
The World of Simple Programs

From A New Kind of Science
by Stephen Wolfram

Presented by Adam Olenderski

CS 790R, University of Nevada, Reno
1/30/2006

The Search for General Features
● Is it only cellular automata with very specific rules that

produce apparent complexity?

● If not, what other kinds of programs can produce similar
results?

More Cellular Automata

More Cellular Automata
● Repetitive patterns are

slightly more common
● About 14% are more

complicated (nested or
fractal structures,
apparent randomness)

● Of these, most are
nested patterns (e.g.,
the “Triforce” pattern
and variations)

More Cellular Automata

● 10 of the 256 yield
apparent randomness

● 3 basic forms

More Cellular Automata

● What if we increase the
complexity of the rules by
adding a third color?

● Number of possible rules
increases from 256 to
7,625,597,484,987.

● Reduce this to 2,187 by using
totalistic rules, which take
new cell color from the
average color of neighboring
cells instead of individual
colors.

More Cellular Automata

● Results look similar to
two-color automata.

● More complicated
underlying rules do not
seem to add to overall
complexity.

More Cellular Automata

● Three-color automata
can still produce
seemingly random
results.

● Bilateral symmetry in
these images is due to
the basic structure of
totalistic rules

More Cellular Automata

● 85% of 3-color automata
produce behavior that is
ultimately quite regular.

● Some rules, however,
produce structures that have
an interesting interaction
between regularity and
irregularity.

More Cellular Automata

● These seem to be complex
at first, but end up
resolving to simple forms
(even if it takes 8,282
steps).

Mobile Automata

● Instead of updating all
cells in parallel, there is
only a single “active” cell
that can change its color.

● Rules define how this cell
can move and how it can
change colors.

Mobile Automata

● 65,536 possible rule sets
● None show the level of complexity of the cellular

automata featured in the previous section.

Mobile Automata

● Increase the complexity of
the rules by allowing the
active cell to change the
colors of its neighbors as
well, giving 4,294,967,296
possible rule sets.

● 99% show simple repetitive
behavior

● Some, like the one to the
right, create regular nested
structures

Mobile Automata
● About one in 50,000 rules give a seemingly random

compressed form as below, though the movement of
the active cell still seems somewhat regular.

Mobile Automata

● One rule set in a “few
million” will yield an
image like the one seen
here.

Generalized Mobile Automata
● Mobile Automata where the active cell can move, split into

two active cells, or disappear entirely.

● More complex behavior is relatively easier to find than with
ordinary mobile automata.

● If every cell in a step becomes active, behavior is essentially
that of a cellular automaton.

Turing Machines

● Like mobile automata: line of cells is a “tape,” active cell is
the “head.”

● The head can have several possible states, and Turing rules
can depend on the state of the head and the color of the cell
at the head’s position, but not the color of neighboring cells.

● In a Turing Machine with two head states and two colors,
none of the 4096 rule sets results in anything more
complicated than repetitive or nested behavior.

● Likewise, with three head states, there is no apparent
random behavior in any of the approximately 3 million
possible machines.

Turing Machines

● With four states for the
head, five out of every
million or so rules will
have apparently random
behavior.

● More than four states
does not correspond to a
significant increase in
complexity.

Substitution Systems

● Number of cells in an array can change
● Each cell is replaced with some sequence of cells

depending on its color.
● You can also think of it as starting with a single

large cell and subdividing it based on some rule.

Substitution Systems

● Obvious regularity in all patterns produced by this
method.

● Every time a cell of a specific color is encountered,
it is split in the same way.

Substitution Systems

● Consider rules based not only on individual cells, but
also on the neighbors of those cells.

● Can produce complex behavior
● Total number of elements never decreases from one

step to the next.

Substitution Systems

● It is also possible to have systems where elements
can simply disappear.

● For a system to last, there needs to be a balance
between elements created and elements destroyed at
each time step.

● All such “slow growth” systems are simply
repetitive.

Substitution Systems

● However,
complex slow-
growth systems
can be achieved
by increasing the
number of
available colors
from 2 to 3 or 4.

Sequential Substitution Systems

● Consider a substitution system that, instead of
operating on all cells in parallel, replaces only the
first instance of a particular string of cells.

● Analogous to a find-and-replace function of a text
editor.

● If only the first or first and second instances of a
string are replaced, no apparently complex behavior
is observed.

Sequential Substitution Systems

● However, if you
allow more than 2
substitutions per step,
more complex
behavior is
immediately
observable.

● Apparently random
patterns occur once
every 10,000 or so
rules.

Tag Systems

● A Tag system consists of a sequence of elements,
each colored, say, black or white.

● At each step, a fixed number of elements is removed
from the beginning of the sequence.

● Depending on the color of the removed elements,
one of several possible blocks is tagged onto the end
of the sequence.

Tag Systems

● When only one element
is removed, no complex
behavior occurs (acts
like a simple
substitution system).

● However, when two
elements are removed
every step, more
complex behavior
appears.

