces. Parallel to the pair of polariza-
tion fields, we also specify two protrusion rules (Figure 16.16): when the polarization field 

FIGURE 16.16  Tables for the “Intercalation” case study. (a) Ligand diffusion table L. Two gradient fields are 
established by ligand diffusion across the dome region formed by the deep cells. They contribute to the specification 
of the axes of the polarization: a ligand Q1 is secreted by the EVL with secretion rate s1 = 1000 and absorbed by the 
yolk membrane particles, more precisely the YSL. Conversely, a ligand Q2 is secreted by the YSL with rate s2 = 1000 
and absorbed by the EVL. (b,c) Active protrusion tables A. (a) All the cells belonging to the Tred population exert 
bipolar protrusions over each other along the polarization axis �U1 derived from the gradient field of ligand Q1. (b) The 
same cells can exert another bipolar protrusion along �U2 derived from Q2. In both cases, the intensity of the protrusive 
force is f A.
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originates from the diffusion of ligand Q1 (resp. Q2), then protrusions are oriented along axis 
�U1 (resp. �U2). In both cases, the intensity of the protrusive force f A will be one of the explored 
parameters. We decided not to vary the passive force coefficients, however (adhesive value 
wadh

TredTred
 and repulsive value wrep), as they counterbalance the effect of f A, and set them to 1.0 

instead.

6.1.5  Extra EVL module
The last factor that we hypothesize to have an influence on the epibolic deformation of 

the embryo is the tangential tension in the EVL. To reflect the fact that the overall surface 
area of the EVL increases during epiboly, we propose a model that does not intrinsically 
trigger the spreading but on the contrary resists it. Our model of cell proliferation and 
growth is controlled by various parameters. The surface area of an EVL cell expands or 
shrinks depending on the external pressure exerted by its EVL neighbors. If the cell is com-
pressed, i.e. the external pressure is greater than a positive threshold θ+

E , then its lateral 
radius Rlat,E

i  decreases by a ratio γE (where “E” stands for EVL). On the contrary, if the EVL 
cell is under tension, i.e. the external pressure is smaller than a negative threshold θ−

E , then 
Rlat,E

i  increases by the same ratio γE. To control the resistance of the EVL against spreading, 
we modulate the expansion threshold θ−

E : if it is close to zero, any external tension will 
trigger expansion and potentially proliferation of the tissue, and the EVL will not resist 
spreading. Conversely, if the absolute value of θ−

E  is high enough, the EVL will not expand 
or proliferate but will resist spreading. Between these two extremes, we expect that the EVL 
will exhibit an intermediate degree of resistance, allowing us to decipher its influence on 
the whole epibolic motion.

6.2  Real embryo and measured data

A qualitative understanding of the macro-scale deformation of the embryo can be derived 
from Karlstrom and Kane’s (1996) “flipbook” of embryogenesis (Karlstrom and Kane 1996) by 
measuring the macroscopic deformation occurring during epiboly. We extracted 12 images 
between the oblong stage and the 50% epiboly stage (Figure 16.17), and adjusted this timing 
in hpf units using the table provided in Karlstrom and Kane (1996) (top left of each frame, 
second line). We manually annotated the most important landmarks on each image using six 
dots (see caption).

6.2.1  Real measures
Macroscopic spatial measures were inferred from the singular landmarks described above 

and consist of the temporal evolution of four absolute distances (Figure 16.18, dashed lines): 
the embryo height from the vegetal pole to animal pole (red dashed line), the margin height 
from the vegetal pole to the central marginal position (green dashed line), the yolk height 
from the vegetal pole to the yolk animal pole (blue dashed line), and the margin width from 
the left to the right marginal positions (yellow dashed line). These measures provide an 
absolute macroscopic description of the deformation occurring during epiboly. However, 
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comparing different embryos, real or simulated, required a normalization of the distances. 
We chose the embryo height as the baseline, leaving three measures (“e” stands for embryo 
in the notations):

