CS 790R Seminar Modeling & Simulation

Topology and Dynamics of Complex Networks

~ Lecture 3: Review based on Strogatz (2001), Barabási & Bonabeau (2003), Wang, X. F. (2002) ~

René Doursat

Department of Computer Science & Engineering University of Nevada, Reno

Spring 2005

Topology and Dynamics of Complex Networks

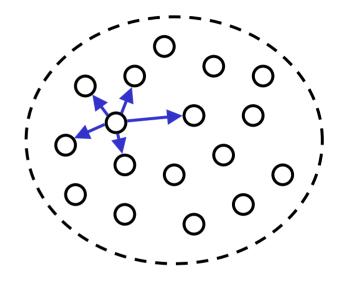
- Introduction
- Three structural metrics
- Four structural models
- Structural case studies
- Node dynamics and self-organization
- Bibliography

Topology and Dynamics of Complex Networks

- Introduction
 - Examples of complex networks
 - Elementary features
 - Motivations
- Three structural metrics
- Four structural models
- Structural case studies
- Node dynamics and self-organization
- Bibliography

Examples of complex networks – Geometric, regular

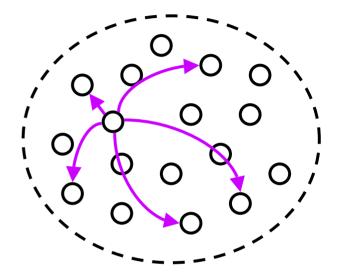
Network	Nodes	Edges
BZ reaction	molecules	collisions
slime mold	amoebae	cAMP
animal coats	cells	morphogens
insect colonies	ants, termites	pheromone
flocking, traffic	animals, cars	perception
swarm sync	fireflies	photons ± long-range



- interactions inside a local neighborhood in 2-D or 3-D geometric space
- ➤ limited "visibility" within Euclidean distance

Examples of complex networks – Semi-geometric, irregular

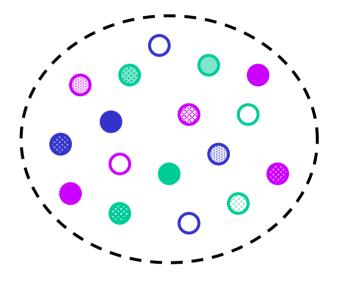
	Network	Nodes	Edges
	Internet	routers	wires
	brain	neurons	synapses
	WWW	pages	hyperlinks
	Hollywood	actors	movies
en	gene regulation	proteins	binding sites
Insectivorous birds Spiders	ecology web	species	competition



- ➤ local neighborhoods (also) contain "long-range" links:
 - either "element" nodes located in space
 - or "categorical" nodes not located in space
- > still limited "visibility", but not according to distance

Elementary features – *Node diversity & dynamics*

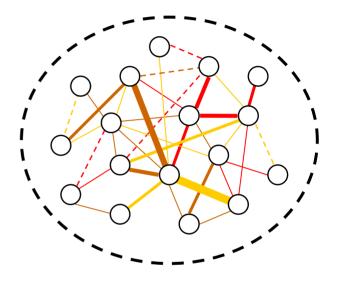
Network	Node diversity	Node state/ dynamics
Internet	routers, PCs, switches	routing state/ algorithm
brain	sensory, inter, motor neuron	electrical potentials
www	commercial, educational	popularity, num. of visits
Hollywood	traits, talent	celebrity level, contracts
gene regulation	protein type, DNA sites	boundness, concentration
ecology web	species traits (diet, reprod.)	fitness, density



- ➤ nodes can be of different subtypes: ○, ○, ○...
- nodes have variable states of activity:

Elementary features – *Edge diversity & dynamics*

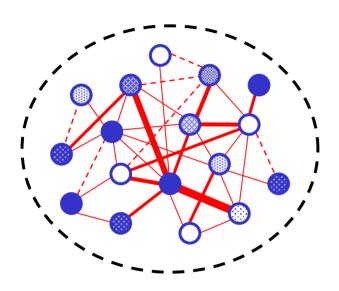
Network	Edge diversity	Edge state/ dynamics
Internet	bandwidth (DSL, cable)	
brain	excit., inhib. synapses	synap. weight, learning
WWW WWW		
Hollywood	theater movie, TV series	partnerships
gene regulation	enhancing, blocking	mutations, evolution
ecology web	predation, cooperation	evolution, selection



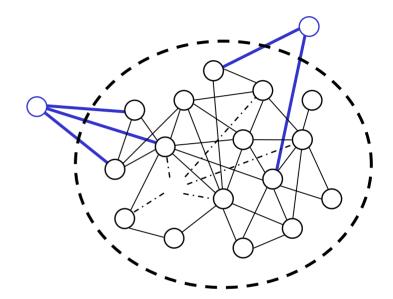
 edges can be of different subtypes: /, /, /...

edges can also have variable weights:

Introduction Elementary features – *Network evolution*



- > the **state** of a network generally evolves on two time-scales:
 - fast time scale: node activities
 - slow time scale: connection weights
- > examples:
 - neural networks: activities & learning
 - gene networks: expression & mutations



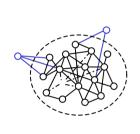
- ➤ the structural complexity of a network can also evolve by adding or removing nodes and edges
- > examples:
 - Internet, WWW, actors. ecology, etc.

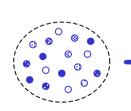
Introduction Motivations

- ✓ complex networks are the backbone of complex systems
 - every complex system is a network of interaction among numerous smaller elements
 - some networks are geometric or regular in 2-D or 3-D space
 - other contain "long-range" connections or are not spatial at all
 - understanding a complex system = break down into parts + reassemble
- ✓ network anatomy is important to characterize because structure affects function (and vice-versa)
- ✓ ex: structure of social networks
 - prevent spread of diseases
 - control spread of information (marketing, fads, rumors, etc.)
- ✓ ex: structure of power grid / Internet
 - understand robustness and stability of power / data transmission

