Animal Patterns

Kyle McDermott
CS 790R – Spring '06 (2/6/2006)
University of Nevada, Reno

Outline

- Wolfram (2002) *ever-so-briefly*
- Bar-Yam (1997) Developmental Biology
 - Fur Demo
- Pearson (1993) Complex patterns in a simple system
 - Texture Garden
- Mentioned:
 - OBall (1999) Chapter: Bodies
 - Young (1984) A local activator-inhibitor model of vertebrate skin patterns

[The] New Kind of Science (I describe in this book.)

1D Cellular Automata

2D Cellular Automata

2D Cellular Automata - Stripes

Bar-Yam (1997): Chapter 7

- 7.1 Developmental Biology:
 Programming a Brick
- 7.2 Differentiation: Patterns in Animal Colors
 - ○7.2.1 Introduction to pigment patterns
 - 7.2.2 Activation and inhibition in pattern formation: CA models
 - 07.2.3 Chemical diffusion
 - 7.2.4 Chemical reactions
 - 7.2.5 Pattern formation in reaction-diffusion systems

Developmental Biology

- How does an individual cell through cell division, differentiation, and growth result in an organism with complex physiology?
 - The program present within the cell
 - The environment in which it develops
- DNA contains many different instructions that are active or not depending on what the cell and its neighbors are doing

Nature of DNA function

- DNA is a collection of templates or blueprints for making protein chains
- The role of DNA at a particular time depends on which templates are being transcribed and which are not
- The activity of a template is determined by the activity of others

Cell behavior

- DNA in every cell contains all the information necessary to build and sustain the organism
- The molecules in the cell could be viewed as the society, acting upon each other and responding to the environment, that decide how to use this information

How would we construct a building?

- Create a program for a brick, describing how a brick should move and interact with other bricks around it
- Leave a pile of bricks all with the same program, and come back to find a finished building with windows, ducts, utilities etc. all in place

Patterns in Animal Colors

- Natural selection can be seen as a large influence in many cases
 - Uniform color to match a well-defined environment
 - OPrey animals camouflaged to the environment
 - OPrey animals camouflaged to each other
 - OPredators can identify others of their species, perhaps identify individuals by forms within their own pattern
- Key feature Differentiation

- Spots
- Stripes
- Polygons?

Activation and inhibition: CA models

- In a matrix of cells, each cell can communicate to its neighbors through emitted chemicals
- The range of communication depends on:
 - The diffusion constant of the chemical
 - Ohemical reactions that may affect it
- A cell producing pigment that signals others to produce pigment is activating
- A cell signaling others to not produce pigment is inhibiting

Activation and inhibition: CA models

of iterations

Uniform Bias Field h

- First choose a sparse set of initial spots
- Divide the plane based on which spot each cell is closest to
- Add pigment within each

Generating the giraffe pattern

- Become pigmented at time t if at least one neighbor was pigmented at time t 1
- Do not become pigmented if too many neighbors are already pigmented (cannot de-pigment)

of iterations 0

Introduce a second range, larger than that for growth, to determine when to stop

Chemical Diffusion

- Look at the motion of a low-density "gas" of molecules that have a varying density profile as a function of position
- Molecules undergo collisions with characteristics:
 - *t* Time between collisions
 - $\circ v$ The velocity
 - $\bigcirc I$ The travel distance (= v^*t)
 - ONeither *v* nor *t* depend on the density of the particular type of molecule

Chemical Diffusion

$$x-l$$
 x $x+l$

$$J(x) = \frac{\mathbf{v}}{2}(n(x-l) - n(x+l)) \approx -l\mathbf{v}\frac{dn(x)}{dx} = -\mathbf{v}^2\mathbf{\tau}\frac{dn(x)}{dx}$$

Current at any point x

Density of particles coming from either direction * velocity

This guy

Chemical Diffusion

$$\Gamma \Delta x \frac{dn(x;t)}{dt} = \left(-J(x + \Delta x/2;t) + J(x - \Delta x/2;t)\right)\Gamma = -\Gamma \Delta x \frac{dJ(x;t)}{dx}$$

Gamma Delta x terms cancel, substitute eq. for J:

$$\frac{dn(x;t)}{dt} = v^2 \tau \frac{d^2 n(x;t)}{dx^2}$$

Generalized to 3 dimensions:

$$\frac{dn(\mathbf{x};t)}{dt} = D\nabla^2 n(\mathbf{x};t)$$

x + dx

$$\frac{dn_i(x;t)}{dt} = D\nabla^2 n_i(x;t) + R_i(\{n_j(x;t)\})$$

- Introduce a new element in our eventual equation to account for chemical reactions in the system
 - Again use assumption of low densities
 - Fast reactions
 - Opensity not too rapidly varying in space (so that gradients need not be considered)
 - Interactions are short range