•	 the normalized margin height He
m, obtained by dividing the margin height by the embryo 

height (green solid line): it characterizes the overall covering of the yolk by the cells, and 
tends to zero as the tail bud closure proceeds;

•	 the normalized yolk height He
Y, obtained by dividing the yolk height by the embryo height 

(blue solid line): it characterizes the doming of the blastoderm and the bulging of the yolk;
•	 the embryo sphericity coefficient Ce

�, obtained by dividing the margin width by the embryo 
height (yellow solid line): this value is 1.0 for a spherical embryo, and smaller (resp. greater) 
for an embryo elongated (resp. flattened) along the AV axis.

FIGURE 16.17  Macroscopic landmarks of the epibolic deformation from the “flipbook” specimen. Snapshots 
of the zebrafish development from the oblong stage to 50% epiboly extracted and adapted from the movie by 
Karlstrom and Kane (1996), with permission. We have manually added colored dots to estimate the macroscopic 
morphological characteristics of the embryo: red dots signal the animal pole of each embryo, green dots the vegetal 
pole, blue dots the animal-pole limit of the yolk, and triplets of yellow dots delineate the margin, where the left and 
right dots identify the external position of the margin and the central one correspond to their averaged projection on 
the AV axis. The time value displayed below the image id is in hpf units given by Karlstrom and Kane (1996). These 
timings do not scale linearly with the image ids and have been renormalized. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this book.)
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6.2.2  Observations

These simple measures allow distinguishing two macroscopic phases of deformation (gray 
areas in Figure 16.18): the sphere transition deformation, occurring between 3.6 hpf and 4 hpf 
in the flipbook, and the doming deformation, starting 8 min later and continuing until about 
5.5 hpf. During the sphere transition, the absolute height of the embryo decreases, while its 
sphericity increases rapidly. The flattening at the sphere stage of the yolk cell-blastoderm 
interface appears moderate, and it is possible that other specimens behave somewhat differ-
ently in this respect (as in Figure 16.14c for example). Additional embryos would be useful to 
refine this measure (and the other measures as well). The doming transition is accompanied 
by an important move of the blastoderm margin toward the vegetal pole and an even more 
important relative displacement of the yolk cell’s animal pole, while the overall sphericity 
slowly increases.

FIGURE 16.18  Macroscopic measures of the epibolic deformation in the “flipbook” specimen. The measures 
defined by the macroscopic landmarks displayed in Figure 16.17 are shown. The red (top) curve is the plot of the 
distance between the animal pole (AP) of the embryo and the vegetal pole (VP) of the yolk (embryo height). The 
green (bottom) curve is the plot of the distance between the projection of the margin on the animal-vegetal (AV) axis 
and the VP of the yolk (margin height). The blue (next to bottom) curve is distance between the AP of the yolk and 
the VP of the yolk (yolk height). The yellow (next to top) curve is the lateral distance between the margin positions 
(margin diameter). The dashed lines give the absolute distance between landmarks in pixels (left ordinate axis). The 
continuous lines give the normalized distances (right ordinate axis). The normalization is obtained by dividing each 
value by the current yolk height (i.e. dashed red line). The abscissa gives the time in hpf units. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this book.)
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6.3  Simulated embryo and first comparisons

6.3.1  Simulated measures

In contrast with 2D images of real specimens, the simulated embryo requires automated 
measurements adapted to its 3D structure. Here, they were calculated in reference to the AV 
axis and a particular point Mo in the center of the embryo (in this section, we use upright 
boldface notation for 3D coordinates and vectors). The unitary vector of the AV axis, denoted 
by UAV, was specified a priori in the initial conditions (Figure 16.19). The embryo’s center Mo 
was calculated and updated at each simulation step by averaging the positions of the yolk 
membrane (ym) and yolk interior (yi) particles:

