

CS 790R Seminar

1. Introductory Lecture 2

René Doursat

Department of Computer Science & Engineering University of Nevada, Reno

Spring 2006

Introductory Lecture 1

- Examples of complex systems 1
- Course organization
- Paper reviews (first period)

- Examples of complex systems 2
- Common elementary features of CS
- Common global properties of CS

- Examples of complex systems 2
 - Pattern formation
 - Insect colonies
 - Group motion
 - Synchronization
- Common elementary features of CS
- Common global properties of CS

- Examples of complex systems 2
 - Pattern formation
 - Physical: convection cells
 - Chemical: BZ reaction
 - Biological: animal colors
 - Biological: slime mold
 - Insect colonies
 - Group motion
 - Synchronization
- Common elementary features of CS
- Common global properties of CS

10 + 2 9 + 3 8 7 6 5
10 7 2 9 7 6 5

4-second oscillations of the BZ reaction in a well-stirred tank (Gabriel Peterson, College of the Redwoods, CA)

Spiral and circular traveling waves of the BZ reaction in a Petri dish (Arthur Winfree, University of Arizona)

Phenomenon

- Belousov-Zhabotinsky reaction: "chemical clock"
- ➢ if well stirred, it oscillates
- if spread on a plate, it creates waves (reactiondiffusion)
- example of an "excitable medium"
- often cited in selforganization

Simplified diagram of the Belousov-Zhabotinsky reaction (Gabriel Peterson, College of the Redwoods, CA)

Mechanism

- in each elementary volume of solution, there is competition between two reaction branches, A and B
- A is faster than B, but B is autocatalytic
- when A runs out of reactants, B takes over and regenerates them
- ➤ a color indicator signals the oscillation between A and B through iron ions (Fe²⁺/Fe³⁺)

NetLogo B-Z reaction simulation, after A. K. Dewdney's "hodgepodge machine" (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

- ➤ abstract, simplified rules
- ➢ each cell has 3 states:
 - "healthy" (x = 0, black)
 - "infected" (0 < x < 1, red)</p>
 - "sick" (x = 1, white)

\succ each cell follows 3 rules that create a cycle:

- if "healthy, become "infected" as a function of neighbors
- if "infected", increase infection level as a function of neighbors
- if "sick", become "healthy"

Concepts collected from this example

- simple individual rules (modeling a less simple, but small set of reactions)
- emergence of long-range spatiotemporal correlations
- no impurities; spiral centers are not specialized (decentralization)
- Iocal interactions by reaction and diffusion

Synchronization, breakup and aggregation of slime mold amoebae on an agar plate (P. C. Newell; from Brian Goodwin, "How the leopard changed its spots", Princeton U. Press)

Phenomenon

- unicellular organisms (amoebae) clump together into multicellular "slugs"
- with enough food, they grow and divide independently
- under starvation, they synchronize (chemical waves), aggregate and differentiate
- aggregation phase shows same concentric wave patterns as BZ reaction
- another famous example of "excitable medium" and self-organization

Life cycle of Dictyostelium slime mold (Ivy Livingstone, BIODIDAC, University of Ottawa)

Mechanism

life cycle of slime mold amoebae (Dictyostelium):

independent amoebae (A)

- \rightarrow aggregation
- \rightarrow clump
- \rightarrow slug
- \rightarrow growth
- \rightarrow body & fruit
- \rightarrow spore release & germination
- \rightarrow amoebae (A)

Life cycle of Dictyostelium slime mold (Ivy Livingstone, BIODIDAC, University of Ottawa) Mechanism

life cycle of slime mold amoebae (Dictyostelium):

independent amoebae (A)

\rightarrow aggregation

- stage 1: oscillatory secretion of chemical (cAMP) by each cell
- stage 2: local coupling of secretion signal, forming spiral waves
- stage 3: pulsatile motion toward spiral centers

→ ...

