CS 790R Seminar Modeling & Simulation

Neural Networks 1 – Synchronization in Spiking Neural Networks

René Doursat

Department of Computer Science & Engineering University of Nevada, Reno

Spring 2006

- 1. Temporal Coding
- 2. Coupled Oscillators
- 3. Synfire Chains

1. Temporal Coding

- Neural networks
- The neural code
- Questions of representation

2. Coupled Oscillators

3. Synfire Chains

1. Temporal Coding

- Neural networks
 - Structure of neural networks
 - Structure of a neuron
 - Propagation of a "spike"
 - Model of neural network
- The neural code
- Questions of representation

2. Coupled Oscillators

3. Synfire Chains

Neural networks

Structure of neural networks

Medial surface of the brain (Virtual Hospital, University of Iowa)

Cortical layers

Pyramidal neurons and interneurons
(Ramón y Cajal 1900)

Phenomenon

- ➤ neurons together form... the brain! (and peripheral nervous system)
 - perception, cognition, action
 - emotions, consciousness
 - behavior, learning
 - autonomic regulation: organs, glands

- >~10¹¹ neurons in humans
- communicate with each other through (mostly) electrical potentials
- neural activity exhibits specific patterns of spatial and temporal synchronization ("temporal code")

Neural networks

Structure of a neuron

Ionic channels opening and closing → depolarization of the membrane (http://www.awa.com/norton/figures/fig0209.gif)

(Ramón y Cajal 1900)

Cell

Body

Endings

Nucleus

Dendrites

A typical neuron

(http://www.bio.brandeis.edu/biomath/mike/AP.html)

Axon

Neural networks

Propagation of a "spike"

(http://www.bio.brandeis.edu/biomath/mike/AP.html)

Propagation of the depolarization along the axon → called "action potential", or "spike"

(http://hypatia.ss.uci.edu/psych9a/lectures/lec4fig/n-action-potential.gif)

Neural networks Model of neural network

A binary neural network

Mechanism

- > each neuron receives signals from many other neurons through its *dendrites*
- ➤ the signals converge to the *soma* (cell body) and are integrated
- if the integration exceeds a threshold, the neuron fires a spike on its axon

1. Temporal Coding

- Neural networks
- The neural code
 - Rate vs. temporal coding
 - Synchronization and correlations
 - Interest for temporal coding
- Questions of representation

2. Coupled Oscillators

3. Synfire Chains

The neural code

Rate vs. temporal coding

$$x_i(t)$$

Rate coding: average firing rate (mean activity)

$$\langle x_i(t) \rangle_T = \frac{1}{T} \int_0^T x_i(t) dt$$

Temporal coding: correlations, possibly delayed

$$\langle x_i(t) x_j(t) \rangle$$

 $\langle x_i(t) x_j(t - \tau_{ij}) \rangle$
 $\langle x_1(t) x_2(t - \tau_{1,2}) \dots x_n(t - \tau_{1,n}) \rangle$

von der Malsburg, C. (1981) The correlation theory of brain function. Internal Report 81-2, Max Planck Institute for Biophysical Chemistry, Göttingen.

The neural code Synchronization and correlations

The neural code Interest for temporal coding

- Historical motivation for rate coding
 - Adrian (1926): the firing rate of mechanoreceptor neurons in frog leg is proportional to the stretch applied
 - Hubel & Wiesel (1959): selective response of visual cells; e.g., the firing rate is a function of edge orientation

→ rate coding is confirmed in sensory system and primary cortical areas, however increasingly considered insufficient for <u>integrating</u> the information

- Recent <u>temporal coding</u> "boom": a few milestones
 - von der Malsburg (1981): theoretical proposal to consider correlations
 - Abeles (1982, 1991): precise, <u>reproducible spatiotemporal spike</u> <u>rhythms</u>, named "synfire chains"
 - Gray & Singer (1989): stimulus-dependent <u>synchronization of</u> <u>oscillations</u> in monkey visual cortex
 - O'Keefe & Recce (1993): <u>phase coding</u> in rat hippocampus supporting spatial location information
 - Bialek & Rieke (1996, 1997): in H1 neuron of fly, <u>spike timing</u> conveys information about <u>time-dependent input</u>

1. Temporal Coding

- Neural networks
- The neural code
- Questions of representation
 - The "binding problem"
 - Feature binding in cell assemblies
 - "Grandmother" cells
 - Relational graph format
 - Solving the binding problem with temporal coding
 - A molecular metaphor

2. Coupled Oscillators

3. Synfire Chains

The "binding problem"

Feature binding in cell assemblies

→ unstructured lists of features lead to the "superposition catastrophe"

"Grandmother" cells

"Grandmother" cells

... however, this soon leads to an unacceptable combinatorial explosion!

Relational graph format

→ another way to solve the confusion: represent relational information

Solving the binding problem with temporal coding

von der Malsburg, C. (1981) The correlation theory of brain function.