(16.15)Mo =
1

Nyi + Nym





Nyi−1
�

i=0

Xyi,i +

Nym−1
�

i=0

Xym,i





FIGURE 16.19  Macroscopic landmarks of the epibolic deformation in simulated specimens. Landmark dots 
have been manually added for the purpose of the illustration. They represent the macroscopic landmarks automati-
cally calculated by the simulated measurements. The gray line is the animal-vegetal (AV) axis, a priori specified at 
initialization. The red dot is the embryo animal pole Me

A, the blue dot is the yolk animal pole MY
A, the black dot is the 

embryo center Mo, the green dot is the embryo vegetal pole Me
V, the orange dot is the margin “level” Mm, i.e. the aver-

age of all the projections of margin yolk membrane particles (small orange circles) on the AV axis (only a few of these 
particles are displayed). Note that the positions of the yolk animal pole, embryo animal pole, and embryo vegetal 
pole are never exactly aligned on the AV axis as they must each coincide with a particle’s center. The deep cells are 
not displayed here, leaving a carved out domain between the yolk cell and the EVL. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this book.)
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where Xyi,i (resp. Xym,i) is the position of yolk interior (resp. yolk membrane) particle i and Nyi 
(resp. Nym) is the total number of yolk interior (resp. yolk membrane) particles.

The embryo vegetal pole Me
V, embryo animal pole Me

A, and yolk animal pole MY
A were 

obtained by calculating the dot product between UAV and each ym or EVL particle’s relative 
position with respect to the center, then selecting the position that realizes the maximum 
(farthest value in the positive direction) or minimum (farthest value in the negative direction) 
of this product:

where Sym is the set of yolk membrane particles’ position and SE is the set of EVL cell particles’ 
position. The projection of the margin on the AV axis, denoted by Mm, was obtained by aver-
aging the point projections of all the margin yolk membrane (MYM) particles onto the AV 
axis:

where Xm,i is the position of MYM particle i and Nm is the number of MYM particles. Finally, 
the simulated embryo width W  was set to twice the average of the radii defined by the dis-
tances between the MYM particles and their common projection Mm:

Similarly to the real specimen, we could then define the same macroscopic measures of 
epibolic deformation on the simulated embryo (indicated by “s,”) i.e. the normalized margin 
height Hs

m, the normalized yolk height Hs
Y, and the sphericity ratio Cs

�:

6.3.2  Preliminary results

Judging by Figure 16.20, our first observation was that the deep cells’ active protrusive 
behavior seemed sufficient to drive the embryo’s deformation during epiboly in the context 
of the simulation. The temporal evolution of the above macroscopic measures fits reasonably 
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well the data extracted from the flipbook. The main discrepancy is the apparent lack of sphere 
stage transition leading to a spherical morphology during the first hour. We did not observe 
the characteristic phase of increased sphericity concomitant with a statu quo for the normal-
ized yolk and margin heights. In the simulated embryo’s trajectory, the early increase of 
sphericity is always simultaneous with the decrease of at least one of the other macroscopic 
measures. A possible explanation could be that the initialization of the simulation is not close 
enough to the real high stage, with a yolk/deep cell interface already presenting a flat shape 
in the simulation.

6.4  Parameter exploration and validation

6.4.1  Fitness function and parameter space

After studying one virtual embryo under a fixed set of parameters, we proceeded to a 
broader exploration of parameter space to assess the validity of our simulations and model. 
For this, we designed a global fitness function F to fully automate the quantitative comparison 
between the simulated embryo and the flipbook specimen. Building upon the above 

FIGURE 16.20  Macroscopic measures of the epibolic deformation in a simulated specimen. Six snapshots cor-
responding to different stages of a simulated embryo are displayed along with the temporal evolution of the corre-
sponding macroscopic measures (blue), compared with the flipbook measures (white). Sphericity is represented by 
the dash-dot lines, normalized yolk height by the solid lines, and normalized margin height by the dashed lines. The 
embryos’ positions correspond approximately to the snapshot times in abscissa. The simulated embryo parameters 
are: ligand source Q2 on the yolk, θm,� = 5.33, λr = 0, θ−

E = 56.67, and f A
= 3556. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this book.)
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measures, this function is the average of three objective subfunctions: a normalized margin 
height function Fm; a normalized yolk height function FY; and a sphericity function F�:

where t1. . . t12 are the timings of the 12 images extracted from the flipbook specimen 
(Figure 16.17). The contribution of each objective function is not individually normalized as 
these functions represent differences of previously normalized measures.