NetLogo simulation of slime mold aggregation, after Mitchel Resnick (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

- For wave formation (stages 1 & 2 of aggregation)
 - \rightarrow see B-Z reaction model

- for clumping (stage 3 of aggregation), three simplified rules:
 - each cell (red) secretes a chemical (shades of green)
 - each cell moves towards greater concentration of chemical
 - chemical evaporates

Concepts collected from this example

- simple, "blind" individual behavior
- emergence of aggregates
- spiral centers are *not* already differentiated cells (decentralization)
- \succ local interactions (cell \leftrightarrow chemical)
- > phase transition (critical mass)

- Examples of complex systems 2
 - Pattern formation
 - Insect colonies
 - Ant trails
 - Termite mounds
 - Group motion
 - Synchronization
- Common elementary features of CS
- Common global properties of CS

Termite mound (J. McLaughlin, Penn State University)

Inside of a termite mound (Lüscher, 1961)

Phenomenon

- another spectacular example of insect self-organization: mound building by termites
- remarkable size and detailed architecture
- essentially made of tiny pellets of soil glued together
- starts with one underground chamber and grows up like a plant

Termite stigmergy (after Paul Grassé; from Solé and Goodwin, "Signs of Life", Perseus Books)

Mechanism

➢ no plan or central control

- termites interact indirectly, through the environment they are modifying
- "stigmergy" is a set of stimulusresponse pairs:
 - pattern A in environment triggers behavior R in termite
 - behavior R changes A into A₁
 - pattern A₁ triggers behavior R₁
 - behavior R₁ changes A₁ into A₂
 - etc.

➢ for example, a small heap develops into an arch

StarLogo termite mound building simulation, after Mitchel Resnick (StarLogo Project, MIT Media Laboratory, MA)

Modeling & simulation

➤ simplified setup:

- randomly scattered wood chips (or soil pellets)
- termites moving among the chips

> virtual termite's repertoire:

- walk around randomly
- if bump into wood chip, pick it up and move away
- if carrying wood chip, drop it where other wood chips are
- result: wood chips are stacked in piles of growing size
- explains one aspect of mound formation

Concepts collected from this example

- > simple individual rules
- > emergence of macroscopic structure
- > no architect, no blueprint
- amplification of small fluctuations (positive feedback)
- \succ local interactions (termite \leftrightarrow environment)

- Examples of complex systems 2
 - Pattern formation
 - Insect colonies
 - Group motion
 - Natural: flocks, schools, herds
 - Artificial: traffic jams
 - Synchronization
- Common elementary features of CS
- Common global properties of CS

Examples of complex systems Group motion – *Artificial: traffic jams*

Traffic jam (Department of Physics, University of Illinois at Urbana-Champaign)

Phenomenon

- stream of cars breaks down into dense clumps and empty stretches
- spontaneous symmetry-breaking of initially uniform density and speed
- <u>no</u> need for a central cause (such as slow vehicle, stop light or accident)

Examples of complex systems Group motion – *Artificial: traffic jams*

NetLogo traffic basic simulation, after Mitchel Resnick (Uri Wilensky, Northwestern University, IL)

Modeling & simulation

➤ each car:

- slows down if there is another car close ahead
- speeds up if there is no car close ahead
- traffic nodes move in the direction opposite to cars
- emergence of group behavior qualitatively different from individual behavior

Examples of complex systems Group motion – *Artificial: traffic jams*

Concepts collected from this example

- simple individual reactions
- emergence of moving superstructures
- no accident, no light, no police radar (decentralization)
- amplification of small fluctuations (positive feedback)
- > local interactions (car \leftrightarrow car)

- Examples of complex systems 2
 - Pattern formation
 - Insect colonies
 - Group motion
 - Synchronization
 - Fireflies
 - Neurons
- Common elementary features of CS
- Common global properties of CS

Examples of complex systems Synchronization – *Neurons*

Medial surface of the brain (Virtual Hospital, University of Iowa)

Pyramidal neurons and interneurons, precentral gyrus (Ramón y Cajal 1900)

Phenomenon

- neurons together form... the brain!(+ peripheral nervous system)
 - perception, cognition, action
 - emotions, consciousness
 - behavior, learning
 - autonomic regulation: organs, glands
- ➤ ~10¹¹ neurons in humans
- communicate with each other through electrical potentials
- neural activity exhibits specific patterns of spatial and temporal synchronization ("temporal code")

