Neural Networks 1 – Synchronization in Spiking Neural Networks

René Doursat

Department of Computer Science & Engineering
University of Nevada, Reno
Spring 2006
Synchronization in Spiking Neural Networks

1. Temporal Coding
2. Coupled Oscillators
3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding
 • Neural networks
 • The neural code
 • Questions of representation

2. Coupled Oscillators

3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding
 - Neural networks
 - Structure of neural networks
 - Structure of a neuron
 - Propagation of a “spike”
 - Model of neural network
 - The neural code
 - Questions of representation

2. Coupled Oscillators

3. Synfire Chains
Neural networks

Structure of neural networks

- Neurons together form... the brain! (and peripheral nervous system)
 - perception, cognition, action
 - emotions, consciousness
 - behavior, learning
 - autonomic regulation: organs, glands

- ~10^{11} neurons in humans
- communicate with each other through (mostly) electrical potentials
- neural activity exhibits specific patterns of spatial and temporal synchronization ("temporal code")

Medial surface of the brain
(Virtual Hospital, University of Iowa)

Pyramidal neurons and interneurons
(Ramón y Cajal 1900)

Cortical layers
Neural networks
Structure of a neuron

Ionic channels opening and closing → depolarization of the membrane
(http://www.awa.com/norton/figures/fig0209.gif)

Pyramidal neurons and interneurons
(Ramón y Cajal 1900)

A typical neuron
(http://www.bio.brandeis.edu/biomath/mike/AP.html)
Neural networks
Propagation of a “spike”

Propagation of the depolarization along the axon → called “action potential”, or “spike”
(http://hypatia.ss.uci.edu/psych9a/lectures/lec4fig/n-action-potential.gif)
Neural networks

Model of neural network

Schematic neurons
(adapted from CS 791S “Neural Networks”, Dr. George Bebis, UNR)

Mechanism

- each neuron receives signals from many other neurons through its **dendrites**
- the signals converge to the **soma** (cell body) and are integrated
- if the integration exceeds a threshold, the neuron fires a **spike** on its **axon**
Synchronization in Spiking Neural Networks

1. Temporal Coding
 - Neural networks
 - The neural code
 - Rate vs. temporal coding
 - Synchronization and correlations
 - Interest for temporal coding
 - Questions of representation

2. Coupled Oscillators

3. Synfire Chains
The neural code
Rate vs. temporal coding

\[x_i(t) \]

\[\langle x_i(t) \rangle_T = \frac{1}{T} \int_0^T x_i(t) \, dt \]

- **Rate coding**: average firing rate (mean activity)

- **Temporal coding**: correlations, possibly delayed

\[\langle x_i(t) \, x_j(t) \rangle \]
\[\langle x_i(t) \, x_j(t - \tau_{ij}) \rangle \]
\[\langle x_1(t) \, x_2(t - \tau_{1,2}) \ldots x_n(t - \tau_{1,n}) \rangle \]

The neural code
Synchronization and correlations

\[x_1(t) \]
\[x_2(t) \]
\[x_3(t) \]
\[x_4(t) \]
\[x_5(t) \]
\[x_6(t) \]

\[\langle x_1(t) \rangle = \bullet \text{ high activity rate} \]
\[\langle x_2(t) \rangle = \bullet \text{ high activity rate} \]
\[\langle x_3(t) \rangle = \bullet \text{ high activity rate} \]
\[\langle x_4(t) \rangle = \circ \text{ low activity rate} \]
\[\langle x_5(t) \rangle = \circ \text{ low activity rate} \]
\[\langle x_6(t) \rangle = \circ \text{ low activity rate} \]

\[\langle x_1(t) x_2(t) \rangle \gg \langle x_1(t) x_3(t) \rangle \]
\[\langle x_4(t) x_5(t - \tau_{4,5}) x_6(t - \tau_{4,6}) \rangle \]

- 1 and 2 more in sync than 1 and 3
- 4, 5 and 6 correlated through delays
The neural code
Interest for temporal coding

• **Historical motivation for rate coding**
 – Adrian (1926): the firing rate of mechanoreceptor neurons in frog leg is proportional to the stretch applied
 – Hubel & Wiesel (1959): selective response of visual cells; e.g., the firing rate is a function of edge orientation

 → rate coding is confirmed in sensory system and primary cortical areas, however increasingly considered insufficient for integrating the information

• **Recent temporal coding “boom”: a few milestones**
 – von der Malsburg (1981): theoretical proposal to consider correlations
 – Gray & Singer (1989): stimulus-dependent synchronization of oscillations in monkey visual cortex
 – O’Keefe & Recce (1993): phase coding in rat hippocampus supporting spatial location information
 – Bialek & Rieke (1996, 1997): in H1 neuron of fly, spike timing conveys information about time-dependent input
Synchronization in Spiking Neural Networks

1. Temporal Coding
 • Neural networks
 • The neural code
 • Questions of representation
 – The “binding problem”
 – Feature binding in cell assemblies
 – “Grandmother” cells
 – Relational graph format
 – Solving the binding problem with temporal coding
 – A molecular metaphor

