

Robot Learning by Demonstration

A Project Proposal by
Adam Olenderski

Idea
● Use concepts from the study of complex

systems to learn the interactions between
different behaviors in a behavior-based robot.

● Based on current research
● One paper already published on this topic

– Olenderski, Adam, Monica Nicolescu, and Sushil Louis. Robot
Learning by Demonstration Using Forward Models of Schema-
Based Behaviors. Proceedings of the Second International
Conference on Informatics in Control, Automation, and Robotics.
Vol. III. 2005. 263-269

The Robot
● ActivMedia Pioneer 3DX
● SICK Laser rangefinder
● 16 sonar rangefinders
● Fiducial finder (for detecting

goal objects)
● Player/Stage software

Background: Potential Fields
● Potential fields use vectors to determine the

direction and speed of the robot.
● Each object in the world (obstacles, goals) can

be thought of as generating a force field that
affects the robot when in that object’s proximity.

Potential Fields: Continued
● Measurement of the potential field at any given

point is robot-centric; the robot only has to
generate one vector at any time, not the entire
field
– Quick computation
– Allows for quick reaction

● Each concurrently-running behavior is tasked
with generating one type of vector—e.g., an
avoid behavior monitors obstacles it needs to
avoid, etc.

Combining Behaviors
● In a potential-fields-based approach, the

commands sent to the actuators (the motors
that control the wheels) consist of a fusion of
the directions suggested by the individual
behaviors: a vector sum.

● Each behavior is weighted differently to indicate
importance
– Ex: if the user stayed far away from walls and

obstacles, the avoid weight should be far higher
than the wander or wall-follow weights

Complex System Breakdown
● Many behaviors in a system
● Behaviors communicate

directly with Controller
– Send vectors
– Receive weights
– Controller changes weights

depending on which behaviors
are active

– Behaviors apply weights to
vectors

● Behaviors do not communicate
with each other.

The Problem: Determining Weights
● How do we find the weights that most

accurately model the user's priorities during the
demonstration?

● At each timestep during the demo, record the
input from the user as well as a suggestion from
each behavior.

● Use a learning algorithm to determine a set of
weights that will make the weighted vector sum
as close as possible to the user's input for the
demonstration

Learning Weights
● Offline: Use the recorded information as input to

a neural net, whose output is the set of weights.
● Online: Use small, incremental changes to

update the weights during the demonstration in
the hope that the resultant controller will exhibit
complex behavior (a la cellular automata)

Questions and Discussion