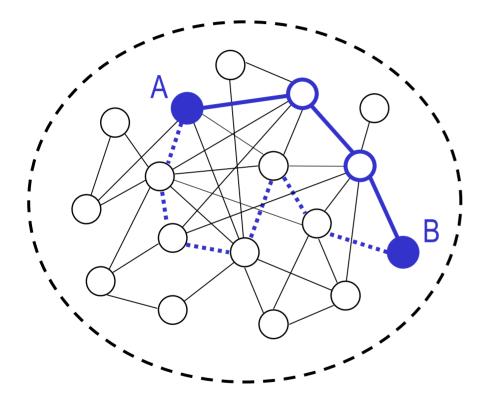
Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
 - Average path length
 - Degree distribution (connectivity)
 - Clustering coefficient
- Four structural models
- Structural case studies
- Node dynamics and self-organization
- Bibliography





Three structural metrics Average path length



The path length between A and B is 3

➤ the path length between two nodes A and B is the smallest number of edges connecting them:

$$l(A, B) = \min l(A, A_i, \dots A_n, B)$$

➤ the average path length of a network over all pairs of N nodes is

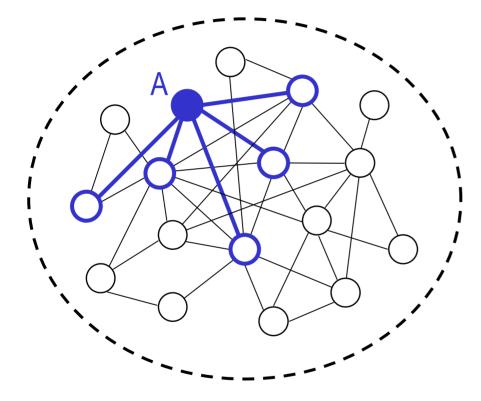
$$L = \langle l(A, B) \rangle$$
$$= 2/N(N-1) \sum_{A,B} l(A, B)$$

➤ the *network diameter* is the maximal path length between two nodes:

$$D = \max l(A, B)$$

ightharpoonup property: $1 \le L \le D \le N-1$

Three structural metrics Degree distribution (connectivity)

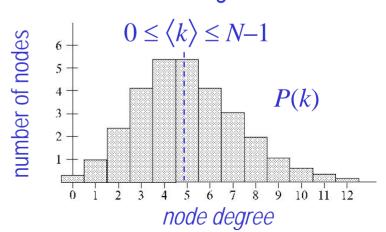


The degree of A is 5

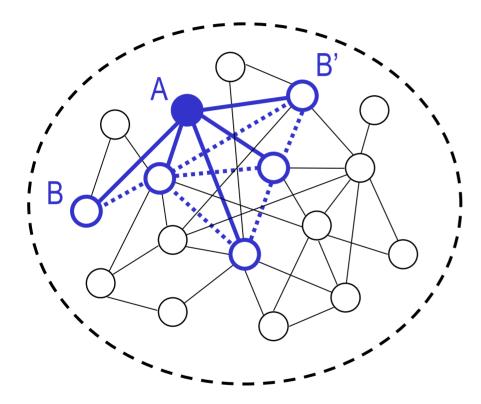
- \blacktriangleright the *degree* of a node A is the number of its connections (or neighbors), k_A
- ➤ the average degree of a network is

$$\langle k \rangle = 1/N \sum_{A} k_{A}$$

The degree distribution function P(k) is the histogram (or probability) of the node degrees: it shows their spread around the average value



Three structural metrics Clustering coefficient



The clustering coefficient of A is 0.6

- \blacktriangleright the *neighborhood* of a node A is the set of k_A nodes at distance 1 from A
- ➤ given the number of *pairs* of neighbors:

$$F_A = \sum_{B,B} 1$$

= $k_A (k_A - 1) / 2$

➤ and the number of pairs of neighbors that are also *connected* to each other:

$$E_A = \sum_{B \leftrightarrow B} 1$$

➤ the *clustering coefficient* of *A* is

$$C_A = E_A / F_A \le 1$$

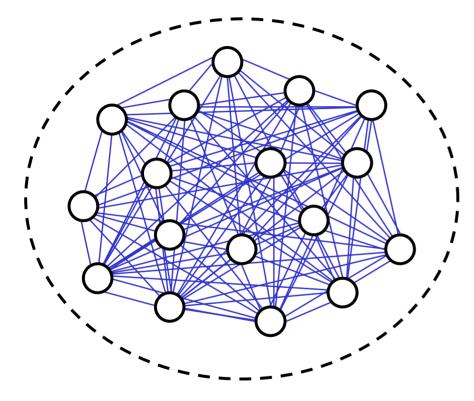
➤ and the *network clustering coefficient*.

$$\langle C \rangle = 1/N \sum_{A} C_{A} \leq 1$$

Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
- Four structural models
 - Regular networks
 - Random networks
 - Small-world networks
 - Scale-free networks
- Structural case studies
- Node dynamics and self-organization
- Bibliography

Four structural models Regular networks – *Fully connected*



A fully connected network

- in a fully (globally) connected network, each node is connected to all other nodes
- ➤ fully connected networks have the LOWEST path length and diameter:

$$L = D = 1$$

➤ the HIGHEST clustering coefficient.

$$C = 1$$

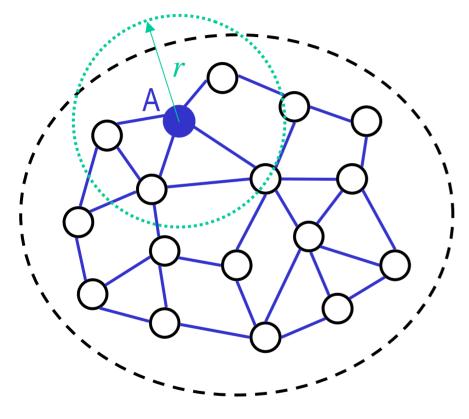
➤ and a *PEAK degree distribution* (at the largest possible constant):

$$k_A = N-1, \quad P(k) = \delta(k - N+1)$$

➤ also the highest number of edges:

$$E = N(N-1)/2 \sim N^2$$

Four structural models Regular networks – *Lattice*



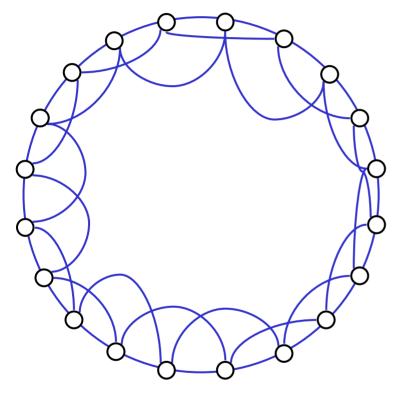
A 2-D lattice network

- ➤ a lattice network is generally structured against a geometric 2-D or 3-D background
- ➢ for example, each node is connected to its nearest neighbors depending on the Euclidean distance:

$$A \leftrightarrow B \iff d(A, B) \le r$$

➤ the radius *r* should be sufficiently small to remain far from a fully connected network, i.e., keep a large diameter:

Four structural models Regular networks – *Lattice: ring world*



A ring lattice with K = 4

- \blacktriangleright in a *ring lattice*, nodes are laid out on a circle and connected to their K nearest neighbors, with K << N
- ➤ HIGH average path length.

$$L \approx N/2K \sim N$$
 for $N >> 1$

(mean between closest node l = 1 and antipode node l = N / K)

➤ HIGH clustering coefficient.

