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Discussion

* Flake (1998), Chapter 12

 NetLogo demos:

— Wolf Sheep Predation (individual model)

— Wolf Sheep Predation (docked) (individual
and aggregate models)
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Producer-Consumer interactions

e Couple of techniques for modeling population of
species:
— Simple aggregate simulation (model each species as

a simple function of the other — species-eye view of
the world).

— Individual based simulation (model each individual of
the population separately and simulate each one
simultaneously — animal-eye view of the world).



Producer-Consumer interactions

* Most systems undergo a stabilizing process which tries
to take them to equilibrium (e.g. population dynamics,
heat regulation in mammals).

o Stabilization is easy when the state of an environment is
mostly independent of the state of an individual (e.g.:
body temperature in mammals does not have coupling
effect with surrounding environment).



Producer-Consumer interactions

Predator-prey systems are tightly coupled (Change in
one’s state has an effect on the other’s state).

Everything is connected to everything else in an endless
web interactions. A small ripple in one location may be
transformed into a tidal wave elsewhere (Chaos theory:

the butterfly effect).



Simple Lotka-Volterra system

* Introduced independently by Alfred J. Lotka and Vito
Volterra around 1920 (chemical reaction) and 1926
(predator-prey relationship) respectively.

 Two species with one (sharks) preying on another (small
fish) leading to predator-prey coupled oscillating system.

* No other predators (hunting by humans, parasites,
etc...).



Simple Lotka-Volterra system

* Couple of differential equations:

dF . . dsS i~
— = F(a—b5) and — = S(cF —d),
dt | dt . &

F: small fish population.

S: shark population.

a. reproduction rate of small fish.

b: proportional to the number of small fish that a shark can eat.

c: amount of energy that a small fish supplies to the consuming shark.

d: death rate of the sharks.



Simple Lotka-Volterra system

Observations:

Each equation has F and S term - coupled system.

In absence of predators, change in small fish population
IS: “Fa”. (exponential growth).

“FS” Is the chance that a random shark will encounter a

random small fish.
Small fish population will decrease by “bFS” term.



Simple Lotka-Volterra system

Observations:

o Shark population will increase by an amount proportional
to “cSF”. (directly proportional to value of c¢).

e In absence of small fish (F=0), shark population will
decay exponentially (-Sd).

e Shark population increases proportionally to small fish
population but simultaneously decreases due to constant
death rate.

* Fixed point of system at: F=d/c and S=a/b.
(dF/dt=dS/dt=0).



Simple Lotka-Volterra system

e Limit Cycles:
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Figure 12.1 A simple Lotka-Volterra attractor which shows four (ocut of an infinite
number of possible) limit cycles. The value of the four paramters are equal to 3.029850,
4.094132, 1.967217, and 2.295942, which yields a fixed point at 1.1671, 0.740047,



Simple Lotka-Volterra system

Observations:

 Infinite number of Limit cycles orbiting around the
embedded fixed point.

 Change in either population forces system into different
limit cycle.

 How to increase population level of small fish ?
— Increasea? -NoO
— Increase d or decreasec? - Yes



Generalized Lotka-Volterra system

Three species predator-prey system (chaos in motion).

In continuous systems, for something to be chaotic, it
must never repeat itself, but it must return to a very
similar state that it was at before.

Scribbling on paper in 2-D, there will be line intersection
(repeating) eventually.

Hence, continuous chaos can exist in three or more
dimensions.



Generalized Lotka-Volterra system

o System discovered by A. Arneodo, P. Coullet and C.
Tresser.

« Differential equations for an n-species system:
dx; L

E: XiJZ:;,Aij (1_Xj)1

X; represents the " species,

Ajj represents the effect that species j have on i species (similar to
parameters in last model).

A, A, A, 05 05 1.0
A=A, A, A,=-05 -01 0.1
A, A, A, o 01 01

Whole system can be controlled by a single variable a
(chaotic behavior at a = 1.5).



