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Random vs. Scale-Free Networks

Random Networks

The number of vertices is fixed from the beginning and
edges can be randomly connected or reconnected

The probability that two vertices are connected 1s random
and uniform

Scale-Free Networks

Vertices can be added or removed from the network, thus
the size of the network varies over time

Higher probability of connection to already popular
vertices

Network contains important nodes that have connections
to many other nodes and are called “hubs”



Examples of Scale-Free Networks & Hubs

WWW: Yahoo!, Google, etc.

Physical Structure of the Internet: routers

Sexual relationships: Sweden

People connected by e-mail

Hollywood: Kevin Bacon

Scientific papers connected by citations: Erd0s papers

Business Partnerships: Genzyme, Chiron, Genentech
Etc.



Random vs. Scale-Free Networks
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FIGURE 1. (a) The Erdds-Rényi random network model 15 constractad by laying down WV nodes and
connecting each pair of nodes with probability p. The figure shows a particular realization of such a
network for N = 10 and p = 0.2 (b) The scale-free mode] assumes that the network contumally grows
by the addition of a new nodes. The figure shows the network at time ¢ (black nodes and links) and after

fhe addition of a new node at time 1+ 1 (red). The probabality that the new neds chooses a nods with &
Tnkes follows (2, favonng lnghly connected nodes, a phenomencn called preferential attachment. {¢) For
the random graph generated by the Erdds-Bénvi mods] the degree distribution, P(E), is strongly peaked
at k=< k = and decays exponentially for large & (d) PE) for a scale-free network does not have a peak,
and decays as a power-law, P(k) ~ £77, (e) The random network generated by the Erdds-Rényr model
15 rather homogeneous, 1.2, most nodes have approximately the same mumber of links. (£ In contrast, a
seale-free nerwork 15 extremely mhomogeneous: winle the majonity of the nodes have one or two links,

a few nodes have a large mumber of links, guarantesing that the system 15 fully conmected. To show thas,

we colored with red the five nodss w 1th the highest mumber of links. and with green their first neighbors.

While mn the exonential network ouly 27% of ﬂle nodes are reached by the five most connected :mu:les, i1
the scale-free network more than 60% are, demonstrating the key role hubs play i the scale-free natwork

Mote that both networks contain the same number of nodes and links, 130 and 430, respectively. After
[26].



Random vs. Scale-Free Networks

RANDOM VERSUS SCALE-FREE NETWORKS

RANDOM NETWORKS, which resemble the .5 highway system nodes with a very high number oflinks. In such networks, the

[=implified in laft map], conzist of nodes with randomly placed distribution of node linkages follaws a power law [center graph)

cannections. In such siystems, a plat of the distribution of node in that mest nodes have just 2 few connections and same have

linkages will follow a bell-shaped curve [Jeft graph], with most a tremendous number of links. Inthat sense, the system has no

nodes having approximately the same number of links “scale.” The defining characteristic of such networksis thatthe
In contrast, scale-free networks, which resemble the 1.5, distribution of links, if plotted on a double-lagarithmic scale

airline system [simplified in right map], contain hubs [red]— [right graph], results in a straight line.

Random Network Scale-Free Metwork

Bell Curve Distribution of Node Linkages Pawer Law Distribution of Node Linkages

— Typlcal made

Number of Nodes
Number of Nodes
Number of Hodes
[log scale]

Kumber of Links Humber of Links Humber of Links [log scale]