- So the rate of a reaction: $A + B \rightarrow C$ is dependent upon the densities of the reactants, $n_A n_B$.
- The rate of change of the densities is:

$$\frac{dn_A}{dt} = -k_1 n_B n_A$$

$$\frac{dn_B}{dt} = -k_1 n_B n_A$$
Loss due to reaction based on the concentrations of both

$$\frac{dn_C}{dt} = k_1 n_B n_A$$

Production based on same

The reverse reaction: A + B ← C adds the parameters:

$$\frac{dn_A}{dt} = -k_1 n_B n_A + k_2 n_C$$

$$\frac{dn_B}{dt} = -k_1 n_B n_A + k_2 n_C$$

$$\frac{dn_C}{dt} = k_1 n_B n_A - k_2 n_C$$

- The chemical reactions used are simplified and may each contain many steps not examined
- Certain assumptions can be made:
 - Quasi-equilibrium condition
 - Extreme kinetic regime
 - Quasi-static regime

Quasi-equilibrium

• If the two reversible reactions are in equilibrium $(A+B\rightarrow C \text{ and } C\rightarrow A+B)$, then the density of A no longer changes with time, so: $n_B n_A = k_2' n_C$ where $k_2' = k_2/k_1$

Kinetic Regime

 If the densities are far from equilibrium, then the reaction can be seen as moving only in one direction

Quasi-static Regime

- If the density of one of the molecules is varying slowly on the time scale of observations
- The change to the density as compared to the density itself is negligible
- Example, if the density of C is large compared to all molecules in general then: $\frac{dn_A}{dn_A} \approx -k_1 n_B n_A + k_2'' \quad \text{where } k''_2 = k_2 n_C$

Activator-inhibitor System

$$A \rightarrow 0$$

$$B \rightarrow 0$$

$$2A + D \rightarrow 2A + B$$

$$2A + C \rightarrow 3A + C$$

$$C + B \leftrightarrow E$$

- 0 is used to denote a molecule whose density is irrelevant
- Most reactions assume extreme kinetic limit and only go in one direction

Activator-substrate System

$$A \rightarrow 0$$

$$0 \rightarrow B$$

$$2A + B \rightarrow 3A$$

 When 0 is used as a reactant, we assume the quasi-static case where it's concentration does not change significantly over the time of observation

Non-linear Dependence

Take an example reaction: 2A → B

$$\frac{dn_A}{dt} = -k_3 n_A^2$$

$$\frac{dn_B}{dt} = k_4 n_A^2$$

• Where k_3 would be twice as large as k_4

Non-linear Dependence

• A more complex example that involves catalysis: $2A + D \rightarrow 2A + B$

$$\frac{dn_D}{dt} = -k_5 n_A^2 n_D$$

$$\frac{dn_D}{dt} = -k_5 n_A^2 n_D$$

$$\frac{dn_B}{dt} = k_5 n_A^2 n_D$$

 Where there is no change in the density of A in the reaction

Quasi-equilibrium Condition

- Consider the reaction $C + B \leftrightarrow E$ $n_B n_C = k_2' n_E$
- Then assume the density of E is large enough to remain relatively constant

$$n_C = \frac{k_2^{\prime\prime\prime}}{n_B}$$

Activator-inhibitor System

$$A \rightarrow 0$$

$$B \rightarrow 0$$

$$2A + D \rightarrow 2A + B$$

$$2A + C \rightarrow 3A + C$$

$$C + B \leftrightarrow E$$

Using the 1st and 4th
equations (that affect the
density of A) and the
preceding assumption,
we can construct:

$$\frac{dn_A}{dt} = -k_1 n_A + k_3 n_A^2 n_C \approx -k_1 n_A + k_3' n_A^2 / n_B$$

Activator-inhibitor System

For B we require another assumption, that $n_C << n_B$ to decouple the behavior of n_B from the quasi-equilibrium state

$$\frac{dn_{B}}{dt} = -k_{4}n_{B}n_{C} + k_{5}n_{E} + (k_{3}n_{A}^{2}n_{D} - k_{2}n_{B})$$

$$\frac{dn_{C}}{dt} = -k_{4}n_{B}n_{C} + k_{5}n_{E}$$

$$\frac{dn_{C}}{dt} = -k_{4}n_{B}n_{C} + k_{5}n_{E}$$

$$\frac{dn_B}{dt} = k_3 n_A^2 n_D - k_2 n_B$$

Pattern Formation

- Consider two types of molecules, an activator that acts over a short distance, and an inhibitor that acts over a longer distance
- Use A and B whose density $n_A(x,y;t)$ and $n_B(x,y;t)$ we write as a(x;t) and b(x;t)
- These molecules diffuse with different diffusion constants D_a and D_b