Examples of complex systems Synchronization – *Neurons*

Mechanism

> each neuron receives signals from many other neurons through its *dendrites*

- > the signals converge to the *soma* (cell body) and are integrated
- \succ if the integration exceeds a threshold, the neuron fires a signal on its *axon*

- Examples of complex systems 2
- Common elementary features of CS
 - Large number of elements
 - Simple behavior rules
 - Local interactions
 - Network interactions
 - Hierarchy of levels
- Common global properties of CS

Common elementary features of CS Large number of elements

	BZ reaction	molecules
	slime mold	amoebae
	animal coats	embryo cells
4	insect colonies	ants, termites, bees
	flocking, traffic	birds, fish, cars
	synchronization	fireflies, neurons

Common elementary features of CS Simple behavior rules

	BZ reaction	react, diffuse	 always do A 	
	slime mold	diffuse, sync, move	• if B then C • sometimes do D	
	animal coats	activate, inhibit	eic.	
4	insect colonies	carry, deposit, follow	Limited repertoire of fixed	
	flocking, traffic	steer, adjust speed	and reactive behavior	
	synchronization	reset phase/freq.	<i>intrinsically</i> simple, only <i>functionally</i> at the level of description of the studied process	

Common elementary features of CS Local interactions

	BZ reaction	molecular collisions
	slime mold	cAMP signaling
	animal coats	morphogens
4	insect colonies	pheromone
	flocking, traffic	visual recognition
	synchronization	light/electric stimulus

- each element interacts with other elements and/or the environment in a local neighborhood
- one-to-one or broadcast messaging

Common elementary features of CS Network interactions

	(3-D space)	
	neurons	axons
	Internet	wires
	(non-spatial)	
	Web	hyperlinks
har	gene network	regulatory enzymes
Linsectivorous birds Spiders	food web	predation

- local neighborhood is not necessarily 2-D or 3-D, but also long-range graph...
- ➤ ... or *both*: "small worlds"

also, non-spatial models: types, species

- Examples of complex systems 2
- Common elementary features of CS
- Common global properties of CS
 - Emergence
 - Self-organization
 - Decentralization
 - Between simple and disordered
 - "More is different", phase transitions
 - Positive feedback
 - Far from equilibrium
 - Adaptation

Common global properties of CS

✓ key concepts ("buzzwords") expressing different facets of CS:

- some have different definitions across disciplines; no global agreement
- others have a clearer meaning but different weights in "making" CS
- terms overlapping but not equivalent; yet, often grouped or interchanged

Common global properties of CS Emergence

✓ the system has properties that the elements do not have

- ex: microscopic units form macroscopic patterns (convection rolls, spiral waves, stripes, spots)
- ex: "ignorant" individuals make intelligent collective decisions (insect colonies, neurons, market traders)
- ✓ these properties cannot be easily inferred or predicted
 - ex: liquid water or ice emerging from H₂O molecules
 - ex: cognition and consciousness emerging from neurons
- ✓ different properties can emerge from the same elements/rules
 - ex: the same molecules of water combine to form liquid or ice crystals
 - ex: the same cellular automaton rules change behavior from initial state
- ✓ global properties can constitute local rules at a higher level: jumping from level to level through emergence

Common global properties of CS Self-organization

- ✓ the organization or "order" of the system increases internally without external intervention
 - ex: aggregating processes (slime mold, pigmentation spots, termite heaps, flocks, etc.)
- ✓ order can be quantified using an "order parameter"
 - ex: cluster rate in aggregation
 - ex: long-range spatiotemporal correlations (spiral waves, synchrony)
- ✓ crucial to the notion of *self*-organization are the interactions *among* elements (vs. interaction with an external cause)
 - either directly: element \leftrightarrow element
 - or indirectly: element ↔ environment ↔ element ("stigmergy" in social insects)

Common global properties of CS Emergence & Self-organization

✓ counter-examples of emergence *without* self-organization:

- ex: well-informed leader (orchestra conductor, military officer)
- ex: global plan (construction area), full instructions (orchestra)
- ✓ the emergent structure can also feed back to the elements
 - ex: market influences buyers, traffic jam influences drivers

Chris Langton's view of emergence in complex systems (from "Complexity", Roger Lewin, University of Chicago Press)

