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Introduction
Examples of complex networks – Geometric, regular

Network Nodes Edges

BZ reaction molecules

amoebae

cells

ants, termites

animals, cars

fireflies

collisions

slime mold

animal coats

insect colonies

flocking, traffic

swarm sync

cAMP

morphogens

pheromone

perception

photons
± long-range

interactions inside a local 
neighborhood in 2-D or 3-D 
geometric space
limited “visibility” within 
Euclidean distance
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Introduction
Examples of complex networks – Semi-geometric, irregular

Network Nodes Edges

Internet routers

neurons

pages

actors

proteins

species

wires

brain

WWW

Hollywood

gene regulation

ecology web

synapses

hyperlinks

movies

binding sites

competition

local neighborhoods (also) 
contain “long-range” links:

either “element” nodes 
located in space
or “categorical” nodes 
not located in space

still limited “visibility”, but 
not according to distance
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Introduction
Elementary features – Node diversity & dynamics

Network Node 
diversity

Node state/ 
dynamics

Internet routers, PCs, 
switches ...
sensory, inter, 
motor neuron
commercial, 
educational ...

traits, talent ...

protein type, 
DNA sites ...
species traits 
(diet, reprod.)

routing state/ 
algorithm

brain

WWW

Hollywood

gene regulation

ecology web

electrical 
potentials
popularity, 
num. of visits
celebrity level, 
contracts
boundness, 
concentration
fitness, 
density

nodes can be of different 
subtypes:     ,      ,      ...

nodes have variable states 
of activity:
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Introduction
Elementary features – Edge diversity & dynamics

Network Edge  
diversity

Edge state/ 
dynamics

Internet bandwidth 
(DSL, cable)...
excit., inhib. 
synapses ...

--

theater movie, 
TV series ...
enhancing, 
blocking ...
predation, 
cooperation

--

brain

WWW

Hollywood

gene regulation

ecology web

synap. weight, 
learning

--

partnerships

mutations, 
evolution
evolution, 
selection

edges can be of different 
subtypes:     ,      ,      ...

edges can also have variable 
weights:
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Introduction
Elementary features – Network evolution

the state of a network generally evolves 
on two time-scales:

the structural complexity of 
a network can also evolve by 
adding or removing nodes fast time scale: node activities

slow time scale: connection weights
examples:

neural networks: activities & learning
gene networks: expression & mutations

and edges
examples:

Internet, WWW, actors. 
ecology, etc.
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Introduction
Motivations

complex networks are the backbone of complex systems
every complex system is a network of interaction among numerous 
smaller elements
some networks are geometric or regular in 2-D or 3-D space
other contain “long-range” connections or are not spatial at all
understanding a complex system = break down into parts + reassemble

network anatomy is important to characterize because 
structure affects function (and vice-versa)
ex: structure of social networks

prevent spread of diseases
control spread of information (marketing, fads, rumors, etc.)

ex: structure of power grid / Internet
understand robustness and stability of power / data transmission
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Three structural metrics
Average path length

the path length between two nodes 
A and B is the smallest number of 
edges connecting them:A

B

l(A, B) = min l(A, Ai, ... An, B)

the average path length of a network 
over all pairs of N nodes is

L = 〈l(A, B)〉

= 2/N(N–1)∑A,B l(A, B)

the network diameter is the maximal 
path length between two nodes:

D = max l(A, B)

property:  1 ≤ L ≤ D ≤ N–1

The path length between A and B is 3
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Three structural metrics
Degree distribution (connectivity)

the degree of a node A is the number 
of its connections (or neighbors), kAA the average degree of a network is

〈k〉 = 1/N ∑A kA

the degree distribution function P(k)
is the histogram (or probability) of the 
node degrees: it shows their spread 
around the average value

node degree

P(k)

0 ≤ 〈k〉 ≤ N–1
nu

m
be

r o
f n

od
es

The degree of A is 5
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Three structural metrics
Clustering coefficient

the neighborhood of a node A is the 
set of kA nodes at distance 1 from A

A

B

B’
given the number of pairs of neighbors:

FA = ∑B,B’ 1
= kA (kA –1) / 2

and the number of pairs of neighbors 
that are also connected to each other:

EA = ∑B↔B’ 1

the clustering coefficient of A is
CA = EA / FA    ≤ 1

and the network clustering coefficient:
〈C〉 = 1/N ∑A CA    ≤ 1

The clustering coefficient of A is 0.6
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Four structural models
Regular networks – Fully connected

in a fully (globally) connected
network, each node is connected to 
all other nodes
fully connected networks have the 
LOWEST path length and diameter:

L = D = 1

the HIGHEST clustering coefficient:
C = 1

and a PEAK degree distribution (at 
the largest possible constant):
kA = N–1, P(k) = δ(k – N+1)

also the highest number of edges:
E = N(N–1) / 2  ~  N2

A fully connected network
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Four structural models
Regular networks – Lattice

A
r

a lattice network is generally 
structured against a geometric 2-D or 
3-D background
for example, each node is connected 
to its nearest neighbors depending 
on the Euclidean distance:

A ↔ B   ⇐⇒ d(A, B) ≤ r

the radius r should be sufficiently 
small to remain far from a fully 
connected network, i.e., keep a large 
diameter:

D >> 1A 2-D lattice network



2/15/2005 CS 790R - Topology and Dynamics of Complex Networks 17

Four structural models
Regular networks – Lattice: ring world

in a ring lattice, nodes are laid out on a 
circle and connected to their K nearest 
neighbors, with K << N

HIGH average path length:
L ≈ N / 2K   ~ N for N >> 1

(mean between closest node l = 1 and 
antipode node l = N / K)
HIGH clustering coefficient:

C ≈ 0.75    for K >> 1

(mean between center with K edges 
and farthest neighbors with K/2 edges)
PEAK degree distribution (low value):

kA = K, P(k) = δ(k – K)

A ring lattice with K = 4
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Four structural models
Random networks

in a random graph each pair of nodes 
is connected with probability p
LOW average path length:
L ≈ lnN / ln〈k〉 ~ lnN for N >> 1

(because the entire network can be 
covered in about 〈k〉 steps: N ~ 〈k〉L)
LOW clustering coefficient (if sparse):
C = p = 〈k〉 / N << 1 for p << 1

(because the probability of 2 neighbors 
being connected is p, by definition)
PEAK (Poisson) degree distribution
(low value):
〈k〉 ≈ pN, P(k) ≈ δ(k – pN)

A random graph with p = 3/N = 0.18
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Four structural models
Random networks

Erdős & Rényi (1960): above a 
critical value of random connectivity 
the network is almost certainly 
connected in one single component
percolation happens when “picking 
one button (node) will lift all the 
others”
the critical value of probability p is 

pc ≈ lnN / N
and the corresponding average 
critical degree:

〈kc〉 ≈ pc N ≈ lnN
Percolation in a random graph

(Wang, X. F., 2002)
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Four structural models
Small-world networks

a network with small-world EFFECT is 
ANY large network that has a low 
average path length:

L << N for N >> 1

famous “6 degrees of separation”
the Watts-Strogatz (WS) small-world 
MODEL is a hybrid network between a 
regular lattice and a random graph
WS networks have both the LOW 
average path length of random graphs:

L ~ lnN for N >> 1

and the HIGH clustering coefficient of 
regular lattices:

C ≈ 0.75    for K >> 1

A Watts-Strogatz small-world network
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Four structural models
Small-world networks

Ring Lattice
large world
well clustered

Watts-Strogatz (1998)
small world
well clustered

p = 0 (order) 0 < p < 1 p = 1 (disorder)

Random graph
small world
poorly clustered

the WS model consists in gradually rewiring a regular lattice into a random graph, 
with a probability p that an original lattice edge will be reassigned at random
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Four structural models
Small-world networks