We explored a five-dimensional parameter space with the following axes: (1) the type of 
polarization field: EVL-origin or YSL-origin; (2) the margin resistance θm,‖; (3) the stochasticity 
of the polarization field controlled by λr; (4) the EVL resistance to external tension, controlled 
by θ−

E ; and (5) the intensity of the protrusion force f A. This space was regularly sampled over 
the range and cardinalities shown in Figure 16.21.

6.4.2  Results

A number of insights could be gained from an analysis of the fitness landscape. A general 
trend is that the protrusive force intensity f A and the randomness factor λr have counterbalanc-
ing effects. A higher protrusive force coupled with a higher random factor produces a fitness 
level similar to a lower force coupled with a lower randomness, as indicated by the isolines 
of Figure 16.22. The profile of the isolines reveals the relationship between both parameters: 
it appears to be supralinear, since an increase of f A requires an exponential increase of λr to 
be counterbalanced.

For couples of parameters (f A, λr) situated below the isoline passing through coordinates 
(2,000, 0.05), we did not observe any macroscopic epiboly behavior. We could however quali-
tatively distinguish different microscopic behaviors in this area: for low levels f A, the lack of 
epibolic deformation is due to the lack of intercalating behavior at the cellular level; on the 
contrary, for high levels of f A and λr, the cells start intercalating inefficiently, with cells sliding 
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FIGURE 16.21  Range, cardinalities, and units of the five parameters explored in this case study.
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on each other in a fluid-like manner, and tissue cohesion is lost. This behavior is due to an 
inequality between the active and passive forces in favor of the protrusive forces.

Further study of these mechanisms would require a preliminary calibration between both 
types of forces to ensure that these behaviors do not occur. In the following, we performed an 
a posteriori calibration of f A at value 3555. Eliminating the f A dimension allowed a 4D visual-
ization of the fitness landscapes (Figure 16.23) and their mutual comparisons in both polar-
ization scenarios.

Another noticeable general trend was the penalizing effect of the polarization field ran-
domness: all objective functions perform poorly for high λr values (top slice of 3D charts). The 
only exception concerned the normalized margin height measure Fm, which tempered this 
effect when conjugated with low EVL resistance to tension θ−

E , and low margin resistance to 
deep cells’ pressure θm,‖ (Figure 16.23a). Observations of the simulated phenotypes in this 
particular domain showed that the relaxed state of the EVL and margin, coupled with the low 
efficiency of the deep cells’ protrusive activity (due to high randomness), produced a slight 
move of the margin toward the vegetal pole along with a de-flattening of the yolk/deep cells 
interface.

This observation stresses the importance of the embryo’s external tension (EVL+Margin) 
in the shaping of the cellular domain. We also noted that in the scenario of the EVL as a ligand 

FIGURE 16.22  Fitness landscapes as a function of the random parameter λr and the protrusive force intensity 
parameter f A. Top Left: global fitness function. Top Right: normalized yolk height objective function FY. Bottom Left: 
normalized margin height function Fm. Bottom Right: sphericity objective function F�. On each plot, the random 
parameter λr is shown in abscissa and the protrusive force intensity f A in ordinate. The color maps scale between zero 
and the maximum value of the fitness landscape that they are associated with (to the left).
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FIGURE 16.23  3D plots of the objective and global fitness functions. For all simulations, the protrusive force 
intensity f A has been set to 3555. The vertical axis indicates the random parameter λr, the depth axis indicates the 
threshold controlling the EVL resistance θ−