Examples of Scale-Free Networks & Hubs

TABLE 1. The scaling exponents charactenzing the degree distnbution of several scale-
free networks, for wineh Pk follews a power-law (1), We mdieate the sze of te network
amed its average degree (F). For directed networks we b9 separately the mdegres () d
outdegres (Y, ) exponents, while for the undirectad neoworks, marked with a star, these values
are wlentical, Expandad after Ref [1]

| Network | Size | D Vew | ¥ | Reference |
| WAW | szs728 ] 451 ] z4s | a1 | [u1] |
| WAW | 4=10" | 7] oz | | W |
| WAW | 2= ] 75 | 272 ] 2 | 4l |
| WWW, site | e000h | | | res | Qx|
| Doteruet, domaine | 3,015- 4,389 | 242378 |201-22 |20 | [23] |
| Imtemetrouter» | @8 | 257 | 248 | 248 | [23] |
| TIntermet, routers | tsoooo ] e ] oz4 | 24 | 28]
| Movie actorss S e R e O O T I T I -+
| Comuthors, SPIRES+ | 56,627 [ 173 | 12 | L2 | 131 |
|  Coauthors mewsox | 20@203 | 11sa |z |1 | [ |
|  Coawhors, mathe | 70973 | 3 | 25 | rs | [32] |
| Sexual eontactss | 2810 | | 34 | 34 | [41 |
| Metabolic E.coli | 778 | 74 ] 22 ] oz |1
|  Protein, S.ocerevs | 1870 | zze | 24 | x4 | [8] |
| ¥thanestuary+ | 1534 | &7 | tes | 1es | [3] ]
| Sibwood pairke | 154 | 475 ] 1ax | 143 | [3E] |
| Citation | 7eazze | &5 | | 3 | nps |
| Phone-call RS L S R T
| Words, eomcewssness | 480802 | o | x7 ] 27 | e |
| Words, synomymss | 22310 | 1348 | 28 | & | e |
| Prowin S Cerev® | 9.83 | wes ] 25 | zs | [3E]
| Comic Book Characters | 6,486 | 149 | o086 | 312 | [3] |
E-mail |  seez 88 | 03 149 | [37] |

Protein Domains® | a76 932 | 1.6 1.6 | [38 J

| Prot Dom. (PremDomy* | 5995 | 233 | 25 | 25 | [
| Prot Dom. (Plov)* | 2478 | 11z | 1 | 1 [
| Pror Dern (Prosiee)® | 1366 | 077 | 17 | 17 | 3] |




Why Scale-Free Networks are Important

Contemporary science cannot describe systems composed of
non-identical elements that have diverse and non-local
interactions (elements = vertices, interactions = edges).

Living systems: vertices = proteins & genes, or nerve cells; edges =
chemical interactions, or axons

Social sciences: vertices = individuals or organizations; edges =
social interactions between them

WWW: vertices = HTML documents; edges = hyperlinks
Language: vertices = words; edges = syntactic relationships
The topology of real networks 1s mostly unknown, because these
networks are very large, and interactions are very complex

Researchers have little understanding of network structures and
properties



Properties of Scale-Free Networks

Network can be freely expanded — Adding new vertices (Growth)

New vertices usually are connected to already well connected
vertices (Preferential Attachment)

The probability of a vertex to interact with other & vertices
decays as a “Power Law”:

P(k)~ k=7

Surprisingly, all examples given earlier shared the same power-
law and y tends to fall between 2 and 3

The power-law distribution implies that nodes with only a few
links are numerous, but few nodes have a large number of links



BIRTH OF A SCALE-FREE NETWORK

A SCALE-FREE NETWORK grows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node
[green] prefers to attach to an existing node [red] that already has many other connections. These two basic mechanisms—growth
and preferential attachment—will eventually lead to the system's being dominated by hubs, nodes having an enormous number of links.

e < % 4 o




Networks following a Power Law
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
slopes (A) V.o = 2-3, (B) Vyuw = 2-1 and (C) = 4.