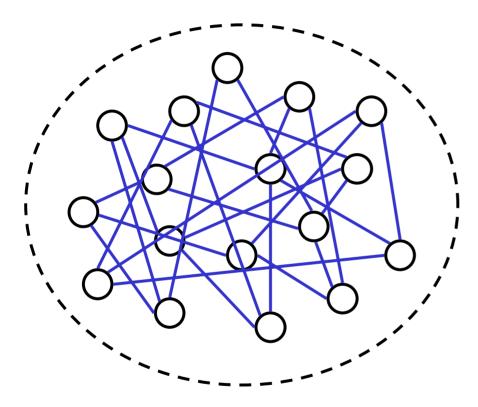
$$C \approx 0.75$$
 for $K >> 1$

(mean between center with K edges and farthest neighbors with K/2 edges)

> PEAK degree distribution (low value):

$$k_A = K$$
, $P(k) = \delta(k - K)$

Four structural models Random networks



A random graph with p = 3/N = 0.18

- in a random graph each pair of nodes is connected with probability p
- > LOW average path length:

$$L \approx \ln N / \ln \langle k \rangle \sim \ln N$$
 for $N >> 1$

(because the entire network can be covered in about $\langle k \rangle$ steps: $N \sim \langle k \rangle^L$)

> LOW clustering coefficient (if sparse):

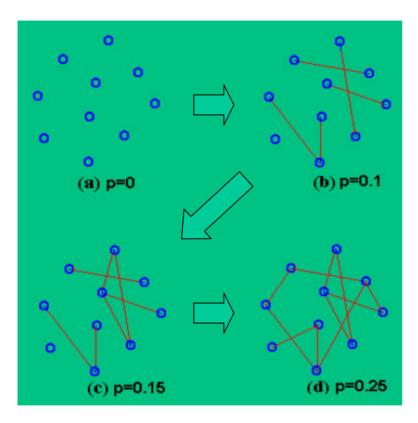
$$C = p = \langle k \rangle / N \ll 1$$
 for $p \ll 1$

(because the probability of 2 neighbors being connected is p, by definition)

➤ PEAK (Poisson) degree distribution (low value):

$$\langle k \rangle \approx pN$$
, $P(k) \approx \delta(k - pN)$

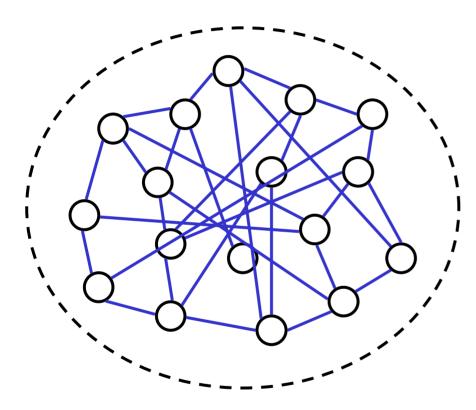
Four structural models Random networks



Percolation in a random graph (Wang, X. F., 2002)

- ➤ Erdős & Rényi (1960): above a critical value of random connectivity the network is almost certainly connected in one single component
- percolation happens when "picking one button (node) will lift all the others"
- > the critical value of probability p is $p_c \approx \ln N / N$
- ➤ and the corresponding average critical degree:

$$\langle k_c \rangle \approx p_c N \approx \ln N$$



A Watts-Strogatz small-world network

➤ a network with *small-world EFFECT* is ANY large network that has a low average path length:

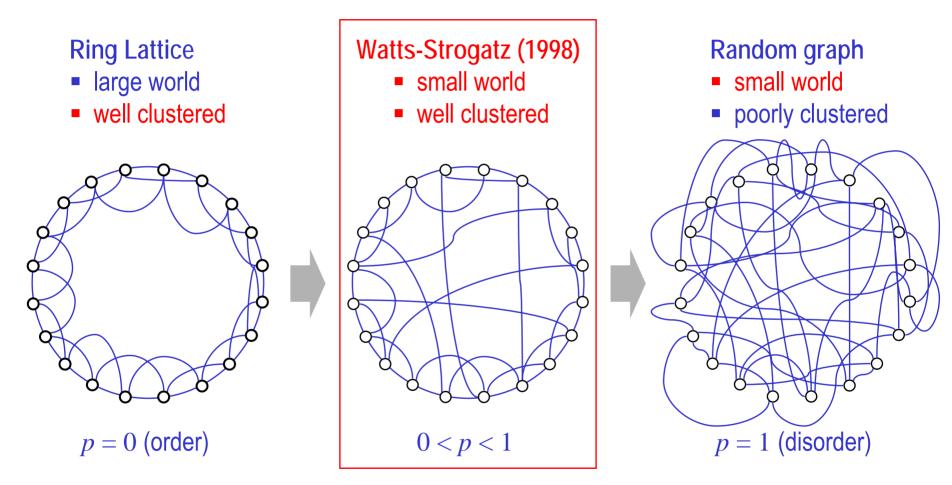
$$L \ll N$$
 for $N \gg 1$

- famous "6 degrees of separation"
- ➤ the Watts-Strogatz (WS) small-world MODEL is a hybrid network between a regular lattice and a random graph
- ➤ WS networks have both the LOW average path length of random graphs:

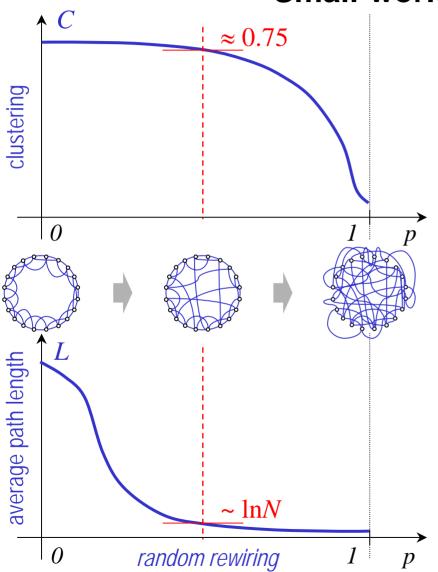
$$L \sim \ln N$$
 for $N >> 1$

and the HIGH clustering coefficient of regular lattices:

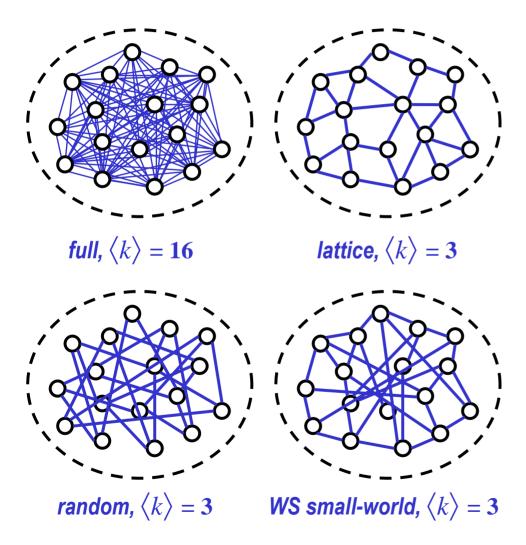
$$C \approx 0.75$$
 for $K >> 1$



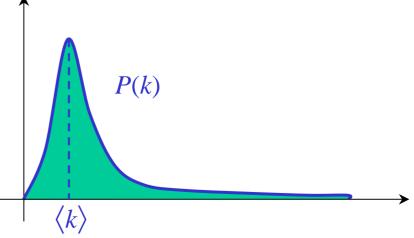
➤ the WS model consists in gradually rewiring a regular lattice into a random graph, with a probability p that an original lattice edge will be reassigned at random

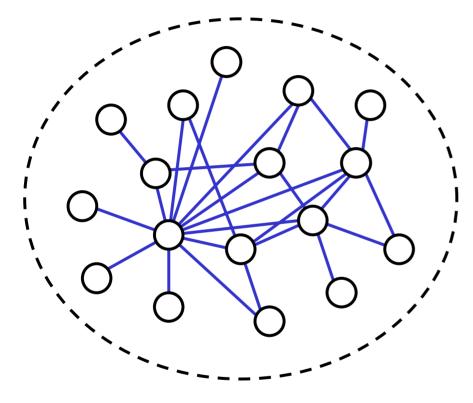


- ➤ the clustering coefficient is resistant to rewiring over a broad interval of *p*
 - it means that the small-world effect is hardly detectable locally: nodes continue seeing mostly the same "clique" of neighbors
- ➤ on the other hand, the average path length drops rapidly for low p
 - as soon as a few long-range "shortcut" connections are introduced, the original large-world starts collapsing
 - through a few bridges, far away cliques are put in contact and this is sufficient for a rapid spread of information



- on the other hand, the WS model still has a PEAK (Poisson) degree distribution (uniform connectivity)
- in that sense, it belongs to the same family of *exponential networks*:
 - fully connected networks
 - lattices
 - random graphs
 - WS small-world networks



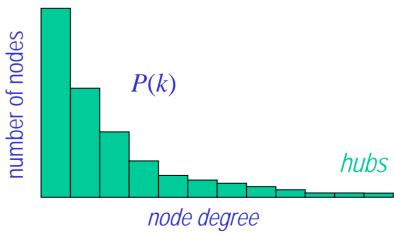


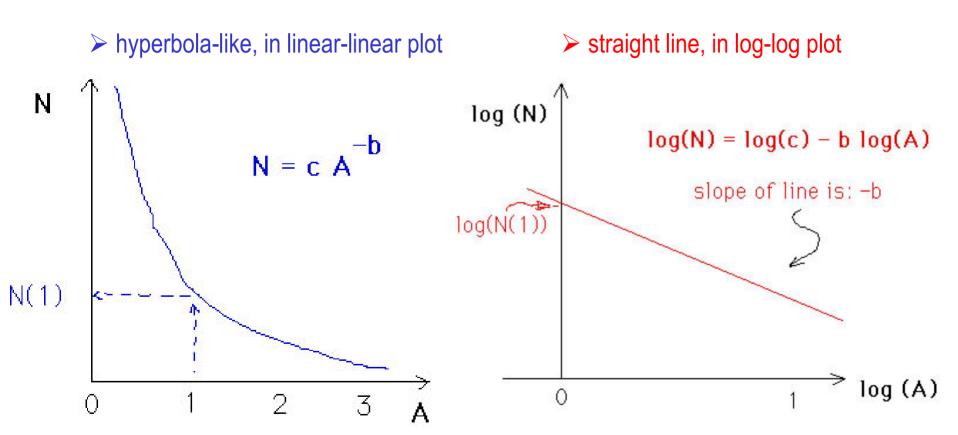
A schematic scale-free network

in a scale-free network the degree distribution follows a POWER-LAW:

$$P(k) \sim k^{-\gamma}$$

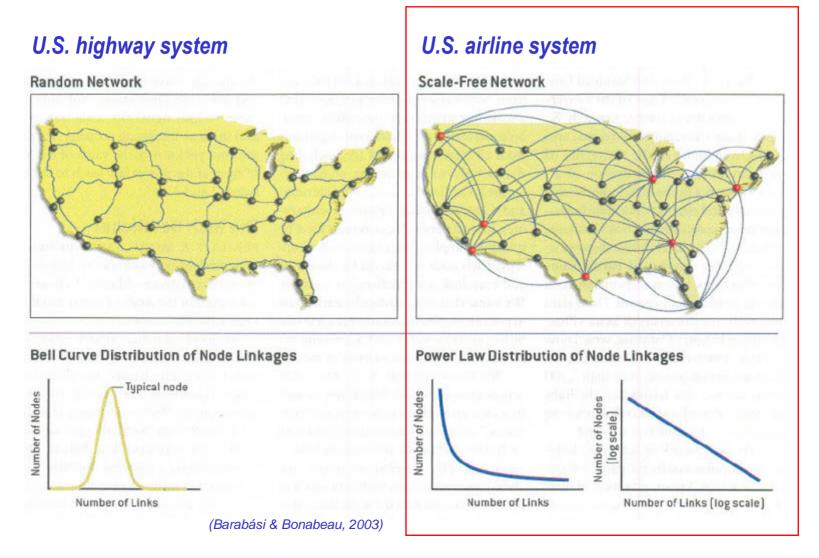
- ➤ there exists a small number of highly connected nodes, called *hubs* (tail of the distribution)
- ➤ the great majority of nodes have few connections (head of the distribution)

