Complex Networks 1 Small-World Models

Kyle McDermott CS 790R – 3/5/2006

University of Nevada, Reno

Outline

- Watts & Strogats 1998 Collective dynamics of 'small-world' networks
- NetLogo: Small World
- Watts et al 2002 Identity and search in social networks

Typical Networks

- Typical examples of networks of coupled dynamical systems
 - Biological oscillators
 - Josephson junction arrays
 - Excitable media
 - Neural networks
 - Spatial games
 - Genetic control networks
- Ordinarily either regular or random connectivity

Parameters

- Start with a ring lattice of n vertices and k edges per vertex
- Rewire each edge at random with probability
 - p = 0 results in regularity
 - p = 1 results in complete randomness
- Quantify the structural properties by path length L(p) and clustering coefficient C(p)
 - L(p) is a global property, while C(p) is local

Ring Lattice Networks

Regular

Small-world

p = 0

Increasing randomness

p = 1

Small World Networks -Behavior

- Desire many vertices with sparse connections, but enough to remain connected
- Require *n* >> *k* >> ln(*n*) >> 1
 - k >> ln(n) guarantees that a random graph will be connected
 - $L \sim n/2k >> 1$ and $C \sim \frac{3}{4}$ as $p \rightarrow 0$

• $L \approx L_{random} \sim \ln(n)/\ln(k)$ and $C \sim C_{random} \sim k/n << 1$ as $p \rightarrow 1$

Small World Networks -Behavior

• *n* = 1,000, *k* = 10

Small World Networks -Examples

Table 1 Empirical examples of small-world networks

	Lactual	Lrandom	$C_{\sf actual}$	C_{random}
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

Characteristic path length *L* and clustering coefficient *C* for three real networks, compared to random graphs with the same number of vertices (*n*) and average number of edges per vertex (*k*). (Actors: n = 225,226, k = 61. Power grid: n = 4,941, k = 2.67. *C. elegans*: n = 282, k = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have acted in a film together. We restrict attention to the giant connected component¹⁶ of this graph, which includes ~90% of all actors listed in the Internet Movie Database (available at http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators, transformers and substations, and edges represent high-voltage transmission lines between them. For *C. elegans*, an edge joins two neurons if they are connected by either a synapse or a gap junction. We treat all edges as undirected and unweighted, and all vertices as identical, recognizing that these are crude approximations. All three networks show the small-world phenomenon: $L \ge L_{random}$ but $C \gg C_{random}$.

Small World Networks – Functional Significance

- Use a simplified model for the spread of an infectious disease using ring lattice networks
 - At time t = 0 a single infective individual is introduced
 - Infective individuals are removed permanently either by immunity or death after some unit time
 - Each infective individual can infect each of its neighbors with a probability r
 - Simulation runs until everyone is infected or the disease dies out

Small World Networks – Functional Significance

- The critical infectiousness r_{half} decreases rapidly as you increase p from a small value
- The time *T*(*p*) required for global infection follows the *L*(*p*) curve closely

Other Applications

- Density classification
 - Cellular automata used in this computational task with a 'majority-rule' running on a small-world graph can outperform all known human and genetic algorithm-generated rules running on a ring lattice
- Coupled phase oscillators
 - Small-world networks synchronize almost as readily as in the mean-field model, despite having orders of magnitude fewer edges

Other Applications

- Prisoner's dilemma
 - As the fraction of short cuts increases, cooperation is less likely
 - With increasing *p*, the likelihood of cooperative strategies evolving is reduced

NetLogo

PRISONER'S DILEMMA

С

D

The conundrum of the Prisoner's Dilemma is captured in the chart above. Defection (D) yields either 5 or 1, and cooperation yields either 3 or 0. The rational decision is to defect. If both prisoners are rational, since they both have the same information, both defect, yielding a payoff of 1 each. If both prisoners cooperate—if both remain silent—both will earn a 3, a considerably better outcome than that generated by the rational action.

Searchable Networks

- Travers & Milgram (1969) demonstrated a real life social network with the property of being searchable
- This property has been seen in certain artificial networks
 - Networks that contain a certain fraction of highly connected nodes
 - Networks built on a geometric lattice acting as a proxy for social space
- Watts et al (2002) propose a socially plausible model that is also searchable

- Individuals have their own network ties and their own identities based on group associations
- Individuals view the world as a hierarchy of layers each representing smaller and smaller groups as one goes down through the layers
 - An upper bound for group size for an individual's own smallest group is around 100

- 3. Group membership is a primary basis for social interaction
 - Probability of acquaintance between individuals *i* and *j* decreases with decreasing similarity of the groups they're in
 - p(x) = c exp[-αx] where α is a tunable parameter and c is a normalizing constant
 - α is likened to homophily (like associates with like), so when $e^{-\alpha} << 1$, all links are as short as possible and when $e^{-\alpha} = b$ the network is uniformly random (similarity is irrelevant)

- Individuals hierarchically partition the social world in multiple ways (geography, occupation, etc.)
 - Categories are assumed to be independent
 - Each node's identity is defined as an *H*dimensional coordinate vector *v_i*, with each of the *H* components randomly assigned
 - The density of network ties must obey the constraint z < g (number of friends is less than group size)

- 5. Individuals construct a measure of social distance $y_{ij} = \min_h x^h_{ij}$
 - Based on perceived similarity with other nodes
 - Closeness in only a single dimension is sufficient to connote affiliation
- 6. As in Travers & Milgram (1969)'s example, each person forwards a message to a single neighbor based on limited information
 - Individual knows its own hierarchical vector v_i, those of the immediate network neighbors v_j, and that of the target v_t

Efficient Search

- At each step in a chain from the original sender to the target there is a probability p that the message will terminate (~25% from Travers & Milgram (1969))
- The probability of an arbitrary message chain reaching the target is defined as $q = \langle (1 p)^L \rangle \ge r$
- Estimate maximum required average length $\langle L \rangle \leq \ln r / \ln(1 p)$

Searchable Networks

 For this study they set the values at *r* = 0.05 and *p* = 0.25, making ⟨*L*⟩ ≤ 10.4 independent of *N*

- Using the appropriate values $N = 10^8$, p = 0.25
- Values from empirical findings z = 300, H = 2
- Obtain $\langle L \rangle \approx 6.7$ for $\alpha = 1$ and b = 10