0

random rewiring0 1
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L

C

p

p

≈ 0.75

~ lnN

the clustering coefficient is resistant to 
rewiring over a broad interval of p 

it means that the small-world effect 
is hardly detectable locally: nodes 
continue seeing mostly the same 
“clique” of neighbors

on the other hand, the average path 
length drops rapidly for low p 

as soon as a few long-range “short-
cut” connections are introduced, the 
original large-world starts collapsing
through a few bridges, far away 
cliques are put in contact and this is 
sufficient for a rapid spread of 
information
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Four structural models
Small-world networks

on the other hand, the WS model still 
has a PEAK (Poisson) degree 
distribution (uniform connectivity)
in that sense, it belongs to the same 
family of exponential networks:

fully connected networks
lattices
random graphs
WS small-world networks

full, 〈k〉 = 16 lattice, 〈k〉 = 3

random, 〈k〉 = 3 WS small-world, 〈k〉 = 3

P(k)

〈k〉
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Four structural models
Scale-free networks

in a scale-free network the degree 
distribution follows a POWER-LAW:

P(k) ~ k –γ

there exists a small number of highly 
connected nodes, called hubs (tail of 
the distribution)
the great majority of nodes have few 
connections (head of the distribution)

node degree

P(k)

hubsnu
m

be
r o

f n
od

es
A schematic scale-free network
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Four structural models
Scale-free networks

hyperbola-like, in linear-linear plot  straight line, in log-log plot 

Typical aspect of a power law
(image from Larry Ruff, University of Michigan, http://www.geo.lsa.umich.edu/~ruff)
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Four structural models
Scale-free networks

U.S. highway system U.S. airline system

(Barabási & Bonabeau, 2003)
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Four structural models
Scale-free networks

Effect of failures and attacks on scale-free networks
(Barabási & Bonabeau, 2003)

regular networks are not 
resistant to random node 
failures: they quickly break 
down into isolated fragments

scale-free networks are 
remarkably resistant to 
random accidental node 
failures . . .

. . . however they are also 
highly vulnerable to targeted 
attacks on their hubs
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Four structural models
Scale-free networks

in a random graph the 
average path length 
increases significantly with 
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Random graph

node removal, then eventually 
breaks down

→ for a while, the network 
becomes a large world
in a scale-free network, the 
average path length is 
preserved during random 
node removal

→ it remains a small world
however, it fails even faster 
than a random graph under 
targeted removalrandom and targeted

removal of nodes
(Albert, Jeong & Barabási, 1999)
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Scale-free network
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Four structural models
Scale-free networks

the Barabási-Albert model, reproduces 
the scale-free property by:

growth and
(linear) preferential attachment

growth: a node is added at each step
attachment: new nodes tend to prefer 
well-connected nodes (“the rich get 
richer” or “first come, best served”) in 
linear proportion to their degree

Growth and preferential attachment creating a scale-free network
(Barabási & Bonabeau, 2003)
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Structural case studies
Internet

the Internet is a network 
of routers that transmit 
data among computers
routers are grouped into 
domains, which are 
interconnected
to map the connections, 
“traceroute” utilities are 
used to send test data 
packets and trace their 
path

Schema of the Internet
(Wang, X. F., 2002)
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Structural case studies
Internet

Map of Internet colored by IP address
(Bill Cheswick & Hal Burch, http://research.lumeta.com/ches/map)



Structural case studies
Internet

the connectivity degree of a node 
follows a power of its rank (sorting out 
in decreasing order of degree):

node degree ~ (node rank)–α

the most connected nodes are the 
least frequent:
degree frequency ~(node degree )–γ

→ the Internet is a scale-free network

no
de

 d
eg

re
e

node degree

node rank

fre
qu

en
cy

Two power laws of the Internet topology
(Faloutsos, Faloutsos & Faloutsos, 1999)
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Structural case studies
World Wide Web

the World Wide Web is a 
network of documents 
that reference each other
the nodes are the Web 
pages and the edges are 
the hyperlinks
edges are directed: they 
can be outgoing and 
incoming hyperlinks