A molecular metaphor

"cognitive isomers" made of the same atomic features

2-propanol

1. Temporal Coding

- Neural networks
- The neural code
- Questions of representation

2. Coupled Oscillators

3. Synfire Chains

- 1. Temporal Coding
- 2. Coupled Oscillators
- 3. Synfire Chains

1. Temporal Coding

2. Coupled Oscillators

- Temporal tagging
- Group synchronization
- Traveling waves
- 3. Synfire Chains

1. Temporal Coding

2. Coupled Oscillators

- Temporal tagging
 - The binding problem in language
 - A model of semantic binding: SHRUTI
 - Using correlations to implement binding
- Group synchronization
- Traveling waves
- 3. Synfire Chains

Temporal tagging

The binding problem in language

- (a) John gives a book to Mary.
- (b) Mary gives a book to John.
- (c)* Book John Mary give.

Temporal tagging

A model of semantic binding: SHRUTI

Shastri, L. & Ajjanagadde, V. (1993) From simple associations to systematic reasoning. *Behavioral and Brain Sciences*, **16**(3): 417-451.

Temporal tagging Using correlations to implement binding

Temporal tagging Using correlations to implement binding

1. Temporal Coding

2. Coupled Oscillators

- Temporal tagging
- Group synchronization
 - The scene segmentation problem
 - Excitatory-inhibitory relaxation oscillator
 - Van der Pol relaxation oscillator
 - Networks of coupled oscillators
 - A model of segmentation by sync: LEGION
- Traveling waves
- 3. Synfire Chains

The scene segmentation problem

Real sceneDoursat, Rene (http://www.cse.unr.edu/~doursat)

Schematic scene

Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)

- scene analysis and segmentation is a fundamental aspect of perception
- ability to group elements of a perceived scene or sensory field into coherent clusters or objects
- can be addressed with temporal correlations, especially:
- dynamics of large networks of coupled neural oscillators
- how does it work? . . .

Excitatory-inhibitory relaxation oscillator

Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)

Van der Pol relaxation oscillator

Van der Pol relaxation oscillator
Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)

$$\ddot{x} + x = c(1 - x^2)\dot{x} \iff \begin{cases} \dot{x} = c(1 - x^2)\dot{x} \\ \dot{y} = -c(1 - x^2)\dot{x} \end{cases}$$

Oscillators and excitable units Bonhoeffer-Van der Pol (BVP) stochastic oscillator

$$\begin{cases} \dot{u}_{i} = c \left(u_{i} - u_{i}^{3} / 3 + v_{i} + z \right) + \eta + k \sum_{j} \left(u_{j} - u_{i} \right) + I_{i} \\ \dot{v}_{i} = \left(a - u_{i} - b v_{i} \right) / c + \eta \end{cases}$$

> two activity regimes: (a) sparse stochastic and (b) quasi periodic

Networks of coupled oscillators

A model of segmentation by sync: LEGION

indirectly coupled through central pacemaker

globally coupled

locally coupled

Terman & D.L. Wang's (1995)
LEGION network: Locally Excitatory
Globally Inhibitory Oscillator Network

(http://www.cse.ohio-state.edu/~dwang/)

A model of segmentation by sync: LEGION

achieving fast synchronization with local, topological coupling only

Wang, D. L. & Terman, D. (1995) Locally excitatory globally inhibitory oscillator networks. *IEEE Trans. Neural Net.*, **6**: 283-286.

A model of segmentation by sync: LEGION

Wang, D. L. & Terman, D. (1997) Image segmentation based on oscillatory correlation. *Neural Computation*, **9**: 805-836,1997

A model of segmentation by sync: LEGION

Wang, D. L. & Terman, D. (1997) Image segmentation based on oscillatory correlation. *Neural Computation*, **9**: 805-836,1997

1. Temporal Coding

2. Coupled Oscillators

- Temporal tagging
- Group synchronization
- Traveling waves
 - Phase gradients, instead of plateaus
 - Wave propagation and collision
- 3. Synfire Chains

Traveling waves Phase gradients, instead of plateaus

Traveling waves Detail

➤ "Grass-fire" wave on 16x16 network of coupled Bonhoeffer-van der Pol units

Traveling waves Wave propagation and collision

64 x 64 lattice of locally coupled Bonhoeffer-van der Pol oscillators

Doursat, R. & Petitot, J. (2005) Dynamical Systems and Cognitive Linguistics: Toward an Active Morphodynamical Semantics. *IJCNN'05*, to appear in *Neural Networks*.

Traveling waves Wave propagation and collision

Two <u>cross-coupled</u>, mutually inhibiting lattices of coupled oscillators

Doursat, R. & Petitot, J. (2005) Dynamical Systems and Cognitive Linguistics: Toward an Active Morphodynamical Semantics. *IJCNN'05*, to appear in *Neural Networks*.

1. Temporal Coding

2. Coupled Oscillators

- Temporal tagging
- Group synchronization
- Traveling waves
- 3. Synfire Chains

- 1. Temporal Coding
- 2. Coupled Oscillators
- 3. Synfire Chains