Molecule Behavior

$$\frac{da(\mathbf{x};t)}{dt} = D_a \nabla^2 a(\mathbf{x};t) + f(a(\mathbf{x};t),b(\mathbf{x};t))$$

$$\frac{db(\mathbf{x};t)}{dt} = D_b \nabla^2 b(\mathbf{x};t) + g(a(\mathbf{x};t),b(\mathbf{x};t))$$

$$f(a,b) = k_1 a^2 / b - k_2 a$$

$$g(a,b) = k_3 a^2 - k_4 b$$

$$\frac{dn_A}{dt} = -k_1 n_A + k_3 n_A^2 n_C \approx -k_1 n_A + k_3' n_A^2 / n_B$$

$$\frac{dn_B}{dt} = k_3 n_A^2 n_D - k_2 n_B$$

Activator-substrate system

$$\frac{da(\mathbf{x};t)}{dt} = D_a \nabla^2 a(\mathbf{x};t) + f(a(\mathbf{x};t), b(\mathbf{x};t))$$

$$\frac{db(\mathbf{x};t)}{dt} = D_b \nabla^2 b(\mathbf{x};t) + g(a(\mathbf{x};t), b(\mathbf{x};t))$$

$$A \to 0$$

$$0 \to B$$

$$2A + B \to 3A$$

$$f(a,b)$$

$$g(a,b)$$

$$f(a,b) = k_1 a^2 b - k_2 a$$

 $g(a,b) = k_3 - k_4 a^2 b$

$$k_1 = k_2 = 1$$

$$k_3 = k_4 = 1, 2, 4$$

Since *B* is consumed by the creation of *A* the maxima of *A* correspond to the minima of *B*

- Normalize the variables
 - Time and length scales relate to the time step and lattice size
 - Olltimately the number of independent parameters can be reduced to two (from 6 originally)
- Setting f(a,b) = g(a,b) = 0 provides a solution that is uniform but unstable, where any perturbation leads to the formation of patterns

- Setting a and b initially to 1 sets $k_1 = k_2$ and $k_3 = k_4$, giving a range of values for the simulation between 0 (white) and 2 (black)
- Use a finite difference representation of the diffusion operator

$$\frac{d^{2}a(x)}{dx^{2}} \to \frac{1}{\Delta x^{2}} (a(i+1) + a(i-1) - 2a(i))$$

In two dimensions this is:

$$\frac{d^2a(\mathbf{x})}{dx^2} + \frac{d^2a(\mathbf{x})}{dy^2} \to \frac{1}{\Delta x^2} \left(a(i+1,j) + a(i-1,j) + a(i,j+1) + a(i,j-1) - 4a(i,j) \right)$$

The time derivative represented as a time difference:

$$\frac{da(t)}{dt} \to \frac{1}{\Delta t} (a(t) - a(t-1))$$

 Create a CA consistent with a randomwalk model for molecular motion

$$a(i,j;t+1) = a(i,j;t) + \Delta t \ f(a(i,j;t),b(i,j;t))$$

$$+ \frac{\Delta t}{\Delta x^{2}} D_{a}(a(i+1,j;t) + a(i-1,j;t) + a(i,j+1;t) + a(i,j-1;t) - 4a(i,j;t))$$

$$b(i,j;t+1) = b(i,j;t) + \Delta t \ g(a(i,j;t),b(i,j;t))$$

$$+ \frac{\Delta t}{\Delta x^{2}} D_{b}(b(i+1,j;t) + b(i-1,j;t) + b(i,j+1;t) + b(i,j-1;t) - 4b(i,j;t))$$

 $\Delta t = 0.01$, $\Delta x = 1$, $D_a = 0.5$, $D_b = 20$

Making Stripes

- Introduce a term that reduces activation at high values of a and maintains the inhibition at low values of a
- Activator-inhibitor $f(a,b) = k_1 a^2 / b(1 + k_5 a^2) k_2 a$ $g(a,b) = k_3 a^2 - k_4 b$
- Activator-substrate $f(a,b) = k_1 a^2 b/(1 + k_5 a^2) k_2 a$ $g(a,b) = k_3 - k_4 a^2 b/(1 + k_5 a^2)$

Pearson (1993)

- Look around in parameter space for a given reaction-diffusion model
- Observe some interesting behaviors
- Unfortunately in print one can only describe them

"Texture Garden" demo

Gray-Scott Reaction-Diffusion Model

$$U + 2V \rightarrow 3V$$

$$V \rightarrow P$$

- Both reactions are irreversible
- P is an inert product
- Both U and V decay over time

$$\frac{\partial U}{\partial t} = D_u \nabla^2 U - U V^2 + F(1 - U)$$

$$\frac{\partial V}{\partial t} = D_{\nu} \nabla^2 V + U V^2 - (F + k) V$$

Phase Diagram

- A trivial steady-state solution (*U* = 1, *V* = 0) exists and is stable for all *F* and *k*
- Within the region shown there are two stable steady states
- Outside, a stable periodic solution is found for k < 0.035</p>

Cell Division

Forming and Filling of Holes

Summary

- Simple rules lead to complex behavior
- More complex rules can lead to the same behavior but with a more continuous set of states
- Tweak parameters to obtain different patterns from the same rules
- Use different sets of rules in succession
- Achieve varying levels of stability in various regions of parameter space