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Discussion

• Flake (1998), Chapter 18
• Bar-Yam (1997), Sections 2.1 and 2.2
• Hopfield (1982)



Introduction

• Biological neuron
• Associative memory
• Hebbian learning
• McCulloch-Pitts neuron
• Attractor networks (or Hopfield networks)
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Associative memory
• Computers: Memory referenced by location.
• Humans: Memory referenced by Content. (e.g.: What 1960s

rock band with four members was named after an insect and started 
the “British Invasion” ?).

• This sort of Content-addressable memory is also 
referred to as Associative memory.



Hebbian learning

• Hebbian learning or Hebbian imprinting:
When two connected neurons fire (or don’t fire) at a 
particular time, an excitatory synapse between them is 
strengthened and an inhibitory synapse is weakened.
Conversely, vice versa happens if one of the neuron fires 
and other doesn’t.



McCulloch-Pitts neuron
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• ai(t): Activation value of neuron i at time t.
• wij: Strength of synapse connecting neuron j to neuron i.
• bi: Threshold that neuron i ’s net input must exceed in order to fire.
• Θ(x): Nonlinear unit step function: 1 (“on” state) if x ≥ 0, 0 (“off” state) if x < 0.



McCulloch-Pitts neuron
• A neuron’s state or activation, ai(t) is a function of a 

weighted sum of all of the incoming signals to ith neuron:
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where, Θ(x): Nonlinear unit step function:
1 (“on” state) if x ≥ 0, 0 (“off” state) if x < 0.



McCulloch-Pitts neuron
• Modification to the previous update rule:

))(sgn()1(
1

i

n

j
jiji btawta −×=+ ∑

=

where, sgn(x): Sign function:
1 (“on” state) if x ≥ 0, -1 (“off” state) if x < 0.

• Just a mathematical convenience for two reason:
– Both (0,1) and (-1,1) representations are equivalent.
– New representation is not very biologically plausible, since real 

neurons cannot inhibit other real neurons in this precise manner.



McCulloch-Pitts neuron

Q. How to update the activation rules?
• Synchronous:

– Simultaneous calculation of next activation value.
– Completely deterministic but unrealistic.

• Asynchronous:
– Update neurons randomly.
– More realistic.
– Care has to be taken to avoid neglecting the updating of 

neurons.



McCulloch-Pitts neuron
Model: Recalling a pattern from many stored patterns.
• Hebbian learning:

– If i and j both are either on or off at the same time, then wij should 
be positive.

– If i and j have different activation values then wij should be a 
negative weight.

• Memory represented as a vector of variables, xi, that have 
either -1 or 1 values.

• Number of neurons = Number of xi terms.
• Weights: (between -1 to 1)
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McCulloch-Pitts neuron
Model: cont…
• Assuming that all patterns that are stored, are drawn from a 

random sample.
• If we set aj(t) terms equal to a stored pattern, say    , then next 

state of network should be equal to      terms.
• We need to ensure that hi (net input for each neuron i) has 

same sign as    . We get hi as:

If terms inside summation are uncorrelated, then they will cancel each other 
out and we retrieve the pattern. Otherwise we can partially correct using bi
terms:
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McCulloch-Pitts neuron
Example: Recalling letters.

• 20x20 grid of bits, 400 neurons, black = “on” or +1 and white = “off” 
or -1.

• Asynchronous update of neurons.



McCulloch-Pitts neuron
Example: Recalling letters.



McCulloch-Pitts neuron
Observations:

• Feedback neural networks: are artificial neural networks of this kind, which 
have a collection of neurons that can connect to any other neuron in the 
system.

• Has a discrete state and changes in discrete time steps.
• At some final time T, the system state will be such that, applying the update 

rules for any more time steps will result in same set of activations.
• The final converged state of a neural network can represent the answer to a 

question, performing a sort of analog computation.
• Number of weights is much larger than information in stored patterns. 

Correct this by removing weights smaller than a threshold, merging weights 
and removing redundancy of stored patterns.



McCulloch-Pitts neuron
Observations:

• Whole system can be implemented as a collection of very simple parallel 
computers.

• Fault tolerant: Associative memories are not stored in any one place or 
weight. (65% of weights were destroyed without adversely affecting the 
network’s performance).

• All associative memories are prone to recalling spurious memories that are 
a composite of many of the stored patterns.