2. Coupled Oscillators

3. Synfire Chains
Questions of representation
The “binding problem”

complex feature cells

input

\[
\begin{align*}
\text{red circle} & = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array} \\
\text{green triangle} & = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array} \\
\text{red circle + green triangle} & = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array} \\
\text{green triangle + red circle} & = \begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\end{array}
\end{align*}
\]
Questions of representation
Feature binding in cell assemblies

→ unstructured lists of features lead to the “superposition catastrophe”
Questions of representation
“Grandmother” cells

→ one way to solve the confusion: introduce overarching complex detector cells
Questions of representation

“Grandmother” cells

... however, this soon leads to an unacceptable combinatorial explosion!
Questions of representation
Relational graph format

→ another way to solve the confusion: represent relational information
Questions of representation
Solving the binding problem with temporal coding

complex feature cells

→ another way to solve the confusion: represent relational information

Questions of representation
A molecular metaphor

C₃H₈O

1-propanol

2-propanol

“cognitive isomers” made of the same atomic features
Synchronization in Spiking Neural Networks

1. Temporal Coding
 - Neural networks
 - The neural code
 - Questions of representation

2. Coupled Oscillators

3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding
2. Coupled Oscillators
3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding

2. Coupled Oscillators
 - Temporal tagging
 - Group synchronization
 - Traveling waves

3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding

2. Coupled Oscillators
 - Temporal tagging
 - The binding problem in language
 - A model of semantic binding: SHRUTI
 - Using correlations to implement binding
 - Group synchronization
 - Traveling waves

3. Synfire Chains
Temporal tagging
The binding problem in language

(a) John gives a book to Mary.
(b) Mary gives a book to John.
(c)* Book John Mary give.

???
Temporal tagging
A model of semantic binding: SHRUTI

"John gives a book to Mary."

... therefore: “Mary can sell the book.”

Temporal tagging
Using correlations to implement binding

Binding by correlations, or “phase-locking”
Temporal tagging
Using correlations to implement binding

Inference by propagation of bindings
Synchronization in Spiking Neural Networks

1. Temporal Coding

2. Coupled Oscillators
 • Temporal tagging
 • Group synchronization
 – The scene segmentation problem
 – Excitatory-inhibitory relaxation oscillator
 – Van der Pol relaxation oscillator
 – Networks of coupled oscillators
 – A model of segmentation by sync: LEGION

 • Traveling waves

3. Synfire Chains
Group synchronization
The scene segmentation problem

- scene analysis and segmentation is a fundamental aspect of perception
- ability to group elements of a perceived scene or sensory field into coherent clusters or objects
- can be addressed with temporal correlations, especially:
 - dynamics of large networks of coupled neural oscillators
 - how does it work? . . .
Group synchronization

Excitatory-inhibitory relaxation oscillator

- relaxation oscillators exhibit discontinuous jumps
- different from sinusoidal or harmonic oscillations

Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)
Group synchronization
Van der Pol relaxation oscillator

Van der Pol relaxation oscillator
Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)

\[\ddot{x} + x = c(1 - x^2)\dot{x} \quad \iff \quad \begin{cases} \dot{x} = c(y - f(x)) \\ \dot{y} = -x / c \end{cases} \]
Oscillators and excitable units
Bonhoeffer-Van der Pol (BVP) stochastic oscillator

\[
\begin{align*}
\dot{u}_i &= c \left(u_i - u_i^3 / 3 + v_i + z \right) + \eta + k \sum_j \left(u_j - u_i \right) + I_i \\
\dot{v}_i &= (a - u_i - bv_i) / c + \eta
\end{align*}
\]

- two activity regimes: (a) sparse stochastic and (b) quasi periodic
Group synchronization
Networks of coupled oscillators

Wang, DeLiang (http://www.cse.ohio-state.edu/~dwang/)
Group synchronization
A model of segmentation by sync: LEGION

indirectly coupled through central pacemaker
globally coupled
locally coupled

LEGION network: Locally Excitatory
Globally Inhibitory Oscillator Network
(http://www.cse.ohio-state.edu/~dwang/)
Group synchronization
A model of segmentation by sync: LEGION

- achieving fast synchronization with local, topological coupling only

Group synchronization
A model of segmentation by sync: LEGION

Group synchronization
A model of segmentation by sync: LEGION

Synchronization in Spiking Neural Networks

1. Temporal Coding

2. Coupled Oscillators
 - Temporal tagging
 - Group synchronization
 - Traveling waves
 - Phase gradients, instead of plateaus
 - Wave propagation and collision

3. Synfire Chains
Traveling waves
Phase gradients, instead of plateaus

\[\phi = \pi - \pi \]
Traveling waves

Detail

“Grass-fire” wave on 16x16 network of coupled Bonhoeffer-van der Pol units
Traveling waves
Wave propagation and collision

64 x 64 lattice of locally coupled Bonhoeffer-van der Pol oscillators

Traveling waves
Wave propagation and collision

Two cross-coupled, mutually inhibiting lattices of coupled oscillators

Synchronization in Spiking Neural Networks

1. Temporal Coding

2. Coupled Oscillators
 - Temporal tagging
 - Group synchronization
 - Traveling waves

3. Synfire Chains
Synchronization in Spiking Neural Networks

1. Temporal Coding
2. Coupled Oscillators
3. Synfire Chains