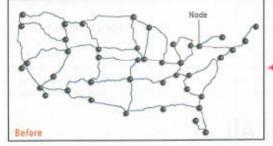


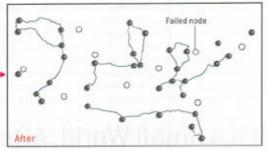


Typical aspect of a power law

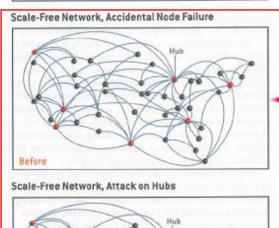
(image from Larry Ruff, University of Michigan, http://www.geo.lsa.umich.edu/~ruff)

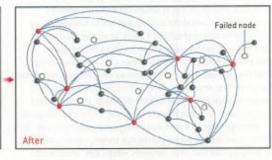






regular networks are not resistant to random node failures: they quickly break down into isolated fragments





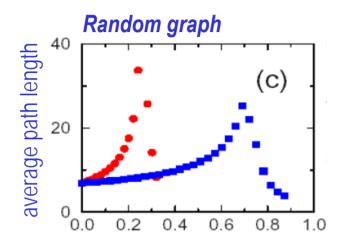
Attacked hub

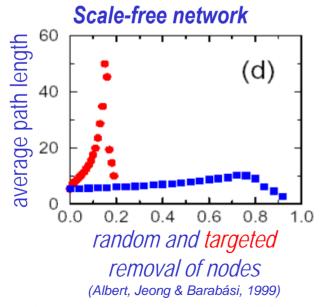
After

- scale-free networks are remarkably resistant to random accidental node failures . . .
- ... however they are also highly vulnerable to targeted attacks on their hubs

Effect of failures and attacks on scale-free networks

(Barabási & Bonabeau, 2003)

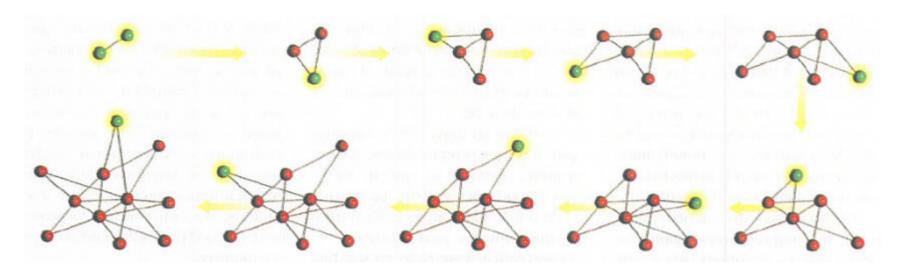




- in a random graph the average path length increases significantly with node removal, then eventually breaks down
- → for a while, the network becomes a large world
- in a scale-free network, the average path length is preserved during random node removal
- → it remains a small world
- however, it fails even faster than a random graph under targeted removal

- ➤ the *Barabási-Albert model*, reproduces the scale-free property by:
 - growth and
 - (linear) preferential attachment

- > growth: a node is added at each step
- ➤ attachment: new nodes tend to prefer well-connected nodes ("the rich get richer" or "first come, best served") in linear proportion to their degree



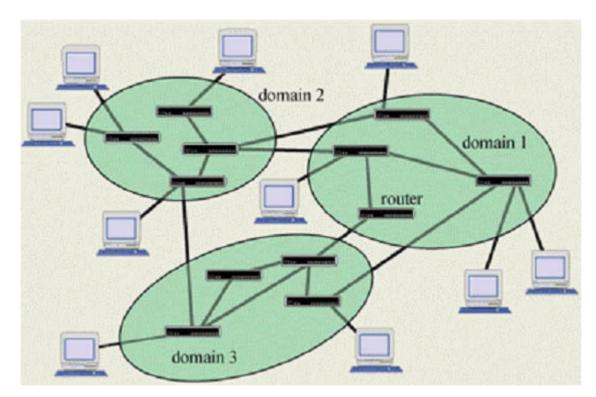
Growth and preferential attachment creating a scale-free network

(Barabási & Bonabeau, 2003)

Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
- Four structural models
- Structural case studies
 - Internet
 - World Wide Web
 - Actors & scientists
 - Neural networks
 - Cellular metabolism
- Node dynamics and self-organization
- Bibliography

Structural case studies Internet

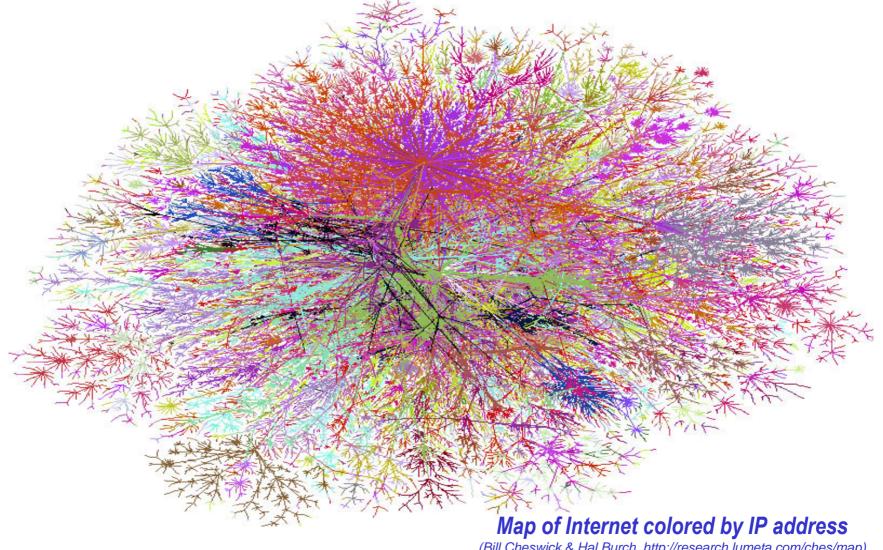


Schema of the Internet

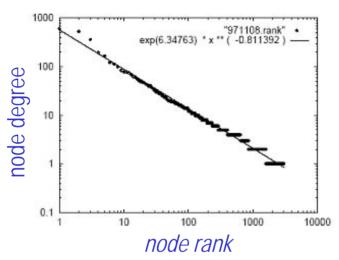
(Wang, X. F., 2002)

