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The Search for General Features
● Is it only cellular automata with very specific rules that 

produce apparent complexity?

● If not, what other kinds of programs can produce similar 
results?



More Cellular Automata



More Cellular Automata
● Repetitive patterns are 

slightly more common 
● About 14% are more 

complicated (nested or 
fractal structures, 
apparent randomness)

● Of these, most are 
nested patterns (e.g., 
the “Triforce” pattern 
and variations)



More Cellular Automata

● 10 of the 256 yield 
apparent randomness

● 3 basic forms



More Cellular Automata

● What if we increase the 
complexity of the rules by 
adding a third color?

● Number of possible rules 
increases from 256 to 
7,625,597,484,987.

● Reduce this to 2,187 by using 
totalistic rules, which take 
new cell color from the 
average color of neighboring 
cells instead of individual 
colors.



More Cellular Automata

● Results look similar to 
two-color automata.

● More complicated 
underlying rules do not 
seem to add to overall 
complexity.



More Cellular Automata

● Three-color automata 
can still produce 
seemingly random 
results.

● Bilateral symmetry in 
these images is due to 
the basic structure of 
totalistic rules



More Cellular Automata

● 85% of 3-color automata 
produce behavior that is 
ultimately quite regular.

● Some rules, however, 
produce structures that have 
an interesting interaction 
between regularity and 
irregularity.





More Cellular Automata

● These seem to be complex 
at first, but end up 
resolving to simple forms 
(even if it takes 8,282 
steps).



Mobile Automata

● Instead of updating all 
cells in parallel, there is 
only a single “active” cell 
that can change its color.

● Rules define how this cell 
can move and how it can 
change colors.



Mobile Automata

● 65,536 possible rule sets
● None show the level of complexity of the cellular 

automata featured in the previous section.



Mobile Automata

● Increase the complexity of 
the rules by allowing the 
active cell to change the 
colors of its neighbors as 
well, giving 4,294,967,296 
possible rule sets.

● 99% show simple repetitive 
behavior

● Some, like the one to the 
right, create regular nested 
structures



Mobile Automata
● About one in 50,000 rules give a seemingly random 

compressed form as below, though the movement of 
the active cell still seems somewhat regular.



Mobile Automata

● One rule set in a “few 
million” will yield an 
image like the one seen 
here.



Generalized Mobile Automata
● Mobile Automata where the active cell can move, split into 

two active cells, or disappear entirely.

● More complex behavior is relatively easier to find than with 
ordinary mobile automata.

● If every cell in a step becomes active, behavior is essentially 
that of a cellular automaton.



Turing Machines

● Like mobile automata: line of cells is a “tape,” active cell is 
the “head.”

● The head can have several possible states, and Turing rules 
can depend on the state of the head and the color of the cell 
at the head’s position, but not the color of neighboring cells.

● In a Turing Machine with two head states and two colors, 
none of the 4096 rule sets results in anything more 
complicated than repetitive or nested behavior.

● Likewise, with three head states, there is no apparent 
random behavior in any of the approximately 3 million 
possible machines.



Turing Machines

● With four states for the 
head, five out of every 
million or so rules will 
have apparently random 
behavior.

● More than four states 
does not correspond to a 
significant increase in 
complexity.



Substitution Systems

● Number of cells in an array can change
● Each cell is replaced with some sequence of cells 

depending on its color.
● You can also think of it as starting with a single 

large cell and subdividing it based on some rule.



Substitution Systems

● Obvious regularity in all patterns produced by this 
method.

● Every time a cell of a specific color is encountered, 
it is split in the same way.



Substitution Systems

● Consider rules based not only on individual cells, but 
also on the neighbors of those cells.

● Can produce complex behavior
● Total number of elements never decreases from one 

step to the next.



Substitution Systems

● It is also possible to have systems where elements 
can simply disappear.

● For a system to last, there needs to be a balance 
between elements created and elements destroyed at 
each time step.

● All such “slow growth” systems are simply 
repetitive.



Substitution Systems

● However, 
complex slow-
growth systems 
can be achieved 
by increasing the 
number of 
available colors 
from 2 to 3 or 4.



Sequential Substitution Systems

● Consider a substitution system that, instead of 
operating on all cells in parallel, replaces only the 
first instance of a particular string of cells.

● Analogous to a find-and-replace function of a text 
editor.

● If only the first or first and second instances of a 
string are replaced, no apparently complex behavior 
is observed.



Sequential Substitution Systems

● However, if you 
allow more than 2 
substitutions per step, 
more complex 
behavior is 
immediately 
observable.

● Apparently random 
patterns occur once 
every 10,000 or so 
rules.