E , and the horizontal axis indicates the margin resistance threshold θm,‖. (a) 
3D plot of the normalized margin height objective function Fm. The isosurface represents the best fitness volume 
(threshold 0.79). This 3D objective function landscape has been rotated, unlike the following plots, to show a better 
angle of view. (b) 3D plot of the normalized yolk height objective function FY. The threshold of the isosurface is set 
to 0.86. (c) 3D plot of the sphericity objective function F�. The threshold of the isosurface is set to 1.52. (d) 3D plot of 
the global fitness function F. The threshold of the isosurface is set to 0.88.
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source (value 1), the EVL’s topology became more irregular. There is feedback coupling 
between the perturbation of the polarization field, disorienting the deep cells, and the disor-
ganization of the EVL, which in turn perturbs the polarization field. Both yolk height FY and 
sphericity measure F� performed badly as yolk bulging did not occur.

At the opposite side of the parameter spectrum, i.e. low polarization randomness λr and high 
EVL and margin resistances, θ−

E  and θm,‖, deep cell intercalation gains in efficiency but is blocked 
by the margin, preventing them to spread over the yolk. Interestingly, the two polarization 
scenarios offer alternative behaviors in response to this abnormal condition. In the YSL-based 
field, intercalation exerts a spreading force that deforms the overlying EVL, while this deforma-
tion is much more important in the EVL-based field, where the epiboly’s spreading triggers a 
wrenching of the blastoderm from the yolk surface area. This pathological behavior was not 
expected and can be explained by an inadequacy of the intensity of the forces, without damping 
induced by random polarization. Obviously, both FY and F� penalize the EVL ligand scenario, 
compared to the YSL one (Figure 16.23b and c, bottom right corner of the cubes).

Another dramatic effect was obtained if a perfectly efficient intercalation, i.e. with no axis 
randomness, was happening together with strong EVL resistance θ−

E  and weak margin resis-
tance θm,‖. The previous scenario happened again, i.e. the EVL blocked the spreading of the 
deep cells, except at some point when the margin still received pressure that made it move 
toward the vegetal pole, pulling the yolk membrane toward the animal pole. The accumulat-
ing yolk membrane ended up being rolled in a unrealistic fashion, stretching the inner yolk 
membrane particles, and finally allowing the strongly intercalating deep cells to perforate the 
yolk membrane and penetrate into the yolk.

The last example of aberrant development was detected by measure Fm, when the margin 
was located too far toward the vegetal pole (Figure 16.23a, bottom right). Yet, the other two 
measures, FY and F�, evaluated the developmental trajectory of the embryo as excellent 
(Figure 16.23b and c, bottom left corner). This mischaracterization of an abnormal state high-
lights the difficulty of predicting the behavior of a simulated model.

6.5  Tentative conclusion

Altogether, the simulations conducted in this case study seem to validate the hypothesis 
that individual cell protrusive activity is sufficient to drive epiboly until the 50% stage. We 
have pointed out, however, the absence of sphere stage transition, i.e. from the so-called 
“high stage” to a more spherical shape presenting a flat interface between the yolk and the 
blastoderm. In the simulated embryos, early increasing sphericity always comes together 
with a progression of the embryo margin toward the yolk. This may be due to the fact that 
the initialization of the simulation does not sufficiently resemble the real high stage, as the 
yolk/deep-cell interface already presents a flat shape in the simulation.