Cyclic Tag Systems

● Simple Case: two alternating rules, each of which
tags a different block to the end of the sequence if
the first element in the sequence is black.

● With more complex rules, one notices seemingly
random fluctuations in length of the sequence.

Cyclic Tag Systems

Register Machines

● Specifically designed to work like simple idealized computers.

● At the lowest level, standard CPUs have registers that store numbers,
and programs are converted into commands that specify operations to be
performed on these registers.

● Increment commands simply add one to the number stored in a register.

● Decrement-jump commands decrease the value by one and jump to
some other point in the program, where execution continues.

● The number in a register is assumed to be non-negative, so when a
decrement-jump is applied to a zero register, nothing happens, and
execution continues with the next command in the program.

Register Machines

● All of the 10,552 possible machines with 4 or fewer
instructions are essentially repetitive.

● One of the 276,224376 machines with 5 instructions
displays a nested structure, but none are more complex.

● 126 of the 11,019,960,576 machines with 8 instructions
show more complicated behavior.

Register Machines
● Part (a) is the ordinary evolution.

● Part (b) is compressed to show
only the steps where one of the
registers has decreased to zero.

● Part (c) shows the instructions
executed the first 400 times that
one of the registers decreases to
zero.

● Part (d) shows the successive
values (in binary digits) obtained
by the second register at steps
where the first register has
decreased to zero.

Register Machines

● No significant gain in complexity with more than 2
registers.

● Extending rules to allow for addition, subtraction, or
comparison, while not more complex, allow for
more accurate idealizations of low-level computer
operations.

● Results obtained here can be generalized to apply to
programs written in C, Java, Basic, or assembler.

Symbolic Systems
● Consider a mathematical expression with nested

parentheses, like e[e[e][e]][e][e].
● Using transformation rules like e[x_][y_]->x[x[y]]

(where x_ and y_ can be any expression), apply the
rule from left to right wherever possible without
overlapping.

Symbolic Systems
● Pictures obtained by representing opening and closing brackets

as dark and light squares, respectively.

● These use the same rule as the previous slide, with different
initial conditions.

● All these will stabilize, sometimes after a very long time.

Symbolic Systems
● Plots of the same initial condition, but with different

rules applied.

Some Conclusions

● What characteristics of cellular automata are
responsible for their tendency for complexity?

● From substitution systems, we see it is not necessary
to have a rigid grid of elements.

● From mobile automata, we see that updating in
parallel is not necessary.

● Each system type discussed was chosen to take away
features from the cellular automata model, but all are
ultimately capable of complexity.

Some Conclusions

● When, in general, does complexity occur?
– Extremely simple rules lead to repetitive behavior.
– Slightly more complicated rules lead to nesting.
– Once some “complexity threshold” is passed,

randomness appears, but does not seem to become more
likely as rules are made even more complex.

– In general, this threshold is very low.

Some Conclusions

● Repetition, nesting, and apparent randomness are
general concepts that can be applied to a wide range
of systems.

● Therefore, even if the details of a system are
unknown, we can still potentially make fundamental
statements about its overall behavior.

How the discoveries in this chapter
were made

● Methodology based on doing computer experiments.

– Initialize a system with state and rules, and observe
resultant behavior.

– Allows one to discover new, unexpected phenomena
– Perfectly repeatable anywhere, at any time.

● By observing systems with the simplest possible structure,
you can get results with broad and fundamental significance.

● Simple systems are easy to implement on a computer and
investigate systematically.

How the discoveries in this chapter
were made

● In the author's view, the single most common
mistake in doing computer experiments is making
them more complicated than is necessary, especially
when such simple systems can lead to apparent
complexity.

● “One can never start with too simple a system.”

How the discoveries in this chapter
were made

● Do a mindless search of a large number of cases than a
carefully crafted search of a smaller number.

● Look explicitly at actual behavior instead of a summary.

● To whit, display the behavior as a picture or diagram that is
easily and quickly processed by the naked eye.

● Avoid assumptions and set up experiments that are simple
and direct enough not to miss important new phenomena.

	The World of Simple Programs
	The Search for General Features
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	More Cellular Automata
	Mobile Automata
	Mobile Automata
	Mobile Automata
	Mobile Automata
	Mobile Automata
	Generalized Mobile Automata
	Turing Machines
	Turing Machines
	Substitution Systems
	Substitution Systems
	Substitution Systems
	Substitution Systems
	Substitution Systems
	Sequential Substitution Systems
	Sequential Substitution Systems
	Tag Systems
	Tag Systems
	Cyclic Tag Systems
	Cyclic Tag Systems
	Register Machines
	Register Machines
	Register Machines
	Register Machines
	Symbolic Systems
	Symbolic Systems
	Symbolic Systems
	Some Conclusions
	Some Conclusions
	Some Conclusions
	How the discoveries in this chapter were made
	How the discoveries in this chapter were made
	How the discoveries in this chapter were made