CS 790R - Computational Models of Complex Systems

Common global properties of CS Decentralization

✓ order without a leader

- ex: the central amoeba in spiral waves is *not* a pacemaker
- ex: the queen ant is *not* a manager
- ex: the first bird in a V-shaped flock is not a leader
- ✓ the "invisible hand":
 - distribution: each element carry a small piece of the global information
 - ignorance: elements do not have explicit goals or intentions about the group
 - parallelism: elements act simultaneously
- ✓ decentralized processes are far more abundant than leaderguided processes, in nature and human societies
- \checkmark ... and yet, the notion of decentralization is still counterintuitive
 - many decentralized phenomena are still poorly understood
 - a "leader-less" or "designer-less" explanation still meets with resistance
 - → mostly due to human perceptual bias toward an identifiable source or primary cause

Common global properties of CS Between simple and disordered

✓ Warren Weaver's 1948 classification of scientific activity:

- 1. Problems of simplicity 1- to 3-variable problems of the 17th, 18th and 19th centuries: Newtonian mechanics, electricity, chemistry, etc.
- 2. Problems of disorganized complexity million- and billion-variable problems of the 20th century: statistical mechanics (gas, fluid, solid), probability theory, theory of information, etc.
- 3. Problems of organized complexity ("middle region") dozens or hundreds of *interrelated* variables [21st century problems]: biology, medicine, psychology, economics, social science, etc.

\checkmark the billiards table analogy*

- 1. a few balls: individual trajectories from velocities, angles, friction
- 2. a million balls: only broad statistical trends (average path, pressure)
- 3. a hundred motorized balls obeying simple rules and self-arranging

✓ another classification: Wolfram's or Langton's cellular automata

(*) from "Emergence", Stephen Johnson, Scribner

Common global properties of CS "More is different", phase transitions

- ✓ Philip W. Anderson's 1972 slogan "More is different":
 - criticism of the reductionist/constructionist hard line: "after discovering the fundamental laws, it is just a matter of reconstructing from them"
 - ...however, particle physics does not help solid state physics or biology!
 - reconstructionism crashes on the cliffs of scale and complexity
 - hierarchy levels of science show *qualitative* leaps (*new* properties)
 - psychology is not just applied biology, biology is not applied chemistry
 - ...yet again, this does *not* imply any unknown external or mysterious force; only a fundamental limitation in our analytical tools
- ✓ notion of "critical mass"
 - ex: need enough ants for a pheromone trail to form
 - ex: need enough chemical types for an autocatalytic set to appear
- ✓ phase transitions in parameter space
 - broken symmetry
 - transition from randomness or chaos to order

CS 790R - Computational Models of Complex Systems

Common global properties of CS Reconciliate decentralization & "more is different"?

- ✓ recap: decentralization (the "invisible hand")
 - no leader, no designer, no external organizing force that does not belong to the system
 - the emergent properties entirely rely on the elements' behavior and interactions among *themselves*
- ✓ recap: "more is different"
 - ... but these properties cannot be *inferred* or *predicted* just by looking at the elements
 - beyond a critical mass and across phase transition lines, the system exhibits *qualitatively new* behaviors
- \rightarrow only an apparent paradox
 - both aspects can, and actually *do* coexist in natural systems
 - neither hard-line reductionism ("everything boils down to superstrings")
 - nor "vitalism" or intelligent design ("something else must intervene")

Common global properties of CS Positive feedback

✓ positive feedback, circularity:

- ex: ants bring more pheromone where there is pheromone
- ex: termites bring pellets of soil where there is a heap of soil
- ex: pigmented cells differentiate next to other pigmented cells
- ex: fireflies want to synchronize with the swarm's flashes
- ex: cars slow down where there are slow cars in front of them
- ex: traders prefer buying stock that goes up
- ex: the media talk about what is currently talked about in the media
- → amplification of fluctuations (nonlinearity)
- \rightarrow instability of initially homogeneous state
- \rightarrow broken symmetry
- \rightarrow creation of structure

Introductory Lecture 1

- Examples of complex systems 1
- Course organization
- Paper reviews (first period)

- Examples of complex systems 2
- Common elementary features of CS
- Common global properties of CS