Another interpretation is that additional mechanisms are missing in the explored parameter 
space, such as a different organization of the polarization field or new behavioral rules in the dif-
ferent compartments of the embryo. In particular, to better characterize the first epiboly episode 
and capture the effective properties of cell motility, we would need more precise measurements of 
the individual epibolic behaviors at the cellular level, not just global geometric criteria.
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7  DISCUSSION

The “right” mesoscopic level: The most striking characteristic of multicellular systems is 
their extreme heterogeneity of properties and behaviors. As Henri Atlan metaphorically stated 
through his famous book title “Between Crystal and Smoke” (Atlan 1979), the structure of liv-
ing matter is somewhere between a highly regularly organized state and a highly randomly 
disorganized state. Accordingly, the best level to model the morphogenesis of multicellular 
organisms resides between the macroscopic level, where global mathematical regularities 
are too constrained and not expressive enough, and the microscopic level, where molecular 
dynamics is too complex and uncontrollable. Continuous equations must be coupled with 
discrete local rules, and this necessitates a characterization of the diversity of the underlying 
cell types and behaviors. A hybrid approach requires a discrete representation of the tissue 
based on individual components. In our own study of early embryo development, we chose 
the single-cell level as it allows this local description of cell properties in relatively simple 
terms. Two criteria led us to make particular choices for the cell biomechanics and the genetic 
regulation and molecular signaling: the similarities between the variables involved in the 
model and the observations/concepts produced by the embryologists, on the one hand; and 
the simplicity of the description leading to a manageable number of parameters, on the other 
hand. This should not only allow computationally feasible simulations by today’s standards 
but, most importantly, a biologically meaningful interpretation of their outcome.

Portability to other animal models: The MecaGen project was envisioned as a generic mod-
eling platform for all types of animal development. Its foundational principles should be 
applicable to any multicellular system combining biomechanics with genetic regulation and 
molecular signaling. The next step in the development of this platform is to expand its cell 
behavior ontology (CBO) to integrate other types of epithelial and mesenchymal behaviors. 
In the epithelial case, not many improvements should be needed to fulfill this objective. The 
adhesion coefficient of “lateral” neighborhood links could be increased and epithelial 
behaviors, including apical constriction and active intercalation in epithelial layers, should 
allow the platform to simulate monolayered embryos such as Drosophila or sea urchin. This 
being said, the current MecaGen implementation is not compatible with every animal cell 
behavior either. Its major limitation resides in the single-particle cell abstraction, which is 
not adapted to cellular shapes that depart greatly from spheroids or cuboids. Other types of 
animal morphogenesis rely greatly on cell elongation, such as Phallusia mammillata or nema-
todes. In those cases, an ellipsoid particle model such as Palsson’s (Palsson 2001) would 
provide a reasonable solution for asymmetric cells. In later stages of vertebrate develop-
ment, too, cells differentiate into extremely stretched shapes such as muscle cells, for which 
the single-particle framework is clearly inappropriate.

Toward an “evo-devo” perspective: Once the MECA and GEN parts of the model are finally 
connected and their dynamics truly coupled, without WTS shortcut, a promising extension 
of this work will be its application to “evolutionary developmental” questions. Evo-devo 
does not generally aim at directly comparing simulated phenotypes and real embryos but 
rather asking how evolution is able to generate new structures and behaviors at the level of 
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the whole embryo. This would involve modeling and simulating an even higher level of 
organization, in which the whole embryo behaves and potentially interacts with its envi-
ronment. It can be seen as another way to explore the model’s parameter space without 
isolating the developmental trajectories around a target phenotype (zebrafish in this chap-
ter). The evaluation would emerge from a Darwinian selection process in an artificial envi-
ronment—whether by survival or reproduction of particular behaviors. A particularly 
fascinating exploration would be to start from a simple individual organism such as the 
urbilaterian, a hypothetical ancestor of all animals exhibiting bilateral symmetry (Erwin and 
Davidson 2002; Hejnol and Martindale 2008), and guide its evolution through mutation of 
its gene regulatory networks toward multiple descendant species. To our knowledge, no 
computational evo-devo study has proposed a developmental model presenting as many 
similarities with real biological systems as MecaGen does. It would be a great opportunity 
to better decipher and understand the evolutionary forces that drive the diversity of life.
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