Self-organization in the slime mold Dictyostelium discoideum

CS 790R

Richard Tillett January 27, 2005

(Hofer et al 1995)

D. Discoideum amoeba starvation response

(Hofer et al 1995)

- Upon starvation: unicellular -> multicellular (10^4-10^5 clumps)
- **Excitable**: amoebae readily **relay** cyclic Adenosine Monophosphate (cAMP) signals
 - Extracellular cAMP concentrations trigger the production and release of cAMP as positive feedback
 - Wave and spiral patterns of cAMP form
 - **Chemotaxis**: amoebae travel up cAMP gradients; (a) spiral pattern emerges (b,c) and amoebae **stream** towards spiral centers
- Eventually form "slug," differentiate (e.g. we notice cell types), produce spores
 - But is it self-organization?

The evidence for self-organization

- Each amoeba must be responding to it's local environment
- A global pattern formed
- Wave "speed & period not generated by a master amoeba," according to experiments
- Could there be *de facto* pacemakers?
 Those that starve first, by chance

cAMP-secretion: Oscillation and Relay

- Oscillatory release
 - Stirred & starved cell
 suspensions release cAMP in
 5-10 minute pulses

Cyclic AMP

- <u>Relay</u>
 - If a large enough cAMP pulse added to medium...
 - Cells amplify pulse (positive feedback)

Basic schematic of cAMP oscillation and relay 1.Extracelluar cAMP bound by active Receptor 2.R:cAMP activates AC 3.AC catalyses cAMP synthesis 4.cAMP trasn ported out, raising [cAMP]_e 5. High [cAMP] desensitizes R-> D PDE cAMP R + AMP Adenylate **Active** 24 D receptor **Cyclase** Inactive 4 recepto 3 **cAMP** AMP PD ATP

Modeling cAMP waves

Only three variables needed to model secretion

NetLogo simulation: BZ

BZ-reactions provide a rough analogy of the cAMP as excitable waves

Modeling cell movement:

New assumptions

- Ea. cell detects cAMP gradient & moves up it
- Prolonged cAMP stimulus desensitizes ability to detect and/or respond to gradients
 - Figure 8.10
 - receptor-mediated desensitizations as before?
 - Polarized motor machinery?
- Cell-cell adhesions stymie clump dispersal
- $\partial \gamma$ is now also a function of local cell density
 - ∂ (p.111 if you're interested)

Modeling cell movement: the math

• Cell diffusion

- Variable diffusion coefficient $\mu(n) = \mu_1 + \mu_2 N^4 / (N^4 + n^4)$
- Cell density & threshold
- Chemotaxis
 - Proportional to [cAMP], density (n), and desensitization (p. 115): $\chi(\rho) = \frac{\chi_0 \rho^m}{A^m + \rho^m}$ $\rho = \text{active Receptor proportion}$

A, m = constants

• "They" emphasize shape over specifics here $\frac{\partial n}{\partial t} = \nabla \cdot [\mu(n) \nabla n] - \nabla \cdot [\chi(\rho) n \nabla u]$

Correlating cAMP patterns with <u>streaming behavior</u>

65 min

65 min

[cAMP]

Cell density

75 min

Streaming slime "simulation"