Y power



Network Models of ER & WS

ER (Erd6s and Rényi)
Start with N vertices; the probability of connection is unformly p
Probability of a vertex to be connected to & other vertices is

—A 1k N -1 -
P(k):e k'ﬂd where l:N[k jpk(l—p)N 1=k

WS (Watts and Strogatz)

Start with V vertices forming a 1-D lattice: each vertex 1s connected to its
nearest and next nearest neighbors

Then each edge can be rewired to another vertex randomly chosen with
probability p
If p =0, z = coordination number in the lattice
P(k)=0(k—-2)
In these two models, nodes with a large number links (hubs) are absent




Incorporating Two Major Factors

Two major factors — Growth and Preferential Attachment

Growth : Start with m_nodes and add new nodes with m < m,
edges linked to different existing vertices

Preferential Attachment: Assume probability (II) that a new node
will be connected to an existing node i depends on the
connectivity k; of that node

(k) = k, /%, k,
After t time steps, this model will lead to a random network with
t+m, nodes and mt edges

Follows a power law with y,_ ., = 2.9 £ 0.1 (correct model
should have a distribution whose features are independent of
time)



Why These Two Factors are Important

To prove that these two factors are important in the
development of the network, the authors investigate two
variants of the model

Model A: keep the growth but eliminate preferential
attachment
Instead, a new vertex is connected with equal probability
to any vertex 1n the system II(k)=1/(m, +t—1)
This leads to P(k) ~ exp(-pk) and eliminates the scale-
free property



Why These Two Factors are Important

Model B: The number of vertices 1s fixed, and
preferential attachment is integrated into the network
(k) = k; /Z; k;
At first, the system follows as power-law, but after N?
time steps, all the nodes are connected

In the development of power-law (scale-free)
distribution network, both factors are needed
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Fig. 2. (A) The power-law connectivity distribution at t = 150,000 (O) and t = 200,000 (0J) as

obtained from the model, using m; = m = 5. The slope of the dashed line is v = 2.9. (B) The

exponential connectivity distribution for model A, in the case of m; = m = 1 (0), my = m =
3(0),my=m=5(),andm, =m = 7 (A). (C) Time evolution of the connectivity for two

vertices added to the system at t. = 5 and t, = 95. The dashed line has slope 0.5.




The Rich get Richer

All nodes are not equal, the more connected nodes tend
to acquire new connections from the new nodes added
to the system

more connected actors tend to be chosen for a new role

With preferential attachment, a vertex that acquires
more connections than another one tends to increase its
connectivity at a higher rate (earlier nodes are favored,
becoming popular nodes and more favored, etc.)
Ok /0t = k/2t, which gives k(t) = m(t/t) >, where ¢, is the
time vertex i was added



How to Model a Network

Use “rich-get-richer” properties to calculate y analytically, by
defining P[k(t) < k], or P[t, > m?t/k?]

Assume the vertices are added to the system at the same time

Over a long period of time, the system will reach P(k) = 2m?/k>
giving y = 3, independently of m

This model can’t be expected to account for all aspects of the
studied networks

Based on the authors’ simulations, scaling 1s present only for
I1(k) ~ k. If the mechanism 1s faster than linear, the topology will
be star-shaped.

The model can be easily modified to account for exponents
different from y = 3, for example a fraction p of the links can be
redirected, yielding y(p) =3 —p



Advantages & Disadvantages

Advantages of scale-free networks
Robust against accidental failures

Understanding the characteristics of the scale-free
networks can prevent disasters

Computer viruses

Epidemic of diseases
Disadvantages of scale-free networks
Vulnerable to coordinated attacks

Can’t easily eradicate the viruses or diseases already in
the system



Stopping Viruses in Scale-Free Networks
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FIGURE 6. Curing the hubs. (a) Prevalence, p, measured as the fraction of mfected nodes in function
of the effective spreading rate A for o = 0 (curcle). 0.25 (square), 0.50 (trnangle down). 0.75 (diamond)
and 1 (triangle up), as predicted by Monte-Carlo sumulations using the SIS model on a scale-free [25]
network with N=10,000 nodes. While for o = 0 the epidemic threshold is zero, a nonzero o leads to
the emergence of a finite epidemic threshold. (b) The dependence of the epidemic threshold A . on o as
predicted by our calculations (continuous line) based on the continuum approach described i Ref. [68].
and by the numerical simulations based on the SIS model (green boxes). The small deviation between the
numerical results and the analytical prediction 1s due to the uncertainty in determining the precise value
of the threshold in Monte-Carlo simulations. The vertical axis on the r.h.s. labels the number of cures, c,
administered 1n an unit tune per node for different values of ¢, shown as black circles on the figure. The
rapidly decaying ¢ mdicates that more successful 1s a policy m selecting and curing hubs (larger 1s @),
tewer cures are required for a fixed spreading rate (A = 0.75). The data points in (a) and (b) are averaged
over 10 independent runs. After [72].
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WAR OF INTERACTING PROTEINS in yeast highlights the discovery that highly linked, or hub, proteins
tond to be crecial for a cell’s servival, Red denotes essentinl proteing E'melr removal will cadse the call
todie]. Drange represents proteing of some importance [their remeval will siow cell growth]. Grean
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Hierarchical Network Model