Attractor or Hopfield networks

Dots represent the neurons and lines represent the synapses.

• Synapses are symmetric carrying equal influence in both directions. 
Tij = Tji.

• No self-action by a neuron. Tii = 0.
• Binary variables for neuron activity values Ui(t+1) = ±1.
• The artificial neurons have a continuous state (internal and external) 

and evolve continuously over time.



Attractor or Hopfield networks
• Change in internal state of neuron is:

• After approximating to discrete system:
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• Ui: Internal state of neuron i.
• Vi: External activation or visible state of neuron i.
• Tij: Strength of synapse connecting neuron j to neuron i.
• Ii: External input injected into neuron i.
• g(x): Sigmoidal activation function: 1/(1+exp(-x))
• τ: Inverse decay term for internal state.
• : is the simulation time-step increment.
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Attractor or Hopfield networks
• Activation function of neuron is g(x), known as sigmoid 

function (S-shaped).
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Attractor or Hopfield networks
• Operation:

– A pattern of neural activities (input) is given to the network.
– Network is evolved by updating neurons several times until a steady 

state (local energy minimum) or pre-specified number of updates is 
reached.

– Then the state of network is read as output.
– The next pattern is then imposed on the network and same as above.

• Training (Hebbian Imprinting):
– Synapse is changed in direction of excitatory if both neurons were 

either “on” or “off”.
– Synapse is changed in direction of inhibitory if one of the neurons is 

“on” and other is “off”.
– Training consists of imprinting a set of “p” selected neuron firing 

patterns.



Attractor or Hopfield networks
• Energy analog:



Attractor or Hopfield networks
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Attractor or Hopfield networks

Observations:
• Single imprinted pattern:

– The pattern and its inverse is automatically stored. (Hebbian 
learning).

– Imprinted pattern is the stable or fixed point of network 
dynamics.

– Even if initial pattern is non-correlated, it leads to the stored 
imprinted pattern. Since sum over N uncorrelated ±1 neuron 
values is √N, which places pattern within the “basin of attraction” 
(either for imprinted pattern or its inverse).

– “Basin of attraction” is large.



Attractor or Hopfield networks
• Couple of imprinted patterns:

– Size of “basin of attraction” is equal to the Hamming distance 
d(s,s’) between two patterns as the number of neurons that differ 
between them.

– Retrieval depends on proximity of initial state with pattern that 
will be retrieved and the number of neurons in the network. 



Attractor or Hopfield networks
• Signal-to-noise analysis: Note: si = Ui and hi post-synaptic potential.

This figure illustrates the signal-to-noise analysis of stability of an imprinted pattern.



Attractor or Hopfield networks
• Signal-to-noise analysis:



Attractor or Hopfield networks
• Simulations: % Stability of imprints.



Attractor or Hopfield networks
• Simulations:



Attractor or Hopfield networks
• Overload and spurious states:

– For low storage, p<<N, the neurons have a signal much greater than 
noise. So pattern will be stable.

– Basin of attraction of the spurious patterns is shallower and smaller than 
that of imprinted patterns.

– Ambiguities are solved on statistical basis.



Attractor or Hopfield networks
• Example: Task assignment problem.



Attractor or Hopfield networks
Example: Task assignment problem.

• K-out-of-n rule:
– For a converging configuration: k=number of “on” neurons.
– Weight = -2, if i ≠ j

0, if i = j
(2k-1), otherwise

– External input for each neuron centered on 2(2k-1). (Each neuron is in 
two clusters, one row and one column).

– Overall average of all external inputs is 2.

• Random initial state close to 0.5.



Attractor or Hopfield networks
• Example: Task assignment problem. (k-out-of-n rule)

• Lighter color are more closer to 0 and darker colors are more closer to 1.



Conclusion
• A global property such as collection of neural activations that compose 

a distributed memory may emerge from only local interactions.
• Should not expect the Hopfield network to recognize patterns more than 

15% of total neurons in the network.
• We can determine storage capacity by measuring the stability of 

patterns that are imprinted on the network.
• Robust, as it does not depend strongly on precise details of the model 

(damage to few neurons doesn’t hamper the network severely).
• Complex computational attributes modeling from the collective behavior 

of large number of simple processing elements (neurons).
• Hopfield networks are used in associative or content-addressable 

memory, pattern recognition and combinatorial cost-optimization 
problems.



Thank You
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