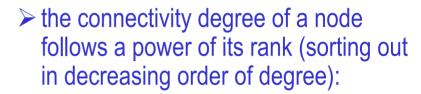
- ➤ the Internet is a network of routers that transmit data among computers
- routers are grouped into domains, which are interconnected
- to map the connections, "traceroute" utilities are used to send test data packets and trace their path

Structural case studies **Internet**

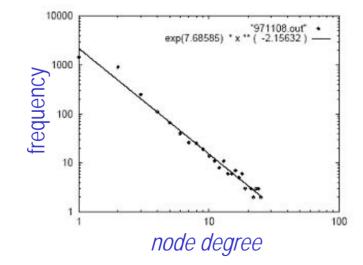


Structural case studies Internet





node degree ~ *(node rank)*
$$^{-\alpha}$$



➤ the most connected nodes are the least frequent:

degree frequency ~(node degree)
$$^{\gamma}$$

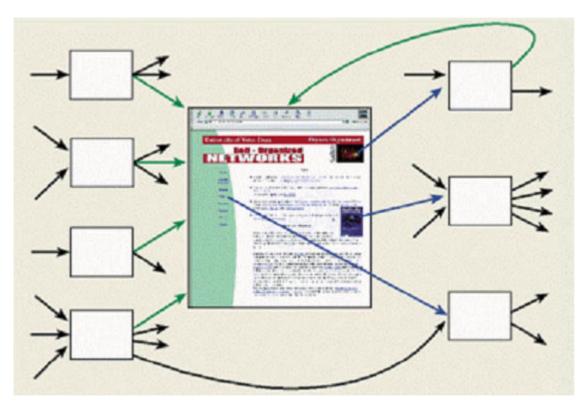
 $P(k) \sim k^{-\gamma}$

→ the Internet is a scale-free network

Two power laws of the Internet topology

(Faloutsos, Faloutsos & Faloutsos, 1999)

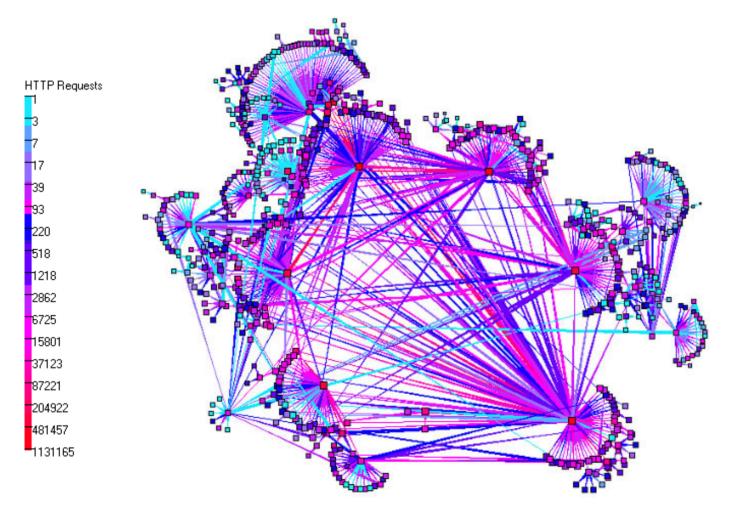
Structural case studies World Wide Web



Schema of the World Wide Web of documents

- the World Wide Web is a network of documents that reference each other
- the nodes are the Web pages and the edges are the hyperlinks
- edges are directed: they can be outgoing and incoming hyperlinks

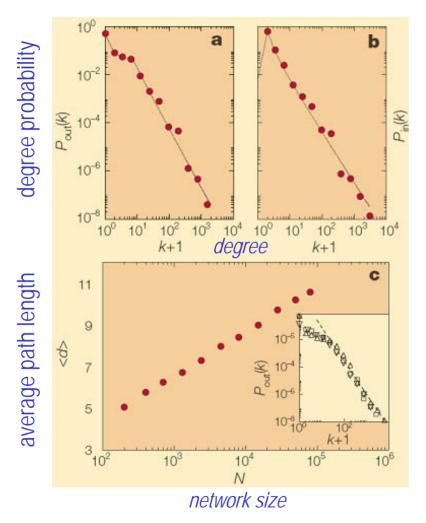
Structural case studies World Wide Web



Hierachical topology of the international Web cache

(Bradley Huffaker, http://www.caida.org/tools/visualization/plankton)

Structural case studies World Wide Web



> WWW is a scale-free network:

$$P(k) \sim k^{-\gamma}$$

with $\gamma_{out} = 2.45$ and $\gamma_{in} = 2.1$

> WWW is also a small world:

$$L \approx \alpha \ln N$$

with $L \approx 11$ for $N = 10^5$ documents

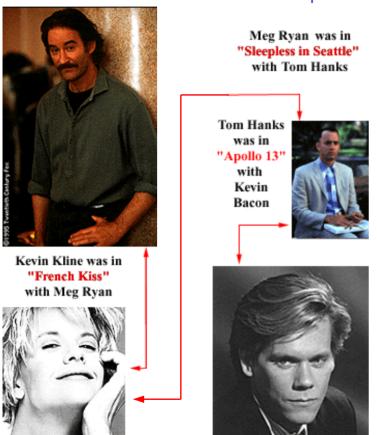
Distribution of links on the World-Wide Web

(Albert, Jeong & Barabási, 1999)

Structural case studies Actors & scientists

"The Oracle of Bacon"

http://www.cs.virginia.edu/oracle



- ➤ a given actor is on average 3 movies away from Kevin Bacon $(L_{\rm Bacon}=2.946, \text{ as of June } 2004) \dots$ or any other actor for that matter
- > Hollywood is a small world
- . . . and it is a scale-free small world: a few actors played in a lot of movies, and a lot of actors in few movies

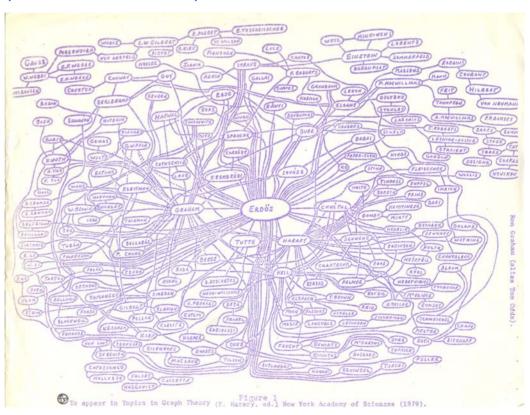
Path from K. Kline to K. Bacon = 3 (as of 1995)

(http://collegian.ksu.edu/issues/v100/FA/n069/fea-making-bacon-fuqua.html)

Structural case studies Actors & scientists

"The Erdős Number Project"

http://www.oakland.edu/enp



Co-authors of Paul Erdős have number 1, co-authors of co-authors number 2, etc.