Clusters in different

hierarchical levels
{a) n=k N=5

(byn=1. N=25

{eh =2, N=125

FIGURE 3. The iterative constuction leading te a hievarchical network. Starting froma fully connected
cluster of five nodes shown in () (note that the diagonal nodes are alse comected — ks not visible),
we create four identical replicas, comnecting the pevipheral nodes of each ¢luster 1o the central node of

the criginal cluster, obtaining a netwark of N = 25 nodes (b). In the next step we create four replicas of HIERARCHICAL CLUSTERS sh oWn sch Emat{ga“u could include say Web
the obtained cluster, and connect the penpheral nodes again, as shown m (), to the central node of the e r ; . '
original modile, ebaining & N = 125 nede network, This process ean be eontinned indefinitely, After pageson the Frank IJI]IJEI wnght hame Fallin gwater iHEI;ﬂwll which could
50] be linked to other clusters (green) focusing on Wright, famous homes or
Pennsylvania’s attractions. Those sites, in turn, could be connected to

clusters [red] on famous architects or architecture in general.



Why Hierarchical Networks

The architecture of hierarchical networks 1s significantly different from
scale-free and random networks

Can’t be described using scale-free or random network models
Rather follow a scaling law:

C(k)~ k!

Where: C is the Clustering Coefficient of a node with £ links

C =2n/k(k-1); n; 1s the number of links between the £,
neighbors of i. Random Network: C(N) ~ N> Scale-Free
Network : C(N) ~ N>

Ex. of hierarchical networks:
Snodes: C=1,k=5
25 nodes : C=3/19, k=20
125 nodes : C=3/83, k=84



P(k)
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= FIGURE 4. Scaling properties of the hierarchical model shown in Fig.3 (N = 57). (a) The numerically
deternuned degree distribution. The assymptotic scaling, with slope Y= 1+1n5/1n4, 1s shown as a dashed
line. (b) The C(k) curve for the model, demonstrating that 1t follows Eq. (11). The open circles show C( k)
for a scale-free model [25] of the same size, 1llustrating that 1t does not have a luerarchical architecture. (c)
The dependence of the clustering coethicient, C, on the size of the network N. While for the hierarchical
model C 1s independent of N (diamond), for the scale-free model C(N) decreases rapidly (circle). After

[50].



Real-World Hierarchical Networks
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FIGURE 5. The scaling of C(/k) with /& for four large networks: (a) Actor network. two actors being
connected 1f they acted in the same movie according to the www . IMDB . com database. (b) The semantic
web, connecting two English words if they are listed as svnonyms in the Merriam Webster dictionary [19].
(¢) The World Wide Web. based on the data collected in Ref. [11]. (d) Internet at the Autonomous System
level, each node representing a domain, connected if there is a comumunication link between them. (e)
The metabolic networks of 43 organisms with their averaged C( k) curves. (f) The protein-protein physical
mteraction networks using four different databases [56. 57, 58, 59]. The dashed line in each figure has
slope — 1. following Eq. (11). After [50, 60, 61].



Conclusion

Complex networks whose number of vertices 1s known
in advance and fixed can be described by random
network models

Expandable networks that have preferential attachment
follow a power law and can be described by scale-free
network models

In hierarchical networks, the clustering coefficient
follows a scaling law



Comments & Questions
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