Schema of the World Wide Web of documents
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Structural case studies
World Wide Web

Hierachical topology of the international Web cache
(Bradley Huffaker, http://www.caida.org/tools/visualization/plankton)



Structural case studies
World Wide Web

Distribution of links on the World-Wide Web
(Albert, Jeong & Barabási, 1999)
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network size

degree

WWW is a scale-free network:

P(k) ~ k –γ

with γout = 2.45 and γin = 2.1

WWW is also a small world:

L ≈ α lnN

with L≈ 11 for  N = 105 documents
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Structural case studies
Actors & scientists

“The Oracle of Bacon”
http://www.cs.virginia.edu/oracle

Path from K. Kline to K. Bacon = 3 (as of 1995)
(http://collegian.ksu.edu/issues/v100/FA/n069/fea-making-bacon-fuqua.html)

a given actor is on average 3 movies 
away from Kevin Bacon 
(LBacon=2.946, as of June 2004) . . . 
or any other actor for that matter

Hollywood is a small world

. . . and it is a scale-free small world: 
a few actors played in a lot of movies, 
and a lot of actors in few movies
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Structural case studies
Actors & scientists

“The Erdős Number Project”
http://www.oakland.edu/enp

Co-authors of Paul Erdős have number 1,
co-authors of co-authors number 2, etc.

Mathematicians form a highly clustered
(C = 0.14) small world (L = 7.64)
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Node dynamics and self-organization
Node dynamics – Individual node

dx
dt

= f(x)each node in the network obey a differential equation:
generally, three possible behaviors in phase space:

fixed point attractor limit cycle attractor chaotic attractor
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Node dynamics and self-organization
Node dynamics – Coupled nodes

= f(xA)+∑A←B g(xA,xB)dxA
dt

a complex network is a set of coupled nodes obeying:
generally, three types of complex network dynamics:

fixed point node
network

limit cycle node
network

chaotic node
network
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Node dynamics and self-organization
Attractors in full networks

fixed point nodes
fully connected network

→ a few fixed patterns
(≈ 0.14 N)

Pattern retrieval in Hopfield memory:
full graph with Ising-type interactions
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Node dynamics and self-organization
Attractors in lattice networks

fixed point nodes
regular lattice network

→ a great number of new 
patterns

Pattern formation in animal pigmentation:
2-D lattice with stationary reaction-diffusion

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)
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Node dynamics and self-organization
Synchronization in full networks

limit cycle nodes
fully connected network

→ global synchronization

Spontaneous synchronization in a network of limit-cycle
oscillators with distributed natural frequencies

(Strogatz, 2001)
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Node dynamics and self-organization
Synchronization in full networks

limit cycle nodes
fully connected network

→ global synchronization

Spontaneous synchronization in a swarm of fireflies:
(almost) fully connected graph of independent oscillators

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)
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Node dynamics and self-organization
Waves in lattice networks

limit cycle nodes
regular lattice network

→ traveling waves

BZ reaction or slime mold aggregation:
2-D lattice with oscillatory reaction-diffusion

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)
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Node dynamics and self-organization
Epidemics in complex networks

understand of beneficial or nefarious 
activity/failures spread over a network:

diseases
power blackouts
computer viruses
fashions, etc.

susceptible-infected-susceptible (SIS)
epidemiological model:

two node states: infected or 
susceptible
susceptible nodes can get infected 
with probability ν
infected nodes heal and become 
susceptible again with proba δ

→ spreading rate: λ = ν / δ

3-D visualization of social links
(A. S. Klovdahl, http://carnap.ss.uci.edu/vis.html)



Node dynamics and self-organization
Epidemics in complex networks

exponential network
→ spread with threshold

scale-free network
→ spread WITHOUT threshold

spreading rate λ
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WS small-world

Epidemic on exponential and scale-free networks
(Pastor-Satorras & Vespignani, 2001)

λC

BA scale-free
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