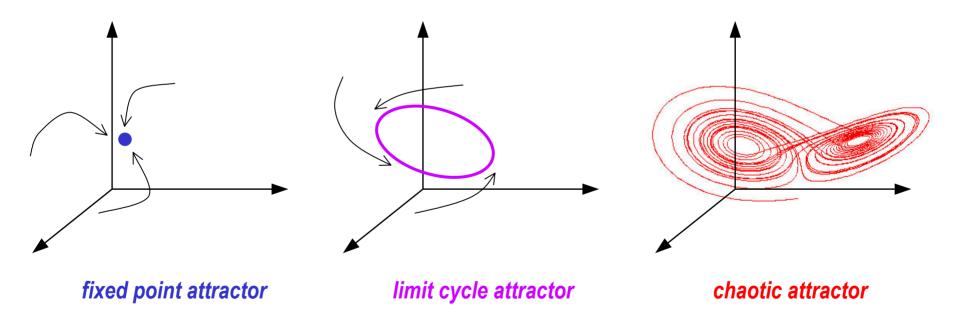
Mathematicians form a highly clustered (C = 0.14) small world (L = 7.64)

Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
- Four structural models
- Structural case studies
- Node dynamics and self-organization
 - Node dynamics
 - Attractors in full & lattice networks
 - Synchronization in full networks
 - Waves in lattice networks
 - Epidemics in complex networks
- Bibliography

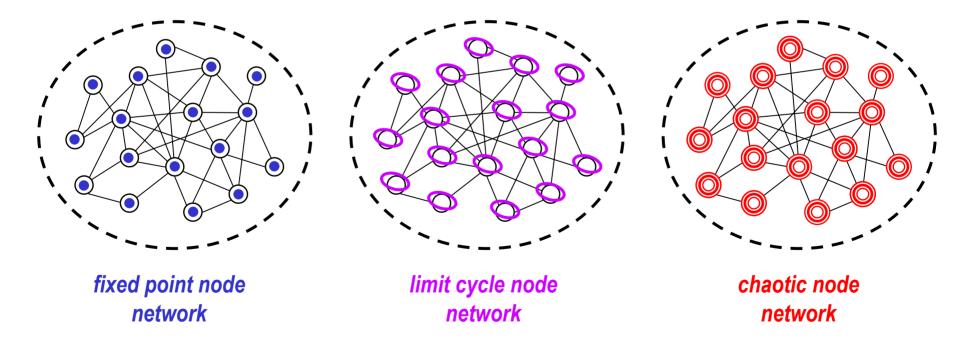
Node dynamics and self-organization Node dynamics – *Individual node*

- \triangleright each node in the network obey a differential equation: $\frac{dx}{dt} = f(x)$
- > generally, three possible behaviors in phase space:

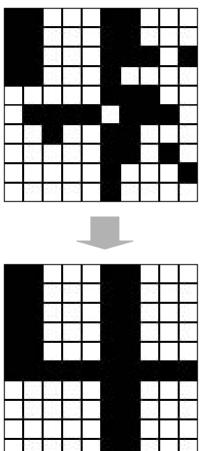


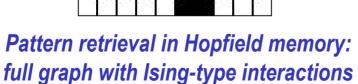
Node dynamics and self-organization Node dynamics – *Coupled nodes*

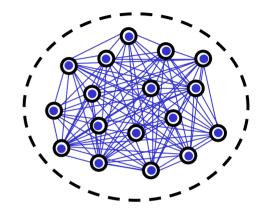
- > a complex network is a set of coupled nodes obeying: $\frac{dx_A}{dt} = f(x_A) + \sum_{A \leftarrow B} g(x_A, x_B)$
- > generally, three types of complex network dynamics:



Node dynamics and self-organization Attractors in full networks

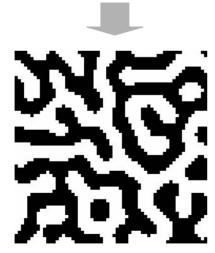


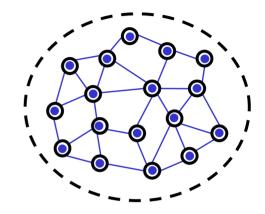




- fixed point nodes
- fully connected network
- \rightarrow a few fixed patterns ($\approx 0.14 N$)

Node dynamics and self-organization Attractors in lattice networks



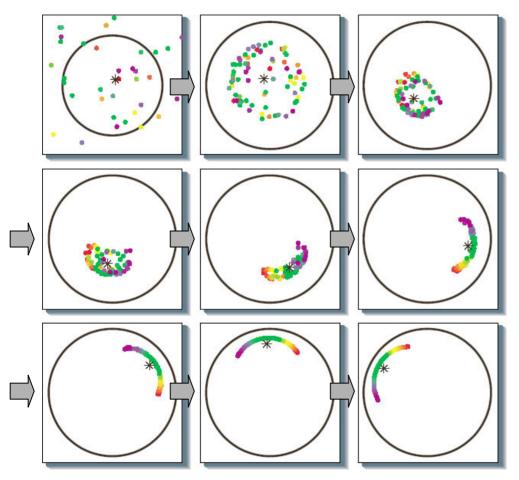


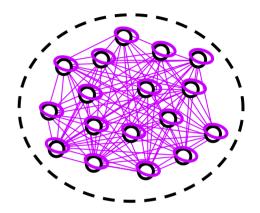
- fixed point nodes
- regular lattice network
- → a great number of new patterns