Tag Systems

● A Tag system consists of a sequence of elements, 
each colored, say, black or white.

● At each step, a fixed number of elements is removed 
from the beginning of the sequence.

● Depending on the color of the removed elements, 
one of several possible blocks is tagged onto the end 
of the sequence.



Tag Systems

● When only one element 
is removed, no complex 
behavior occurs (acts 
like a simple 
substitution system).

● However, when two 
elements are removed 
every step, more 
complex behavior 
appears.



Cyclic Tag Systems

● Simple Case: two alternating rules, each of which 
tags a different block to the end of the sequence if 
the first element in the sequence is black.

● With more complex rules, one notices seemingly 
random fluctuations in length of the sequence.



Cyclic Tag Systems



Register Machines

● Specifically designed to work like simple idealized computers.

● At the lowest level, standard CPUs have registers that store numbers, 
and programs are converted into commands that specify operations to be 
performed on these registers.

● Increment commands simply add one to the number stored in a register.

● Decrement-jump commands decrease the value by one and jump to 
some other point in the program, where execution continues.

● The number in a register is assumed to be non-negative, so when a 
decrement-jump is applied to a zero register, nothing happens, and 
execution continues with the next command in the program.



Register Machines

● All of the 10,552 possible machines with 4 or fewer 
instructions are essentially repetitive.  

● One of the 276,224376 machines with 5 instructions 
displays a nested structure, but none are more complex.

● 126 of the 11,019,960,576 machines with 8 instructions 
show more complicated behavior.



Register Machines
● Part (a) is the ordinary evolution.

● Part (b) is compressed to show 
only the steps where one of the 
registers has decreased to zero.

● Part (c) shows the instructions 
executed the first 400 times that 
one of the registers decreases to 
zero.

● Part (d) shows the successive 
values (in binary digits) obtained 
by the second register at steps 
where the first register has 
decreased to zero.



Register Machines

● No significant gain in complexity with more than 2 
registers.

● Extending rules to allow for addition, subtraction, or 
comparison, while not more complex, allow for 
more accurate idealizations of low-level computer 
operations.

● Results obtained here can be generalized to apply to 
programs written in C, Java, Basic, or assembler.



Symbolic Systems
● Consider a mathematical expression with nested 

parentheses, like e[e[e][e]][e][e].
● Using transformation rules like e[x_][y_]->x[x[y]] 

(where x_ and y_ can be any expression), apply the 
rule from left to right wherever possible without 
overlapping.



Symbolic Systems
● Pictures obtained by representing opening and closing brackets 

as dark and light squares, respectively.

● These use the same rule as the previous slide, with different 
initial conditions.

● All these will stabilize, sometimes after a very long time.



Symbolic Systems
● Plots of the same initial condition, but with different 

rules applied.



Some Conclusions

● What characteristics of cellular automata are 
responsible for their tendency for complexity?

● From substitution systems, we see it is not necessary 
to have a rigid grid of elements.

● From mobile automata, we see that updating in 
parallel is not necessary.

● Each system type discussed was chosen to take away 
features from the cellular automata model, but all are 
ultimately capable of complexity.



Some Conclusions

● When, in general, does complexity occur?
– Extremely simple rules lead to repetitive behavior.
– Slightly more complicated rules lead to nesting.
– Once some “complexity threshold” is passed, 

randomness appears, but does not seem to become more 
likely as rules are made even more complex.

– In general, this threshold is very low.



Some Conclusions

● Repetition, nesting, and apparent randomness are 
general concepts that can be applied to a wide range 
of systems.

● Therefore, even if the details of a system are 
unknown, we can still potentially make fundamental 
statements about its overall behavior.



How the discoveries in this chapter 
were made

● Methodology based on doing computer experiments.

– Initialize a system with state and rules, and observe 
resultant behavior.

– Allows one to discover new, unexpected phenomena
– Perfectly repeatable anywhere, at any time.

● By observing systems with the simplest possible structure, 
you can get results with broad and fundamental significance.  

● Simple systems are easy to implement on a computer and 
investigate systematically.



How the discoveries in this chapter 
were made

● In the author's view, the single most common 
mistake in doing computer experiments is making 
them more complicated than is necessary, especially 
when such simple systems can lead to apparent 
complexity.

● “One can never start with too simple a system.”



How the discoveries in this chapter 
were made

● Do a mindless search of a large number of cases than a 
carefully crafted search of a smaller number.

● Look explicitly at actual behavior instead of a summary.

● To whit, display the behavior as a picture or diagram that is 
easily and quickly processed by the naked eye.

● Avoid assumptions and set up experiments that are simple 
and direct enough not to miss important new phenomena.
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