Generalized Lotka-Volterra system

A3 !

Figure 12.2 A dual-image stereogram of the three-species Lotka-Volterra chaotic at-
tractor: To view, stare at the center of the two images and cross your eyes until the two
images merge. Allow your eyes to relax so that they can refocus. g =1.5



Generallzed Lotka Volterra system
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Figure 12.3 Population levels for the three-species Lotka-Volterra system



Generalized Lotka-Volterra system
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Figure 12.4 Period doublings in a three-species Lotka-Volterra system: phase spacs is
on the left and ; is plotted on the right. (a) spiral fixed point, (b) simple periodic orbit,

(¢c) period-2 orbit



Generalized Lotka-Volterra system
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Figure 12.4 (d) period-4 orbit,



Individual based system

Each individual of a species is modeled separately.
Technigue depends on a cellular automaton.
Ecosystem consists of a finite grid (fixed width and
height).

Possible state of a grid-cell: empty, single plant or
animal.

Three types of things: plants, herbivores and
carnivores.



Individual based system
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Figure 12.6 Flow of resources in the three-species individual-based ecosystem



e For every time step:
e For every empty cell, e:

e If e has three or more neighbors that are plants, then e will become.a

plant at the next time step (assuming it isn’t trampled by a herbivore or
carnivore).

e For every herbivore, h (in random order):

e Decrease energy reserves of h by a fixed amount.
e If h has no more energy, then h dies and becomes an empty space.
e Else, if there is a plant next to h, then A moves on top of the plant, eats
it,-and gains the plant’s energy.
o If h has sufficient energy reserves, then it will spawn a baby
herbivore on the space that it just exited.

e Else, h will move into a randomly selected empty space, if one exists, that
is next to h’s current location.

e For every carnivore, ¢ (in random order):

Decrease energy reserves of ¢ by a fixed amount.

If ¢ has no more energy, then c dies and becomes an empty space.
Else, if there is a herbivore next to ¢, then ¢ moves on top of the
herbivore, eats it, and gains the herbivore’s energy.

e If ¢ has sufficient energy reserves, then it will spawn a baby carnivore
on the space that it just exited. '

e Else, c will move into a randomly selected empty space that is next to ¢'s

current location. If there are no empty spaces, then ¢ will move through
plants. )

Table, 12.1 Update algorithm for individual-based ecological model



Individual based system

Figure 12.5 An individual-based three-species ecosystem
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Individual based system
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Figure 12.7 Population levels for all creatures, normalized for comparison



Individual based system

Observations:

Number of legal states for individual-based ecosystem easily
approaches astronomical numbers as grid size increases (say
1000 x 1000).

Lotka-Volterra system uses three real numbers for its state,
but still confined to 3-D space.

State space of individual-based ecosystem can easily require
thousands of dimensions.



Individual based system

Observations:

Individual-based model (many subunits) is far more
complicated than simpler Lotka-Volterra systems.

Increasing the grid size by an enormous amount will lead the
system to fixed-point behavior. (tiny ecosystems yielding
randomness and enormous ecosystem yielding static
behavior).

Thus, the dynamics of the system collapse onto a lower-
dimensional space.



Individual based system
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Figure 12.9 A dual-image stereogram of the attractor of the individual-based predator-
prey system: To view, stare at the center of the two images and cross your eyes until the
two images merge. Allow your eyes to relax so that they can refocus.
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There iIs structure with some order mixed with disorder.



Conclusion

Chaos Is order masquerading as disorder.

Systems tend to approach chaos from two directions:
— The simple model produces complex behavior.
— A complex model settles down into a behavior described by
simple (three variable) model.
We have simplicity yielding complexity and complexity
yielding simplicity.
Different phenomena can be described with similar

mathematical tools because producer-consumer type
Interactions are common in different areas.

Instead of microscopic or macroscopic viewpoints, the
Intermediate scales order and disorder balance out to produce
Interesting behavior.



Thank You