Pattern formation in animal pigmentation: 2-D lattice with stationary reaction-diffusion

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)

Node dynamics and self-organization Synchronization in full networks



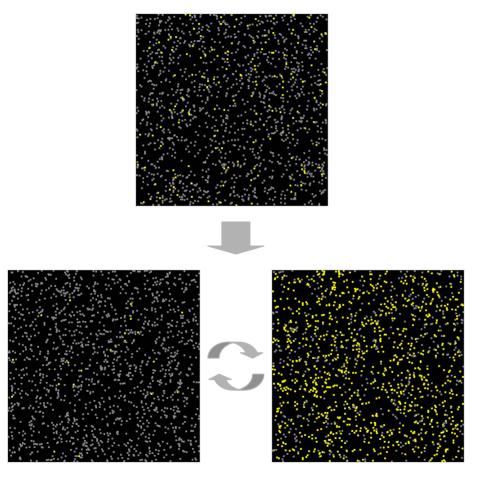


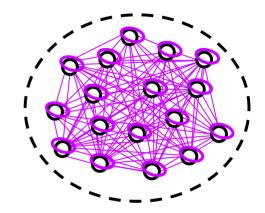
- limit cycle nodes
- fully connected network
- → global synchronization

Spontaneous synchronization in a network of limit-cycle oscillators with distributed natural frequencies

(Strogatz, 2001)

Node dynamics and self-organization Synchronization in full networks



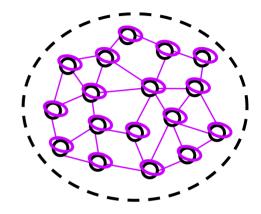


- limit cycle nodes
- fully connected network
- → global synchronization

Spontaneous synchronization in a swarm of fireflies: (almost) fully connected graph of independent oscillators

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)

Node dynamics and self-organization Waves in lattice networks

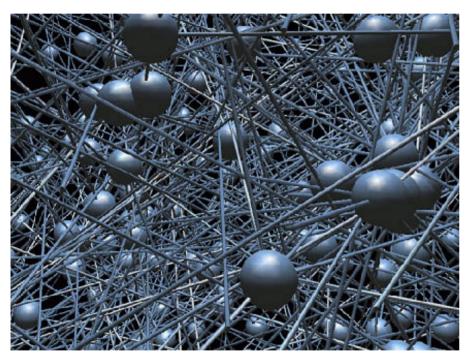


- limit cycle nodes
- regular lattice network
- → traveling waves

BZ reaction or slime mold aggregation: 2-D lattice with oscillatory reaction-diffusion

(NetLogo simulation, Uri Wilensky, Northwestern University, IL)

Node dynamics and self-organization Epidemics in complex networks

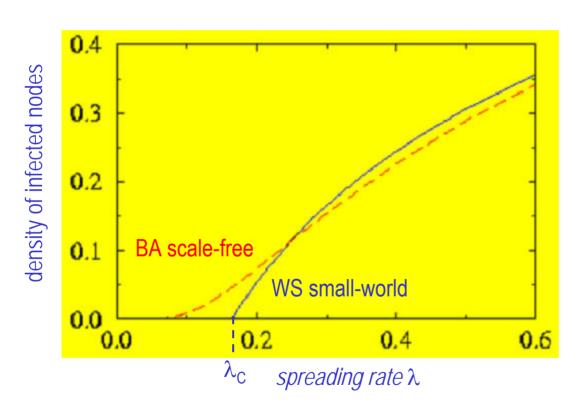


3-D visualization of social links (A. S. Klovdahl, http://carnap.ss.uci.edu/vis.html)

- understand of beneficial or nefarious activity/failures spread over a network:
 - diseases
 - power blackouts
 - computer viruses
 - fashions, etc.
- susceptible-infected-susceptible (SIS) epidemiological model:
 - two node states: infected or susceptible
 - susceptible nodes can get infected with probability v
 - infected nodes heal and become susceptible again with proba δ

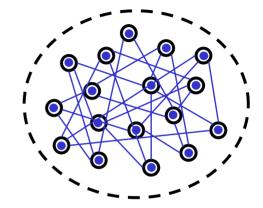
 \rightarrow spreading rate: $\lambda = v/\delta$

Node dynamics and self-organization Epidemics in complex networks

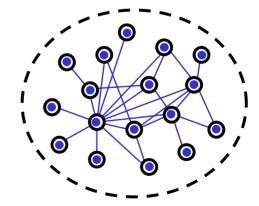


Epidemic on exponential and scale-free networks

(Pastor-Satorras & Vespignani, 2001)



- exponential network
- → spread with threshold



- scale-free network
- → spread WITHOUT threshold

Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
- Four structural models
- Structural case studies
- Node dynamics and self-organization
- Bibliography
 - Reviews
 - Studies

Bibliography Reviews

- Barabási, A.-L. (2002) Linked: The New Science of Networks. Perseus Books.
- Barabási, A.-L. and Bonabeau, E. (2003) Scale-free networks. *Scientific American*, **288**: 60-69.
- Strogatz, S. H. (2001) Exploring complex networks. Nature, 410(6825): 268-276.
- Wang, X. F. (2002) Complex networks: topology, dynamics and synchronization. *International Journal of Bifurcation and Chaos*, **12**(5): 885-916.

Bibliography Studies

- Albert, R., Jeong, H. & Barabási, A.-L. (1999) Diameter of the World Wide Web. Nature 401: 130-131.
- Albert, R., Jeong, H. & Barabási, A.-L. (2000) Attack and error tolerance in complex networks. *Nature* **406**: 387-482.
- Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. *Science*, **286**(5439): 509-512.
- Erdős, P. & Rényi, A. (1960) On the evolution of random graphs. *Publ. Math. Inst. Hung. Acad. Sci.* **5**: 17-60.
- Faloutsos, M., Faloutsos, P. & Faloutsos, C. (1999) On power-law relationships of the Internet topology. *Comput. Commun. Rev.* **29**: 251-263.
- Pastor-Satorras, R. & Vespignani, A. (2001) Epidemic dynamics and endemic states in complex networks. *Phys. Rev.* **E63**(066117): 1-8.
- Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of "small-world" networks. *Nature*, 393(6684): 440-442.

Topology and Dynamics of Complex Networks

- Introduction
- Three structural metrics
- Four structural models
- Structural case studies
- Node dynamics and self-organization
- Bibliography